JPS622914B2 - - Google Patents

Info

Publication number
JPS622914B2
JPS622914B2 JP5987382A JP5987382A JPS622914B2 JP S622914 B2 JPS622914 B2 JP S622914B2 JP 5987382 A JP5987382 A JP 5987382A JP 5987382 A JP5987382 A JP 5987382A JP S622914 B2 JPS622914 B2 JP S622914B2
Authority
JP
Japan
Prior art keywords
welding
energization time
time
voltage
welding current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5987382A
Other languages
Japanese (ja)
Other versions
JPS58176085A (en
Inventor
Masahiro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dengensha Toa Co Ltd
Original Assignee
Dengensha Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dengensha Manufacturing Co Ltd filed Critical Dengensha Manufacturing Co Ltd
Priority to JP5987382A priority Critical patent/JPS58176085A/en
Publication of JPS58176085A publication Critical patent/JPS58176085A/en
Publication of JPS622914B2 publication Critical patent/JPS622914B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/25Monitoring devices
    • B23K11/252Monitoring devices using digital means
    • B23K11/256Monitoring devices using digital means the measured parameter being the inter-electrode electrical resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)

Description

【発明の詳細な説明】 本発明は、抵抗溶接装置による健全な溶接ナゲ
ツトを得るための適応制御に関し、さらに詳しく
は、溶接ナゲツトの生成に伴なう電極チツプ間電
圧値等の変化量を検出し、その信号を溶接装置に
フイードバツクすることにより適切な溶接強度を
確保すべく溶接条件をコントロールするようにし
たものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to adaptive control for obtaining healthy weld nuggets using a resistance welding device, and more specifically, to detect the amount of change in the voltage value between electrode tips, etc. that occurs when weld nuggets are generated. However, by feeding back the signal to the welding equipment, welding conditions are controlled to ensure appropriate welding strength.

現在、重ね抵抗溶接用の適応制御装置として
は、溶接ナゲツトの生成に伴う変化量として、電
極間電圧又は電極間抵抗を検出するもの、電極の
エクスパンシヨン量を検出するもの、電極チツプ
先端の温度上昇を検出するもの、或いは電極間の
超音波透過率を検出するもの等各種の方式が研究
されているが、その大多数が溶接電流の流通時間
を調節することにより、所定の強さの溶接ナゲツ
トを得る方式のものである。
Currently, adaptive control devices for lap resistance welding include those that detect the interelectrode voltage or interelectrode resistance as changes associated with the generation of weld nuggets, those that detect the amount of electrode expansion, and those that detect the amount of electrode expansion. Various methods have been studied, such as methods that detect temperature rise or ultrasonic transmittance between electrodes, but most of them detect a predetermined intensity by adjusting the flow time of the welding current. This is a method to obtain weld nuggets.

しかし、この方式によると、スポツト溶接にお
ける溶接打点数の進行に伴う電極チツプ先端の圧
潰を考えた場合、所定の強度のナゲツトを得るた
めに通電時間が徐々に延長して来、最終的には作
業タクトにまで悪影響を及ぼす事態が特に問題と
なつている。
However, according to this method, when considering the crushing of the tip of the electrode tip as the number of welding points increases in spot welding, the energization time gradually increases in order to obtain a nugget of a predetermined strength, and eventually Situations that have a negative impact on work takt time are a particular problem.

本発明はこれらの欠点を改善し、更に良好な品
質をもつた溶接ナゲツトを確保しつつ電極チツプ
先端の成形作業の間隔を延長して溶接作業の効率
を高めようとするものである。
The present invention aims to improve the efficiency of the welding operation by improving these drawbacks and extending the interval between forming operations for the tip of the electrode tip while ensuring a welding nugget of better quality.

以下図面の実施例について説明すると、第1図
は本発明の概念を説明するためのもので、横軸は
チツプ先端をドレツシングした直後からの連続し
たスポツト溶接の打点数であり、最大の6000打点
はある表面処理剛板2枚合せの場合の一事例であ
る。
To explain the embodiments shown in the drawings below, Fig. 1 is for explaining the concept of the present invention, and the horizontal axis shows the number of consecutive spot welding points immediately after dressing the chip tip, with the maximum number of 6000 points. This is an example of a combination of two surface-treated rigid plates.

図の縦軸の一つは夫々のスポツト溶接における
通電時間の変化を示し、図の例では10サイクルを
基準値とし、所々に11サイクル通電の打点数(数
十点)が凸状に示されている。
One of the vertical axes in the figure shows the change in energization time in each spot welding. In the example in the figure, 10 cycles is the reference value, and the number of dots (several tens of points) for 11 cycles of energization is shown in a convex shape here and there. ing.

縦軸のもう一つ、上の方に溶接電流の変化(一
例として8000A〜10500A)を示すが、これは溶
接打点数の進展と共に徐々に溶接電流が増加して
ゆく状態を示している。
The other vertical axis shows the change in welding current (8000A to 10500A as an example) at the top, which shows that the welding current gradually increases as the number of welding points progresses.

図の例により本発明の動作原理を説明すると次
のようになる。
The operating principle of the present invention will be explained below using the example shown in the figure.

まず、チツプドレス直後は、ある所定の電極加
圧力のもとに溶接電流8000Aで、平均通電時間10
サイクルという条件のもとで適応制御されたスポ
ツト溶接が行なわれている。
First, immediately after chip dressing, the welding current was 8000 A under a certain predetermined electrode pressure, and the average welding time was 10.
Adaptively controlled spot welding is carried out under cycle conditions.

板厚の変化や、打点位置接近による溶接電流の
分流効果等の外乱により適応制御装置は通電時間
を1〜2サイクル変化させるかも知れないが、平
均的には、通電時間は10サイクルであつたとす
る。
The adaptive control device may change the energization time by 1 to 2 cycles due to disturbances such as changes in plate thickness or the shunting effect of welding current due to proximity of the welding point position, but on average, the energization time is 10 cycles. do.

今、溶接打点数が第1図のNI点(約700点位)
になり、チツプ先端の圧潰によりその面積が増大
し、電流密度の減少により同一電流では溶接ナゲ
ツトができにくくなり、適応制御装置は通電時間
を自動的に1サイクル増加し、11サイクルにす
る。
The number of welding points is now the NI point in Figure 1 (approximately 700 points)
The area increases due to the crushing of the chip tip, and the current density decreases, making it difficult to form a weld nugget with the same current.The adaptive control device automatically increases the energization time by one cycle to 11 cycles.

本発明の装置は、この通電時間の1サイクルの
増加を検知し、これをもとの10サイクルの値に戻
すべく、溶接電流を徐々に、即ち、溶接打点数の
進展に伴つて、各打点ごとに少しづつ増加してゆ
く。この電流の増加率は、経験的に最初の電流
(図では8000A)に対する割合(%)できめても
よいし、或いは11サイクルに変化した打点数NI
(図の700点位)に対応して計算制御してもよい。
徐々に増加した溶接電流がある値(図では約
8500A位)に達すると、適応制御装置は今度は通
電時間を最初の値(10サイクル)に自動的に復帰
させる。
The device of the present invention detects this one-cycle increase in the energization time, and in order to return it to the original value of 10 cycles, the welding current is gradually increased at each welding point as the number of welding points increases. It increases little by little. The rate of increase in this current can be determined empirically as a percentage (%) of the initial current (8000A in the figure), or as the number of dots NI that changed in 11 cycles.
(about 700 points in the figure) may be calculated and controlled.
The welding current gradually increased to a certain value (in the figure approximately
When the current (approximately 8500A) is reached, the adaptive control device automatically returns the energization time to the initial value (10 cycles).

本発明の装置は、通電時間の初期値(10サイク
ル)復帰を検知して、その状態で溶接電流の増加
を停止し、そのときの値(約8500A位)を保持す
る制御を行う。
The device of the present invention detects the return of the energization time to the initial value (10 cycles), stops increasing the welding current in that state, and performs control to maintain the value at that time (approximately 8500 A).

前述したように、適応制御装置は種々の外乱に
対してその1回ごとの通電時間を調節するため、
実際の通電時間は必ずしもきつちりと一定ではな
いが、前述した溶接電流のゆつくりした変化は、
これら通電時間の変動を平均化して考えることが
できる。
As mentioned above, since the adaptive control device adjusts the energization time for each time in response to various disturbances,
Although the actual energization time is not always exactly constant, the gradual change in welding current mentioned above
These fluctuations in energization time can be averaged and considered.

第1図の打点数N2(図では約1400打点位)の
所で、再び前述したと同様、通電時間を平均値の
1サイクル増加が発生している。これにより溶接
電流は再び増加し、今度は9000Aで通電時間を10
サイクルに保つ操作が自動的に行なわれた状態を
示している。
At the number of dots N2 in FIG. 1 (approximately 1400 dots in the figure), the energization time increases by one cycle in the average value, again as described above. As a result, the welding current increases again, this time at 9000A for 10 hrs.
This shows a state in which the operation to maintain the cycle has been automatically performed.

図の点線で表わした通電時間Tw′、溶接電流
Iw′は本発明の装置の附属しない通常の適応制御
の場合を示す。即ち、溶接電流は増加せず、通電
時間は電極チツプ圧潰状態と相俟つて遂次増加し
てゆくことが判る。
Current application time Tw′ and welding current shown by dotted lines in the figure
Iw' indicates the case of normal adaptive control not attached to the device of the present invention. That is, it can be seen that the welding current does not increase, but the current application time gradually increases as the electrode chip becomes crushed.

これに対し、本発明の装置においては、溶接電
流が通電時間の1サイクルに相当する分だけ自動
的に増加し、通電時間は最初の状態に保たれるた
め作業タクトに支障を与える等の心配は考えなく
てよい。
In contrast, in the device of the present invention, the welding current is automatically increased by an amount corresponding to one cycle of the energization time, and the energization time is kept at the initial state, so there is no need to worry about interfering with the work takt. You don't have to think about it.

又、チツプ先端面積の増加による電流密度の減
少を補正するには、通電時間の延長による方式よ
りも溶接電流自体を増加させ適応制御させる方式
の方が合理的であり、溶接ナゲツトの品質につい
ても良好な結果が期待できる。
In addition, in order to compensate for the decrease in current density due to an increase in the chip tip area, it is more rational to increase the welding current itself and perform adaptive control than to extend the energization time, and it also improves the quality of weld nuggets. Good results can be expected.

第2図は、本発明の一実施例の電気的ブロツク
図を示す。
FIG. 2 shows an electrical block diagram of one embodiment of the invention.

図において溶接検出器29は、冒頭で述べた電
極間電圧、電極エクスパンシヨン、電極先端の温
度又は電極間の超音波透過率等溶接ナゲツトの生
成に関する変化量を電気的に検出できるものなら
何でもよく、次の通電時間制御形適応制御装置3
0は、前記溶接検出器29からの情報により溶接
ナゲツトの完成を通電時間により調節する方式の
総ての装置が適用できる。
In the figure, the welding detector 29 is anything that can electrically detect the amount of change related to the generation of weld nuggets, such as the inter-electrode voltage, electrode expansion, temperature at the tip of the electrode, or ultrasonic transmittance between the electrodes, as described at the beginning. Well, the following energization time control type adaptive control device 3
0 can be applied to any device in which the completion of the weld nugget is adjusted by the energization time based on the information from the welding detector 29.

所定の電極加圧のもとで溶接電流を流してスポ
ツト溶接を行なう場合、溶接電流は基準溶接電流
設定器22により設定され、電流検出器21によ
りフイードバツクされ、点弧位相演算器26によ
り安定化制御される。前述した適応制御装置30
は溶接ナゲツトの完成と同時に通電停止信号を発
信し、この信号は通電時間制御器31を経て点弧
信号発信器25をロツクし、サイリスタ・スタツ
ク等の交流用電子スイツチ回路を遮断して溶接通
電を停止する操作が行なわれる。
When performing spot welding by flowing a welding current under a predetermined electrode pressure, the welding current is set by a reference welding current setting device 22, fed back by a current detector 21, and stabilized by an ignition phase calculator 26. controlled. Adaptive control device 30 described above
transmits a energization stop signal at the same time as the welding nugget is completed, and this signal passes through the energization time controller 31 and locks the ignition signal transmitter 25, interrupting the alternating current electronic switch circuits such as thyristors and stacks, and stopping the welding energization. An operation is performed to stop the.

電極チツプ先端のドレツシング作業が行なわれ
た直後の、前記適応制御スポツト溶接における通
電時間は、計測され手動操作又は電子回路による
自動操作により基準通電時間としてその設定器2
3に記憶される。
The energization time in the adaptive control spot welding immediately after the dressing operation of the tip of the electrode tip is performed is measured and set as the reference energization time by manual operation or automatic operation using an electronic circuit.
3 is stored.

前述したように、板厚の変化や分流等の外乱に
対し、適応制御装置30は通電時間を変化させて
対応するが、この通電時間の増減数は比較器28
により基準値と比較され次段の電流増減率演算器
27に伝達される。しかし、この電流増減率演算
器27は、これら単発的な回復性のある情報入力
に対しては溶接電流を増減させる動作は行なわな
い。溶接打点数の進展に伴い電極チツプ先端の圧
潰が始まると、適応制御装置による実際の通電時
間は頭初の値より1サイクル増加した値が頻発す
るようになり、やがてその増加した通電時間が平
均値となつて来る。前述した電流増減率演算器は
この状態を単発的な状態と識別して溶接電流の暫
増指令を次段の点弧位相演算器26に伝達するこ
とになる。
As mentioned above, the adaptive control device 30 responds to disturbances such as changes in plate thickness and shunts by changing the energization time.
is compared with a reference value and transmitted to the current increase/decrease rate calculator 27 at the next stage. However, the current increase/decrease rate calculator 27 does not increase or decrease the welding current in response to these one-off recoverable information inputs. When the tip of the electrode tip begins to collapse as the number of welding points increases, the actual energization time by the adaptive control device will frequently increase by one cycle from the initial value, and soon the increased energization time will become average. It becomes a value. The aforementioned current increase/decrease rate calculator identifies this state as a one-off state and transmits a command to temporarily increase the welding current to the ignition phase calculator 26 at the next stage.

この電流暫増指令は、基準溶接電流設定器22
の指示値にプラスされ、溶接打点数の進展ごとに
少しづつ溶接電流を増加してゆくため、適応制御
装置30はその通電時間を延長する必要がなくな
り、再び最初の値に復帰する。この状態は比較器
28により識別され電流増減率演算器27は入力
がなくなるため電流はその時点の値を一定に保持
されることになる。
This current temporary increase command is issued by the reference welding current setting device 22.
Since the welding current is increased little by little as the number of welding points progresses, the adaptive control device 30 does not need to extend its energization time and returns to the initial value again. This state is identified by the comparator 28, and the current increase/decrease rate calculator 27 receives no input, so that the current is held constant at the value at that time.

このようにして、電極チツプの圧潰の状態が進
行するに従い溶接電流は通電時間の平均値として
の1サイクルに相当する分だけ少しづつ増加をく
り返し、やがて溶接条件上か、又は溶接装置の電
流容量上かの上限値に到達する。
In this way, as the state of crushing of the electrode tip progresses, the welding current increases little by little by an amount corresponding to one cycle as the average value of the current application time, and eventually due to the welding conditions or the current capacity of the welding equipment. The upper limit value is reached.

この状態のとき本装置は警報(図には省略)を
発信し、電極チツプのドレツシング作業をうなが
すことになる。
In this state, the device will issue an alarm (not shown) to prompt the dressing of the electrode tip.

電極チツプの先端径が成形された状態で再び溶
接作業が進行することになるが、このとき溶接電
流は上限値のまゝである。このような状態で溶接
通電が行なわれると、時としていわゆる“散り”
の発生を伴うが、適応制御装置30は極めて短か
い通電時間により溶接ナゲツトの完成を検知す
る。
The welding operation will proceed again with the tip diameter of the electrode tip formed, but at this time the welding current remains at the upper limit value. When welding current is applied under such conditions, so-called "scattering" may occur.
However, the adaptive control device 30 detects the completion of the weld nugget in an extremely short energization time.

基準通電時間設定器23により設定された値を
遥かに下まわるこの通電時間の情報は、電流増減
率演算器27に伝達され、この情報により溶接電
流はただちに基準溶接電流設定器22により指定
される初期値に自動リセツトされることになる。
Information on this energization time, which is much lower than the value set by the reference energization time setting device 23, is transmitted to the current increase/decrease rate calculator 27, and based on this information, the welding current is immediately specified by the reference welding current setting device 22. It will be automatically reset to the initial value.

第3図は、本発明の一実施態様に関する電気ブ
ロツク図で、第2図との相異点である溶接検出器
29および通電時間制御形適応制御装置30のみ
を詳細図示したものであり、通電時間制御器以降
は第2図と全く同一であるため省略してある。
FIG. 3 is an electrical block diagram of an embodiment of the present invention, in which only the welding detector 29 and the energization time-controlled adaptive control device 30, which are different from FIG. 2, are shown in detail. The parts after the time controller are completely the same as in FIG. 2, so they are omitted.

第3図の電極間電圧検出器1は溶接ナゲツトの
生成に伴う電極間の電圧変化を検出するためのも
ので、検出ケーブルが受ける溶接電流の誘導雑音
電圧は内部の電子回路により除去される。
The interelectrode voltage detector 1 shown in FIG. 3 is for detecting voltage changes between electrodes due to the generation of weld nuggets, and the induced noise voltage of the welding current received by the detection cable is removed by an internal electronic circuit.

この電圧検出器1の出力電圧は、安定化された
一定値の溶接電流によるスポツト溶接において
は、溶接ナゲツトの発芽状態で最大値をもち、ナ
ゲツトの生長による面積の増加に伴つて暫減する
曲線をたどることは周知の事実である。
In spot welding using a stabilized constant value welding current, the output voltage of this voltage detector 1 has a maximum value when weld nuggets are sprouting, and gradually decreases as the area increases due to nugget growth. It is a well-known fact that

図の電圧減少分時間積分器2は、上記電圧曲線
の最大値と時間と共に減少してゆく電圧との差分
を時間積分するもので、この積分値はスポツト溶
接のナゲツト径と相関々係をもち、かつ溶接電源
の急変等の外乱に対しても強く、スポツト溶接の
適応制御パラメータとして優れた特性を有するこ
とが判明している。
The voltage decrease time integrator 2 shown in the figure is for time-integrating the difference between the maximum value of the voltage curve and the voltage that decreases over time, and this integral value has a correlation with the nugget diameter of spot welding. It has also been found that it is resistant to disturbances such as sudden changes in the welding power source, and has excellent characteristics as an adaptive control parameter for spot welding.

電極チツプ先端の成形作業直後における基準状
態で行なわれたスポツト溶接で、適正な溶接ナゲ
ツトが得られたとき、そのスポツト溶接における
電圧減少分時間積分器2の出力は計測され手動操
作又は電子回路による自動操作により基準積分値
設定器4に記憶される。
When a proper weld nugget is obtained by spot welding performed under the standard conditions immediately after the electrode tip tip forming operation, the output of the voltage reduction time integrator 2 during that spot welding is measured and can be controlled manually or by an electronic circuit. It is stored in the reference integral value setter 4 by automatic operation.

以降、この適応制御装置は、電圧減少分時間積
分器2の出力が、基準積分値設定器4の値と一致
した時点で溶接通電の停止信号を次段の通電時間
制御器31に伝達し、その出力は、第2図の通電
時間制御器31と同様の作用を行い溶接通電を停
止させる。溶接打点数の進展に伴い電極チツプの
圧潰が進行すると電極間電圧検出器1の出力は、
前述した電圧最大値自体が低くなり、同時にその
電圧の時間に対する減少の度合いも少なくなつて
来る。
Thereafter, this adaptive control device transmits a welding energization stop signal to the next stage energization time controller 31 when the output of the voltage decrease time integrator 2 matches the value of the reference integral value setting device 4, The output performs the same function as the energization time controller 31 shown in FIG. 2, and stops the welding energization. As the electrode tip collapses as the number of welding points progresses, the output of the inter-electrode voltage detector 1 becomes
The aforementioned maximum voltage value itself becomes lower, and at the same time, the degree of decrease in the voltage with respect to time becomes smaller.

従つて電圧減少分時間積分器2の出力が基準積
分値設定器4の値と一致するためにはより長い通
電時間が必要となつて来、その通電時間は、多数
の溶接打点における平均値として1サイクル増加
という状態が発生する。
Therefore, in order for the output of the voltage decrease time integrator 2 to match the value of the reference integral value setter 4, a longer energization time is required, and the energization time is calculated as an average value at a large number of welding points. A state of one cycle increase occurs.

この通電時間延長という状態の発生以降の本発
明装置の動作は、前述した第2図の場合と全く同
一であるためこゝでは省略する。
The operation of the apparatus of the present invention after the occurrence of this state of extension of the energization time is exactly the same as in the case of FIG. 2 described above, and therefore will not be described here.

なお、第1図においては、通電時間を一例とし
て10サイクルに一定に保つ場合についてのみ説明
したが、もし、溶接作業タクトに大きな影響を与
えないのなら電極チツプの圧潰が進行した或る打
点数、例えば4000打点以降については通電時間を
1〜2サイクル延長した値、即ち11サイクル又は
12サイクルを基準通電時間に切替え、より少ない
溶接電流で作業を進めることも可能である。
In addition, in Fig. 1, we have explained only the case where the current application time is kept constant at 10 cycles as an example, but if it does not have a large effect on the welding work tact, it is possible to change the number of dots where the electrode tip has been crushed. For example, after 4000 dots, the energization time is extended by 1 to 2 cycles, i.e. 11 cycles or
It is also possible to switch from 12 cycles to the standard energization time and proceed with the work with less welding current.

又、通電時間を一定値に保つ操作においても、
必ずしも1サイクル単位の増減によつて溶接電流
を制御する必要のない場合も多い。そのようなと
きは、作業タクトに支障がない範囲で通電時間の
許容変化巾をきめ、その巾を越さない範囲で溶接
電流を増減させるという制御方式も本発明の主旨
とする所であることを附言しておく。
Also, in the operation of keeping the energization time at a constant value,
In many cases, it is not always necessary to control the welding current by increasing or decreasing it on a cycle-by-cycle basis. In such a case, the gist of the present invention is to provide a control method in which a permissible range of change in the energization time is determined within a range that does not interfere with the work tact, and the welding current is increased or decreased within a range that does not exceed that range. I would like to add that.

以上、本発明によれば、溶接ナゲツト生成過程
において十分な溶接強度を確保し得る適応制御を
実現するだけでなく、通電時間を一定に保つこと
により作業タクトの延長を防ぎ、かつ電極チツプ
の保守作業の回数を減少せしめ、著しく作業性を
高めることができる。
As described above, the present invention not only realizes adaptive control that can ensure sufficient welding strength in the welding nugget generation process, but also prevents the work tact from being extended by keeping the energization time constant, and maintains the electrode tip. The number of operations can be reduced and work efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の装置において溶接電流を溶
接回数に対応して変化させた関係を示す図、第2
図は、本発明にかかる装置の一例を示す電気ブロ
ツク図、第3図は、本発明にかかる装置のうち通
電時間制御形適応制御装置の一例を示す電気ブロ
ツク図である。
FIG. 1 is a diagram showing the relationship between welding current and the number of times of welding in the device of the present invention, and FIG.
FIG. 3 is an electrical block diagram showing an example of a device according to the present invention, and FIG. 3 is an electrical block diagram showing an example of an energization time control type adaptive control device among the devices according to the present invention.

Claims (1)

【特許請求の範囲】 1 溶接電流の流通時間を調節することによつ
て、常に所定の引張強さをもつ溶接ナゲツトを形
成するようにした抵抗溶接用適応制御装置におい
て、 各溶接通電ごとの実際の通電時間を計測し、そ
の通電時間ができるだけ所定の一定値を保ち続け
るように、溶接電流を増減制御することを特徴と
する抵抗溶接機の制御方法。 2 安定化された溶接電流により行なわれる抵抗
溶接において、 通電期間中における溶接電極間の電圧を検出
し、溶接ナゲツト発生時期におけるその電圧の最
大値と、ナゲツトの生育に伴い暫減するその電圧
との差を時間積分し、その積分値が所定の一定値
に到達したとき溶接通電を停止させるようにし、 各溶接通電ごとの実際の通電時間を計測し、そ
の通電時間ができるだけ所定の一定値を保ち続け
るように溶接電流を増減制御するようにした特許
請求の範囲第1項に記載の抵抗溶接機の制御方
法。 3 電極チツプ間電圧の検出情報をもとに通電時
間を制御する方式の適応制御手段と、予じめ設定
された基準通電時間設定器との間に比較手段を介
在させ、基準通電時間に対する上記適応制御手段
による溶接通電時間の増減を検知し、これに対応
した溶接電流を補償する手段とを有する抵抗溶接
機の制御装置。 4 特許請求の範囲第3項に記載のものにおい
て、通電時間を制御する方式の適応制御手段は、
所定の強度をもつ溶接ナゲツトを形成するために
必要な値を設定した基準積分値設定器と、電極間
電圧検出器および該検出信号により作動し、ナゲ
ツト発生時期における電圧ピーク以降の電圧減少
分時間積分器と、該積分器の積分値と前記基準積
分値設定器の発する基準積分値とを比較する装置
とからなり、その比較信号により通電時間を制御
することを特徴とする抵抗溶接機の制御装置。
[Claims] 1. In an adaptive control device for resistance welding that constantly forms a weld nugget with a predetermined tensile strength by adjusting the flow time of welding current, 1. A method for controlling a resistance welding machine, comprising: measuring an energization time; and increasing or decreasing a welding current so that the energization time remains as constant as possible. 2. In resistance welding performed using a stabilized welding current, the voltage between the welding electrodes during the current-carrying period is detected, and the maximum value of the voltage at the time when welding nuggets occur and the voltage that gradually decreases as the nuggets grow. The difference is integrated over time, and when the integral value reaches a predetermined constant value, the welding current is stopped, the actual energization time for each welding energization is measured, and the energization time is kept at a predetermined constant value as much as possible. A method for controlling a resistance welding machine according to claim 1, wherein the welding current is controlled to increase or decrease so that the welding current is maintained constant. 3. Comparison means is interposed between the adaptive control means that controls the energization time based on the detection information of the voltage between the electrode tips and the reference energization time setting device set in advance, and the above-mentioned comparison means with respect to the reference energization time is A control device for a resistance welding machine, comprising means for detecting an increase or decrease in welding current application time due to an adaptive control means and compensating the welding current accordingly. 4. In the item set forth in claim 3, the adaptive control means for controlling the energization time is:
A reference integral value setter that sets the value necessary to form a weld nugget with a predetermined strength, an interelectrode voltage detector, and the detection signal actuate the voltage reduction time after the voltage peak at the time when a nugget occurs. A control for a resistance welding machine comprising an integrator and a device for comparing the integral value of the integrator with a reference integral value issued by the reference integral value setting device, and controlling the energization time based on the comparison signal. Device.
JP5987382A 1982-04-09 1982-04-09 Method and device for controlling resistance welding machine Granted JPS58176085A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5987382A JPS58176085A (en) 1982-04-09 1982-04-09 Method and device for controlling resistance welding machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5987382A JPS58176085A (en) 1982-04-09 1982-04-09 Method and device for controlling resistance welding machine

Publications (2)

Publication Number Publication Date
JPS58176085A JPS58176085A (en) 1983-10-15
JPS622914B2 true JPS622914B2 (en) 1987-01-22

Family

ID=13125707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5987382A Granted JPS58176085A (en) 1982-04-09 1982-04-09 Method and device for controlling resistance welding machine

Country Status (1)

Country Link
JP (1) JPS58176085A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3540125B2 (en) 1997-06-12 2004-07-07 矢崎総業株式会社 Quality inspection method for resistance welding
CN103008865B (en) * 2012-12-31 2015-02-04 天津商科数控设备有限公司 Process method for pulse width-adjustable AC (Alternating Current)-DC (Direct Current) inverter resistance welding
AT522422B1 (en) * 2019-02-27 2022-01-15 Progress Holding Ag Device for producing a reinforcement structure welded together from at least two wires
CN115351456A (en) * 2022-08-25 2022-11-18 沈阳奇昊汽车配件有限公司 Weld joint welding quality judgment method

Also Published As

Publication number Publication date
JPS58176085A (en) 1983-10-15

Similar Documents

Publication Publication Date Title
US10239146B2 (en) Method and apparatus for welding with short clearing prediction
US4456810A (en) Adaptive schedule selective weld control
US10500667B2 (en) Arc welding method and arc welding apparatus for adjusting a welding current waveform responsive to a setting voltage adjustment
US6995338B2 (en) Method and apparatus for short circuit welding
US5436422A (en) Resistance welding control method
US20040222204A1 (en) Method and apparatus for arc welding with wire heat control
US20090230098A1 (en) Method for detecting current transfer in a plasma arc
US9421626B2 (en) Apparatus and method for electrical discharge machining modulation control
RU2415000C2 (en) Method of welding and welding device
WO2005072900A1 (en) Electric discharge machining device and electric discharge machining method
JPS622914B2 (en)
EP0738196B1 (en) Progressive current limit control for a resistance welder
CN111468802A (en) System and method for controlled short circuit welding process with integrated switch
JPS63180384A (en) Inter-tip power control type control system for resistance welding
JPH0242031B2 (en)
JPH0430916A (en) Control method and device for wire-cut electric discharge machine
EP0142582B1 (en) Adaptive schedule selective weld control
US11931834B2 (en) Method for regulating or controlling the conveyance speed of a wire composed of consumable material during a laser soldering or laser welding method, and laser soldering or laser welding device for carrying out such a method
JPH06198453A (en) Resistance welding control method
JPS5865583A (en) Resistance welding device
GB2068147A (en) Welding current control in resistance welding
JPS6159835B2 (en)
JPS5913584A (en) Method and device for controlling resistance welding
JPS6341677B2 (en)
JP2534373B2 (en) Arc welding machine