JPH03209431A - Space optical modulating element - Google Patents

Space optical modulating element

Info

Publication number
JPH03209431A
JPH03209431A JP524390A JP524390A JPH03209431A JP H03209431 A JPH03209431 A JP H03209431A JP 524390 A JP524390 A JP 524390A JP 524390 A JP524390 A JP 524390A JP H03209431 A JPH03209431 A JP H03209431A
Authority
JP
Japan
Prior art keywords
liquid crystal
ferroelectric liquid
substrates
polarizing plate
photoconductive layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP524390A
Other languages
Japanese (ja)
Inventor
Naoki Kato
直樹 加藤
Shuhei Yamamoto
修平 山本
Teruo Ebihara
照夫 海老原
Rieko Sekura
瀬倉 利江子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP524390A priority Critical patent/JPH03209431A/en
Publication of JPH03209431A publication Critical patent/JPH03209431A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the size of an optical system by sticking a polarizing plate to the substrate surface on the side where a photoconductive layer and a multilayered dielectric film mirror are not formed. CONSTITUTION:A light shielding layer 16 is provided on films 13a, 13b to prevent the incidence of projected light onto the photoconductive layer 15 and further, the dielectric mirror 17 laminated with 15 layers is laminated and formed. The substrates 11a, 11b are disposed in such a manner that the oriented film layers 13a, 13b thereof face each other. The spacing therebetween is controlled and formed via a spacer 19 consisting of an adhesive agent. Further, the polarizing plate 10 is stuck to the surface of the substrates 11a, 11b on the side where the photoconductive layer is not formed. Ferroelectric liquid crystal molecules are, therefore, put into the stable state in which the molecules are arrayed uniaxially when viewed from the substrates 11a, 11b by impressing a DC electric field between the transparent electrodes of the two substrates 11a, 11b from the outside. The optical system is miniaturized in this way.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光情報処理、光コンピユーテイング、マシ
ンビジョン、デイスプレィ端末等に用いられる液晶空間
光変調素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a liquid crystal spatial light modulator used in optical information processing, optical computing, machine vision, display terminals, and the like.

[発明の概要] この発明は、光情報処理、光コンピユーテイング、マシ
ンビジョン、デイスプレィ端末等に用いられる液晶空間
光変調素子に関し、一対の、電極を有する基板間の一方
の電極上に光導電層及び誘電体多層膜ミラーを具備し、
両基板に液晶分子を配向させる膜として、基板の法線方
向に対して750から85°の範囲の角度で一酸化珪素
を斜方蒸着したものを用い、これを一定の間隙に制御し
て対間させ、間隙に封入する液晶組成物として、強誘電
性液晶組成物を用いた液晶素子において、該液高空間光
変調素子の読み出し光に波長λの単色光を用い、強誘電
性液晶層の間隙dを、d=a・λ/4・Δn(Δnは強
誘電性液晶組成物の屈折率異方性、aは整数)なる関係
を満足するかまたはその近傍±10%であるように制御
したうえで、光導電層及び誘電体多層膜ミラーを形成し
ない側の基板表面に、偏光板の変更軸と斜方蒸着の入射
方向が22.5 ’±2.5  ’の角度をなすように
偏光板を貼付する事により、光学系を小型化し、もって
光情報処理、光コンピユーテイング、マシンビジョン、
デイスプレィ端末等のシステムへの応用を容昌ならしめ
るものである。
[Summary of the Invention] The present invention relates to a liquid crystal spatial light modulator used in optical information processing, optical computing, machine vision, display terminals, etc. layer and a dielectric multilayer mirror,
As a film for aligning liquid crystal molecules on both substrates, silicon monoxide was obliquely deposited at an angle of 750 to 85 degrees to the normal direction of the substrates, and the film was controlled to have a constant gap. In a liquid crystal element using a ferroelectric liquid crystal composition as the liquid crystal composition sealed in the gap, monochromatic light with a wavelength λ is used as the readout light of the liquid height spatial light modulator, and the ferroelectric liquid crystal layer is The gap d is controlled so that it satisfies the relationship d=a・λ/4・Δn (Δn is the refractive index anisotropy of the ferroelectric liquid crystal composition, and a is an integer) or is within ±10% of the relationship. Then, on the surface of the substrate on the side where the photoconductive layer and the dielectric multilayer mirror are not formed, the change axis of the polarizing plate and the direction of incidence of oblique evaporation form an angle of 22.5'±2.5'. By attaching a polarizing plate, the optical system can be made smaller and used in optical information processing, optical computing, machine vision,
This allows for application to systems such as display terminals.

[従来の技術] 従来、強誘電性液晶を用いた空間光変調素子は、素子外
部に偏光子及び検光子及びハーフミラ−またはキューブ
ビームスプリンター等を配置し、読みだし光を偏光子を
通して照射し、反射光を検光子を通して読み出す事によ
り、変調された像を得ていた。
[Prior Art] Conventionally, a spatial light modulation device using ferroelectric liquid crystal has a polarizer, an analyzer, a half mirror, a cube beam splinter, etc. arranged outside the device, and readout light is irradiated through the polarizer. A modulated image was obtained by reading out the reflected light through an analyzer.

[発明が解決しようとする課題] しかしながら、従来の方法では、光学系中に偏光子及び
検光子及びハーフミラ−またはキューブビームスプリン
ター等を配置するため、大きな光学系のスペースを必要
とするという課題があった。
[Problems to be Solved by the Invention] However, in the conventional method, a polarizer, an analyzer, a half mirror, a cube beam splinter, etc. are arranged in the optical system, so there is a problem that a large space is required for the optical system. there were.

[課題を解決するための手段] 上記課題を解決するために、この発明は、光情報処理、
光コンピユーテイング、マシンビジョン、デイスプレィ
端末等に用いられる強誘電性液晶空間光変調素子の読み
出し光に波長λの単色光を用い、強誘電性液晶層の間隙
dを、d=a・λ/4・Δn(Δnは強誘電性液晶組成
物の屈折率異方性、aは整数)なる関係を満足するかま
たはその近傍±10%であるように制御したうえで、光
導電層及び誘電体多層膜ミラーを形成しない側の基板表
面に、偏光板の変更軸と斜方蒸着の入射方向が22.5
 @±2.5@の角度をなすように偏光板を貼付した。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides optical information processing,
Monochromatic light with a wavelength λ is used as the readout light of a ferroelectric liquid crystal spatial light modulator used in optical computing, machine vision, display terminals, etc., and the gap d between the ferroelectric liquid crystal layers is set as d=a・λ/ The photoconductive layer and the dielectric are On the substrate surface on the side where the multilayer film mirror is not formed, the change axis of the polarizing plate and the incident direction of oblique evaporation are set at 22.5
A polarizing plate was attached so as to form an angle of @±2.5@.

〔作用〕[Effect]

二つの安定状態間の角度は強誘電性液晶のコーン角に対
応し、光軸は一酸化珪素の斜方蒸着方向からそれぞれ2
2.5°(光軸間で45’)の角度を有しており、偏光
板の変更軸と斜方蒸着の入射方向が22.5 @の角度
をなすように偏光板を貼付したことにより、二つの安定
状態のうちの一方は強誘電性液晶分子の光軸と偏光板の
変更軸が一致し、他方は強誘電性液晶分子の光軸と偏光
板の変更軸が45″の角度を有する。そのため、強誘電
性液晶分子の光軸と偏光板の変更軸が一致している安定
状態では入射光は強誘電性液晶層で何等の変調も受けず
に反射されて明状態となる。また、強誘電性液晶分子の
光軸と偏光板の変更軸が456の角度を有する安定状態
では、入射光は強誘電性液晶層内で変調され、位相差φ
=2π・Δn・2d/λで出てくる。このとき、φ=a
π(aは整数)ならば、反射光は偏波面が90°回転し
た直線偏光となり、貼付した偏光板によって遮断されて
暗状態となる。即ち、d=aλ/4Δn (aは整数)
を満たすとき最大のコントラストが得られ、その近傍で
ある程度のコントラストを得ることができる。
The angle between the two stable states corresponds to the cone angle of the ferroelectric liquid crystal, and the optical axis is 2 degrees from the oblique deposition direction of silicon monoxide.
It has an angle of 2.5° (45' between optical axes), and by attaching the polarizing plate so that the change axis of the polarizing plate and the incident direction of the oblique evaporation form an angle of 22.5 @. In one of the two stable states, the optical axis of the ferroelectric liquid crystal molecules and the polarizing plate's polarizing axis coincide, and in the other, the optical axis of the ferroelectric liquid crystal molecules and the polarizing plate's polarizing axis form an angle of 45''. Therefore, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the change axis of the polarizing plate coincide, the incident light is reflected by the ferroelectric liquid crystal layer without any modulation, resulting in a bright state. In addition, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the changing axis of the polarizing plate make an angle of 456, the incident light is modulated within the ferroelectric liquid crystal layer, and the phase difference φ
It comes out as =2π・Δn・2d/λ. At this time, φ=a
If π (a is an integer), the reflected light becomes linearly polarized light whose plane of polarization is rotated by 90 degrees, and is blocked by the attached polarizing plate, resulting in a dark state. That is, d=aλ/4Δn (a is an integer)
The maximum contrast is obtained when the condition is satisfied, and a certain degree of contrast can be obtained in the vicinity thereof.

[実施例] 以下に本発明の内容を図面を用いて詳細に説明する。[Example] The contents of the present invention will be explained in detail below using the drawings.

第1図は本発明に係る液晶空間光変調素子の概念図であ
る。液晶分子を挟持するための基板11a、11bとし
て、透明ガラス基板を用いた。両基板の表面にはITO
透明電極層12a 、12bを設けた。ここでITO電
極12a 、12bは、酸化錫アンチモン等でも問題な
い。さらに両基板の表面には基板の法線方向から85@
の入射角で、かつ、組み合わせた状態で書き込み側及び
読みだし側の基板上の入射方向が一致するように一酸化
珪素を斜方蒸着した配向膜層13a 、13bを設けた
。−酸化珪素を斜方蒸着した配向膜層13a 、13b
の基板の法線方向からの入射角度は75°から85@の
範囲で特性を考慮して選択すればよい、光による書き込
み側の透明電極層12a上にはアモルファスシリコン光
導電層15を、5iFaを主体とするガスを放電分解し
て、2μmの厚さのa−5i:1層とすることにより形
成した。ここで該アモルファスシリコン光導電層15は
、放電分解時にP、N等を添加した膜組成でも良く、ま
た、a−5i:8層上にn型、あるいはp型の、他の組
成の半導体膜を積層した構成であっても差し支えない。
FIG. 1 is a conceptual diagram of a liquid crystal spatial light modulator according to the present invention. Transparent glass substrates were used as substrates 11a and 11b for sandwiching liquid crystal molecules. ITO on the surface of both substrates
Transparent electrode layers 12a and 12b were provided. Here, the ITO electrodes 12a and 12b may be made of tin antimony oxide or the like without any problem. Furthermore, the surface of both substrates is 85 @ from the normal direction of the substrates.
Alignment film layers 13a and 13b were provided in which silicon monoxide was obliquely vapor-deposited so that the incident angle and the direction of incidence on the write side and read side substrates coincided in the combined state. -Alignment film layers 13a and 13b in which silicon oxide is obliquely deposited
The incident angle from the normal direction of the substrate may be selected in the range of 75° to 85° in consideration of the characteristics. The a-5i:1 layer with a thickness of 2 μm was formed by discharging a gas mainly consisting of . Here, the amorphous silicon photoconductive layer 15 may have a film composition to which P, N, etc. are added during discharge decomposition, or may be a semiconductor film of other composition such as n-type or p-type on the a-5i:8 layer. There is no problem even if the structure is a stacked structure.

さらに前記膜上に、投影光が光導電層15に入射しない
ように遮光層16を設け、さらに、SiO□とSiを交
互に計15層積層した誘電体ミラー17を積層、形成し
た。さらに、基板11aとllbはその配向膜層13a
 、13b側を対向させ、直径0.85μmのSiO□
球を加えた接着剤よりなるスペーサ19を介して間隙を
制御、形成し、強誘電性液晶層14を挟持するようにし
た形成された間隙dは約0.9μmであった。封入した
強誘電性液晶組成物としては、5CE−6(BDH社製
)を用いた。その屈折率異方性Δnは0.18であった
。さらに、光導電層を形成しない側の基板表面に、偏光
板の変更軸と斜方蒸着の入射方向が22.5 @の角度
をなすように偏光板を貼付した。
Furthermore, a light shielding layer 16 was provided on the film to prevent projection light from entering the photoconductive layer 15, and a dielectric mirror 17 in which a total of 15 layers of SiO□ and Si were alternately laminated was formed. Furthermore, the substrates 11a and llb have their alignment film layers 13a.
, 13b side facing each other, SiO□ with a diameter of 0.85 μm
A gap was controlled and formed through a spacer 19 made of an adhesive to which balls were added, and the gap d that was formed to sandwich the ferroelectric liquid crystal layer 14 was about 0.9 μm. 5CE-6 (manufactured by BDH) was used as the encapsulated ferroelectric liquid crystal composition. Its refractive index anisotropy Δn was 0.18. Further, a polarizing plate was attached to the surface of the substrate on the side on which the photoconductive layer was not formed so that the change axis of the polarizing plate and the incident direction of oblique evaporation formed an angle of 22.5 @.

上記の強誘電性液晶空間光変調素子は、外部から両基板
の透明電極間に直流電界を印加する事により強誘電性液
晶分子が基板表面からみて一軸に整列した安定状態とな
る。また、印加電界の極性を反転することにより、もう
一方の、強誘電性液晶分子が基板表面からみて一軸に整
列した安定状態となる。この二状態間の電界による反転
は、強誘電性液晶層に印加される電界に対して、非線形
性と明確なしきい値を有する。印加電界は、直流に交流
を重畳したものであっても差し支えない。
The above-described ferroelectric liquid crystal spatial light modulator is brought into a stable state in which the ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface by applying a direct current electric field between the transparent electrodes of both substrates from the outside. Furthermore, by reversing the polarity of the applied electric field, a stable state is achieved in which the other ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface. This reversal between the two states due to the electric field has nonlinearity and a clear threshold with respect to the electric field applied to the ferroelectric liquid crystal layer. The applied electric field may be one in which alternating current is superimposed on direct current.

二つの安定状態間の角度は強誘電性液晶のコーン角に対
応し、本実施例では光軸は一酸化珪素の斜方蒸着方向か
らそれぞれ22.5’  (光軸間で45°)の角度を
有していた。偏光板の変更軸と斜方蒸着の入射方向が2
2.5 ’の角度をなすように偏光板を貼付したことに
より、二つの安定状態のうちの一方は強誘電性液晶分子
の光軸と偏光板の変更軸が一致し、他方は強誘電性液晶
分子の光軸と偏光板の変更軸が45″の角度を有する。
The angle between the two stable states corresponds to the cone angle of the ferroelectric liquid crystal, and in this example, the optical axes are each at an angle of 22.5' (45° between the optical axes) from the oblique deposition direction of silicon monoxide. It had The change axis of the polarizing plate and the incident direction of oblique evaporation are 2.
By pasting the polarizing plates so as to form an angle of 2.5', one of the two stable states is where the optical axis of the ferroelectric liquid crystal molecules and the changing axis of the polarizing plate coincide, and the other is when the ferroelectric liquid crystal molecules are in a stable state. The optical axis of the liquid crystal molecules and the polarizing axis of the polarizer have an angle of 45''.

そのため、強誘電性液晶分子の光軸と偏光板の変更軸が
一致している安定状態では入射光は強誘電性液晶層で何
等の変調も受けずに反射されて明状態となる。また、強
誘電性液晶分子の光軸と偏光板の変更軸が456の角度
を有する安定状態では、入射光は強誘電性液晶層内で変
調され、位相差φ=2π・Δn・2d/λで出て(る。
Therefore, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the change axis of the polarizing plate coincide, the incident light is reflected by the ferroelectric liquid crystal layer without any modulation, resulting in a bright state. In addition, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the changing axis of the polarizing plate make an angle of 456, the incident light is modulated within the ferroelectric liquid crystal layer, and the phase difference φ=2π・Δn・2d/λ Come out (ru).

このとき、φ=aπ(aは整数)ならば、反射光は偏波
面が90″回転した直線偏光となり、貼付した偏光板に
よって遮断されて暗状態となる。即ち、d=aλ/4Δ
n(aは整数)を満たすとき最大のコントラストが得ら
れ、その近傍である程度のコントラストを得ることが出
来る。ただし、間隙dは強誘電性液晶材料の固有ピッチ
よりも小さくなければならず、その条件を満たすaの値
を選択しなければならない。本実施例で用いた強誘電性
液晶組成物は、Δn=0゜18であり、読み出し光はH
e−Neレーザー(λ−6328人)であるため、a=
1を選択し、φ−πとするために間隙dを0.88μm
近傍に設定した。実際の間隙dは、約0.9μmであっ
た。
At this time, if φ=aπ (a is an integer), the reflected light becomes linearly polarized light whose plane of polarization has been rotated by 90″, and is blocked by the attached polarizing plate, resulting in a dark state. That is, d=aλ/4Δ
The maximum contrast is obtained when n (a is an integer) is satisfied, and a certain degree of contrast can be obtained in the vicinity thereof. However, the gap d must be smaller than the inherent pitch of the ferroelectric liquid crystal material, and a value of a that satisfies this condition must be selected. In the ferroelectric liquid crystal composition used in this example, Δn=0°18, and the readout light was H
Since it is an e-Ne laser (λ-6328 people), a=
1 and set the gap d to 0.88 μm to make φ−π.
It was set nearby. The actual gap d was approximately 0.9 μm.

なお、斜方蒸着方向と偏光板の変更軸のなす角度は、強
誘電性液晶のコーン角に合わせて、一方の安定状態の光
軸と変更軸が一致するように設定すればよいが、コーン
角が45°からずれるに従ってコントラストは低下する
。本実施例に於いては、コーン角はほぼ45°であった
ので、良好なコントラストを示した。
Note that the angle between the oblique deposition direction and the changing axis of the polarizing plate can be set in accordance with the cone angle of the ferroelectric liquid crystal so that the optical axis in one stable state and the changing axis coincide. The contrast decreases as the angle deviates from 45°. In this example, the cone angle was approximately 45°, so good contrast was exhibited.

上記のような強誘電性液晶空間光変調素子によれば、強
誘電性液晶素子のもつ双安定性により、消去電界印加に
よる消去後に消去電界と逆方向の、液晶層に分圧される
電圧が光導電層が暗時には閾値以下であり引時には闇値
以上であるような電界を印加しながらセル外面からの書
き込み光20によって光学像を照射、または半導体レー
ザーを変調しつつポリゴンミラーやガルバノミラ−を用
いて走査を行なうことにより、光が照射された部分での
み液晶分子の反転がおこり、また、それが安定に保持さ
れるため、強誘電性液晶層14に像の書き込み、形成を
行なうことができた。また、書き込みにより形成された
像は、投影光21の照射により読み出すことが出来る。
According to the ferroelectric liquid crystal spatial light modulator as described above, due to the bistability of the ferroelectric liquid crystal element, after erasing by applying an erasing electric field, the voltage divided across the liquid crystal layer in the opposite direction to the erasing electric field is While applying an electric field that is below the threshold value when the photoconductive layer is dark and above the dark value when the photoconductive layer is dark, an optical image is irradiated with writing light 20 from the outer surface of the cell, or a polygon mirror or galvano mirror is modulated while a semiconductor laser is modulated. By performing scanning using the ferroelectric liquid crystal layer 14, the liquid crystal molecules are inverted only in the areas irradiated with light, and this is maintained stably, making it possible to write and form images on the ferroelectric liquid crystal layer 14. did it. Further, the image formed by writing can be read out by irradiation with the projection light 21.

前記印加電圧は、交流波形を重畳した直流でもよい。さ
らに、前記書き込み時の電界方向とは逆方向の、液晶層
に分圧される電圧が光導電層が暗時には閾値以下であり
引時には闇値以上であるような電界を印加しながら、半
導体レーザーを変調しつつポリゴンミラーやガルバノミ
ラ−を用いて走査を行なうことにより、強誘電性液晶層
のレーザー光が照射された部分でのみ液晶分子の反転が
おこり、また、それが安定に保持されるため、像の部分
消去も行なうことができた。
The applied voltage may be a direct current with an alternating current waveform superimposed thereon. Further, while applying an electric field in a direction opposite to the direction of the electric field during writing, such that the voltage divided across the liquid crystal layer is below the threshold value when the photoconductive layer is dark and is above the dark value when the photoconductive layer is turned off, the semiconductor laser By scanning using a polygon mirror or galvano mirror while modulating the ferroelectric liquid crystal layer, the liquid crystal molecules are inverted only in the part of the ferroelectric liquid crystal layer that is irradiated with the laser beam, and this is maintained stably. , I was also able to erase parts of the image.

第2図に従来の強誘電性液晶空間光変調素子を用いた場
合の読みだし光学系を、第3図に本発明に係る強誘電性
空間光変調素子を用いた場合の読みだし光学系を示す。
Figure 2 shows a readout optical system when using a conventional ferroelectric liquid crystal spatial light modulator, and Figure 3 shows a readout optical system when a ferroelectric spatial light modulator according to the present invention is used. show.

第2図では、読みだし光21は検光子22を通った後、
ハーフミラ−23(またはビームスプリンター)で反射
されて強誘電性液晶素子24へ入射し、素子により変調
を受けて反射され、ハーフミラ−23、検光子25を通
って像として読み出される。第3図では、本発明に係る
強誘電性液晶空間光変調素子26を用いることにより、
外部に偏光子、ハーフミラ−またはキューブビームスプ
リッタ−1検光子を配置する必要がなく、光学系を小型
化することができることがわかるー。
In FIG. 2, after the readout light 21 passes through the analyzer 22,
It is reflected by the half mirror 23 (or beam splinter), enters the ferroelectric liquid crystal element 24, is modulated by the element, is reflected, passes through the half mirror 23 and the analyzer 25, and is read out as an image. In FIG. 3, by using the ferroelectric liquid crystal spatial light modulator 26 according to the present invention,
It can be seen that there is no need to arrange an external polarizer, half mirror, or cube beam splitter-1 analyzer, making it possible to downsize the optical system.

[発明の効果] このように、本発明に係る強誘電性液晶空間光変調素子
を用いることにより、光学系を小型化し、もって光情報
処理、光コンピユーテイング、マシンビジョン、デイス
プレィ端末等のシステムへの応用を容易ならしめること
ができる。
[Effects of the Invention] As described above, by using the ferroelectric liquid crystal spatial light modulator according to the present invention, optical systems can be miniaturized, and systems such as optical information processing, optical computing, machine vision, and display terminals can be used. It can be easily applied to

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る強誘電性液晶空間光変調素子の
構造を示す断面図、第2図は、従来の強誘電性液晶空間
光変調素子を用いた場合の読みだし光学系を示す模式図
、第3図は、本発明に係る強誘電性液晶空間光変調素子
を用いた場合の読みだし光学系を示す模式図である。 10・・・偏光板 11a、llb・・・透明基板 12a、12b・・・透明電極 13a、13b・・−配向膜 14・・・強誘電性液晶層 15・・・光導電膜 16・・・遮光膜 17 ・ ・ 19 ・ ・ 20 ・ ・ 21 ・ ・ 22 ・ ・ 23 ・ 24 ・ ・ 25 ・ ・ 26 ・ ・ ・誘電体ミラー ・スペーサー 書き込み光 ・読み出し光 偏光子 ・ハーフミラ− ・従来の強誘電性液晶空間光変調素子 ・検光子 ・本発明に係る強誘電性液晶空間光変 調素子 以上
FIG. 1 is a cross-sectional view showing the structure of a ferroelectric liquid crystal spatial light modulator according to the present invention, and FIG. 2 is a readout optical system when using a conventional ferroelectric liquid crystal spatial light modulator. The schematic diagram in FIG. 3 is a schematic diagram showing a readout optical system when using the ferroelectric liquid crystal spatial light modulator according to the present invention. 10...Polarizing plate 11a, llb...Transparent substrate 12a, 12b...Transparent electrode 13a, 13b...-Alignment film 14...Ferroelectric liquid crystal layer 15...Photoconductive film 16... Light shielding film 17 ・ ・ 19 ・ ・ 20 ・ ・ 21 ・ ・ 22 ・ ・ 23 ・ 24 ・ ・ 25 ・ ・ 26 ・ ・ ・Dielectric mirror・Spacer Writing light・Reading light polarizer・Half mirror ・Conventional ferroelectric Liquid crystal spatial light modulator, analyzer, ferroelectric liquid crystal spatial light modulator according to the present invention or more

Claims (2)

【特許請求の範囲】[Claims] (1)一対の、電極を有する基板間の一方の電極上に光
導電層及び誘電体多層膜ミラーを具備し、両基板に液晶
分子を配向させる膜として、基板の法線方向に対して7
5°から85°の範囲の角度で一酸化珪素を斜方蒸着し
たものを用い、これを一定の間隙に制御して対向させ、
間隙に封入する液晶組成物として、強誘電性液晶組成物
を用いた液晶素子において、光導電層及び誘電体多層膜
ミラーを形成しない側の基板の外面に偏光板を貼付する
事を特徴とする液晶空間光変調素子。
(1) A photoconductive layer and a dielectric multilayer film mirror are provided on one electrode between a pair of substrates having electrodes, and the film serves as a film for orienting liquid crystal molecules on both substrates.
Silicon monoxide is obliquely deposited at an angle in the range of 5° to 85°, and these are controlled to have a certain gap and are faced to each other.
In a liquid crystal element using a ferroelectric liquid crystal composition as the liquid crystal composition sealed in the gap, a polarizing plate is attached to the outer surface of the substrate on the side on which the photoconductive layer and the dielectric multilayer mirror are not formed. Liquid crystal spatial light modulator.
(2)該液晶空間光変調素子の読み出し光は波長λの単
色光を用い、強誘電性液晶層の間隙dは、d=a・λ/
4・Δn(Δnは強誘電性液晶組成物の屈折率異方性、
aは整数)なる関係を満足するかまたはその近傍±10
%であり、貼付する偏光板の変更軸と斜方蒸着の入射方
向は22.5°±2.5°の角度をなすように設定した
ことを特徴とする請求項1記載の液晶空間光変調素子。
(2) Monochromatic light with a wavelength λ is used as the readout light of the liquid crystal spatial light modulator, and the gap d between the ferroelectric liquid crystal layers is d=a・λ/
4・Δn (Δn is the refractive index anisotropy of the ferroelectric liquid crystal composition,
a is an integer) or its vicinity ±10
%, and the change axis of the attached polarizing plate and the incident direction of the oblique vapor deposition are set to form an angle of 22.5°±2.5°. element.
JP524390A 1990-01-12 1990-01-12 Space optical modulating element Pending JPH03209431A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP524390A JPH03209431A (en) 1990-01-12 1990-01-12 Space optical modulating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP524390A JPH03209431A (en) 1990-01-12 1990-01-12 Space optical modulating element

Publications (1)

Publication Number Publication Date
JPH03209431A true JPH03209431A (en) 1991-09-12

Family

ID=11605763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP524390A Pending JPH03209431A (en) 1990-01-12 1990-01-12 Space optical modulating element

Country Status (1)

Country Link
JP (1) JPH03209431A (en)

Similar Documents

Publication Publication Date Title
US20020154377A1 (en) Optical phased array for depolarized optical beam control
JP2851906B2 (en) Optical modulation element and display device
CN109507820A (en) A kind of spatial light modulator
JP2001330844A5 (en)
JPH03209431A (en) Space optical modulating element
JPS6328308B2 (en)
JP2540366B2 (en) Optical writing liquid crystal light valve
JPH04342233A (en) Optical write type liquid crystal display device
JP2871083B2 (en) Liquid crystal spatial light modulator and optical image processing device
JPH04178625A (en) Reflection type liquid crystal electrooptical device
JPH03209432A (en) Space optical modulating element
JPH0318829A (en) Space optical modulation element
JPH08106095A (en) Electrical-or optical-writing type liquid crystal spatial light modulator
JPH04301819A (en) Space optical modulating element
JPH0792487A (en) Optical modulation element
JPH06222383A (en) Liquid crystal spatial optical modulation element
JP2003177370A (en) Image converting element and its manufacturing method
JP2952610B2 (en) Optical writing liquid crystal light valve
JP3074805B2 (en) Display element
JPH03107824A (en) Optical writing type liquid crystal light valve
JPH03279925A (en) Multicolor projecting display device
JPH0695117A (en) Liquid crystal panel
JPH04157425A (en) Manufacture of space light modulator
JP3005102B2 (en) Spatial light modulator
JP2005128408A (en) Liquid crystal display device and electronic appliance