JPH04157425A - Manufacture of space light modulator - Google Patents

Manufacture of space light modulator

Info

Publication number
JPH04157425A
JPH04157425A JP28377890A JP28377890A JPH04157425A JP H04157425 A JPH04157425 A JP H04157425A JP 28377890 A JP28377890 A JP 28377890A JP 28377890 A JP28377890 A JP 28377890A JP H04157425 A JPH04157425 A JP H04157425A
Authority
JP
Japan
Prior art keywords
substrates
liquid crystal
resin
pair
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28377890A
Other languages
Japanese (ja)
Inventor
Naoki Kato
直樹 加藤
Shuhei Yamamoto
修平 山本
Teruo Ebihara
照夫 海老原
Rieko Sekura
瀬倉 利江子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP28377890A priority Critical patent/JPH04157425A/en
Publication of JPH04157425A publication Critical patent/JPH04157425A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE:To obtain the wave front required as a space light modulator by assembling a pair of substrates after applying specific ultraviolet-ray-set resin while using a relief printing. method, hardening the resin while radiating ultraviolet rays and forming clearance between the substrates for holding ferroelectric liquid crystal therebetween. CONSTITUTION:Glass substrates, both surfaces of which are polished to a parallel plane degree of a fourth wave length or less and whose thickness is 10% or more of an effective opening diameter, are used for a pair of substrates 11a and 11b. In order to make the periphery of the substrates adhere with the clearance between the substrates controlled, first of all, ultraviolet-ray-set resin of about 15000 centipoise to which silica balls of 3weight% to the resin are mixed and stirred, are applied on the orientation film layer 13a of the substrate 11a using a relief printing method. Clearance between a pair of substrates for holding ferroelectric liquid crystal therebetween is formed by assembling a pair of substrates 11a and 11b, pressing them until the specified clearance is obtained and hardening ultraviolet-set-ray resin by radiating ultraviolet rays leaving them pressed without dispersing spacer particles for controlling the clearance to the inner surface of an opening. By this constitution, an element which has uniform orientation over the whole surface of the opening and whose wave front aberration is small is obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、光情報処理、光コンピユーテイング、マシ
ンビジョン、デイスプレィ端末等に用いられる液晶空間
光変調器の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a liquid crystal spatial light modulator used in optical information processing, optical computing, machine vision, display terminals, and the like.

[発明の概要コ この発明は、光情報処理、光コンピユーテイング、マシ
ンビジョン、デイスプレィ端末等に用いられる強誘電性
液晶組成物を用いた液晶素子の製造方法において、一対
の基板として、両面を平行平面度四分の一波長以下に研
磨した、厚さが有効開口径の10%以上のガラス基板を
用い、該基板を接着張り合わせするさい、開口面内にス
ペーサー粒子を分散する事なく、間隙のねらい値に等し
い平均粒径を持つシリカ球あるいは樹脂球または間隙の
ねらい値に等しい平均直径を持つグラスファイバーを、
樹脂に対してO,1〜10重量パーセント混入して攪拌
した1000センチポアズ以上の紫外線硬化樹脂を、凸
版印刷方を用いて印刷塗布したのち一対の基板を組み立
て、加圧したまま紫外線を照射して紫外線硬化樹脂を硬
化させる工程によって、強誘電性液晶を挟持する間隙を
形成した。
[Summary of the Invention] This invention provides a method for manufacturing a liquid crystal element using a ferroelectric liquid crystal composition used in optical information processing, optical computing, machine vision, display terminals, etc. When using glass substrates with a thickness of 10% or more of the effective aperture diameter and polished to a parallel flatness of less than a quarter wavelength, when bonding the substrates together, the gap is reduced without dispersing spacer particles within the aperture surface. silica spheres or resin spheres with an average diameter equal to the aim value of or glass fibers with an average diameter equal to the aim value of the gap,
An ultraviolet curing resin of 1000 centipoise or more mixed with 1 to 10% by weight of O to the resin and stirred was applied by printing using a letterpress printing method, a pair of substrates were assembled, and ultraviolet rays were irradiated while pressurized. By curing the ultraviolet curable resin, a gap was formed to sandwich the ferroelectric liquid crystal.

[従来の技術] 従来、光情報処理、光コンピユーテイング、マシンビジ
ラン、デイスプレィ端末等に用いられる強誘電性液晶組
成物を用いた液晶空間光変調器の製造方法においては、
第3図に示すように開口面内にスペーサー粒子を分散し
、熱硬化性樹脂をスクリーン印刷法に依って塗布した後
、加圧しつつ熱を加えて間隙を制御、形成していた。
[Prior Art] Conventionally, in a method for manufacturing a liquid crystal spatial light modulator using a ferroelectric liquid crystal composition used for optical information processing, optical computing, machine vigilance, display terminals, etc.,
As shown in FIG. 3, spacer particles were dispersed within the opening surface, a thermosetting resin was applied by screen printing, and then heat was applied while pressurizing to control and form the gaps.

[発明が解決しようとする課H] しかしながら、従来の方法では、開口面内にスペーサー
粒子を分散するため、スペーサー自身が欠点となるとと
もに粒子付近の強誘電性液晶分子及び層が影響を受けて
欠陥となる、あるいはスクリーン印刷法に依って樹脂を
塗布するため、スクリーン版との接触によって配向膜層
の表面構造が破壊されて配向欠陥となる、あるいは加圧
しつつ加熱するため、加熱から冷却までに非常に時間が
かかり、工数が増加してコスト増となる、あるいは有効
開口径の10%未満のガラス基板を用いた場合、透明電
極及び先導を膜及び誘電体ミラー及び配向膜と、多くの
膜を形成するためそのストレスに耐えられずにガラス基
板が変形し、空間光変調器として要求される波面精度が
得られない、といった多くの課題があった。
[Problem H to be solved by the invention] However, in the conventional method, since the spacer particles are dispersed within the aperture plane, the spacer itself becomes a drawback, and the ferroelectric liquid crystal molecules and layers near the particles are affected. Or, because the resin is applied using the screen printing method, the surface structure of the alignment film layer may be destroyed by contact with the screen plate, resulting in alignment defects.Also, since the resin is applied using the screen printing method, the surface structure of the alignment film layer may be destroyed due to contact with the screen plate, resulting in alignment defects. If a glass substrate with less than 10% of the effective aperture diameter is used, it is very time consuming and increases the number of man-hours and costs. There were many problems, such as the glass substrate deforming due to the film formation being unable to withstand the stress, and the wavefront precision required for a spatial light modulator not being achieved.

[課題を解決するための手段] 上記課題を解決するために、この発明は、強誘電性液晶
を用いた液晶空間光変調器を、一対の基板として、両面
を平行平面度四分の一波長以下に研磨した、厚さが有効
開口径の10%以上のガラス基板を用い、該基板間の間
隙を制御して周辺を接着張り合わせするさい、開口面内
に間隙を制御するためのスペーサー粒子を分散する事な
く、間隙のねらい値に等しい平均粒径を持つシリカ球あ
るいは樹脂球または間隙のねらい値に等しい平均直径を
持つグラスファイバーを、樹脂に対して0゜1〜10重
量パーセント混入して攪拌した1000センチポアズ以
上の紫外線硬化樹脂を、凸版印刷方を用いて印刷塗布し
たのち一対の基板を組み立て、所定の間隙となるまで圧
力を加え、加圧したまま紫外線を照射して紫外線硬化樹
脂を硬化させる工程を用いて製造した。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides a liquid crystal spatial light modulator using ferroelectric liquid crystal as a pair of substrates, both sides of which are parallel and flat at a quarter wavelength. When using glass substrates polished as follows and having a thickness of 10% or more of the effective aperture diameter and bonding the periphery of the substrates by controlling the gap between the substrates, spacer particles are added within the aperture surface to control the gap. Silica spheres or resin spheres with an average particle diameter equal to the target value of the gap or glass fibers with an average diameter equal to the target value of the gap are mixed into the resin at 0°1 to 10% by weight without dispersion. Stirred UV curable resin of 1000 centipoise or more is applied by printing using letterpress printing, then a pair of substrates are assembled, pressure is applied until a predetermined gap is created, and UV rays are irradiated while the pressure is applied to coat the UV curable resin. Manufactured using a curing process.

[実施例] 以下に本発明の内容を図面を用いて詳細に説明する。[Example] The contents of the present invention will be explained in detail below using the drawings.

第1図は、本発明に係る液晶空間光変調器の製造工程を
示す流れ図である0図かられかるように、工程上は、開
口面内にスペーサー粒子を分散する工程の有無、スクリ
ーン印刷法に依って樹脂を塗布するか凸版印刷法に依っ
て樹脂を塗布するかの違い、圧着の方法、が異なってい
る。また、本発明に係る液晶空間光変調器の製造工程で
は、ガラス基板として有効開口径の10%以上の厚みを
持ち、両面を平行平面度四分の一波長以下に研磨したも
のを用いている。
FIG. 1 is a flowchart showing the manufacturing process of a liquid crystal spatial light modulator according to the present invention. As shown in FIG. There are differences in whether the resin is applied by the letterpress printing method or by the letterpress printing method, and the method of pressure bonding. Further, in the manufacturing process of the liquid crystal spatial light modulator according to the present invention, a glass substrate having a thickness of 10% or more of the effective aperture diameter and polished on both sides to a parallel flatness of 1/4 wavelength or less is used. .

以下、製造工程に沿って実施例を説明すると共に、従来
の方法との相違点及びメリットを説明する。
Examples will be described below along with the manufacturing process, and differences and advantages from conventional methods will be explained.

第2図は、本発明に係る液晶空間光変調器の概念図であ
る。液晶分子を挟持するための基板11a、11bとし
て、有効開口径の10%以上の厚みを持ち、両面を平行
平面度四分の一波長以下に研磨した透明ガラス基板を用
いた。本実施例における有効開口径は25mmであり、
基板には厚さ4mmのテンパックスガラスを用いた0両
基板の表面にはITO透明電極層12a 、12bを設
けた。さらに両基板の表面には基板の法線方向から85
°の入射角で、かつ、組み合わせた状態で書き込み側及
び読みだし側の基板上の入射方向が一致するように一酸
化珪素を斜方蒸着した配向膜層13a 、13bを設け
た。光による書き込み側の透明電極層12a上にはアモ
ルファスソリコン光導電層15を、5iFnを主体とす
るガスを放電分解して、3μmの厚さのa−3i:H層
とすることにより形成した。さらに前記膜上に誘電体ミ
ラー16を形成した。
FIG. 2 is a conceptual diagram of a liquid crystal spatial light modulator according to the present invention. As the substrates 11a and 11b for sandwiching the liquid crystal molecules, transparent glass substrates having a thickness of 10% or more of the effective aperture diameter and polished on both sides to a parallel flatness of 1/4 wavelength or less were used. The effective opening diameter in this example is 25 mm,
Tempax glass with a thickness of 4 mm was used as the substrate. ITO transparent electrode layers 12a and 12b were provided on the surfaces of both substrates. In addition, the surface of both substrates has an 85mm radius from the normal direction of the substrates.
Alignment film layers 13a and 13b were provided in which silicon monoxide was obliquely vapor-deposited at an incident angle of .degree. and so that the incident directions on the write side and read side substrates coincided in the combined state. On the transparent electrode layer 12a on the writing side by light, an amorphous solicon photoconductive layer 15 was formed by discharging and decomposing a gas mainly composed of 5iFn to form an a-3i:H layer with a thickness of 3 μm. . Further, a dielectric mirror 16 was formed on the film.

ここで、基板11a 、11bとして、有効開口径の1
0%以上の厚みを持ち、両面を平行平面度四分の一波長
以下に研磨した透明ガラス基板を用いることの意義及び
メリットを説明する。
Here, as the substrates 11a and 11b, the effective opening diameter is 1
The significance and merits of using a transparent glass substrate having a thickness of 0% or more and polished on both sides to a parallel flatness of 1/4 wavelength or less will be explained.

前記のように、本発明に係る強誘電性液晶空間光変調器
は、基板上に多くの薄膜を形成する必要があり、そのた
め基板は膜から強い機械的ストレスを受けることになる
。そのため、基板は膜からの機械的ストレスに耐えうる
十分な機械的強度を有するものでなければならない。ま
た、前記素子は空間光変調器として、光情報処理等の分
野で応用するため、十分な波面精度を維持していなけれ
ばならない。本発明の製造方法に於いては、基板11a
 、11bとして、有効開口径の10%以上の厚みを持
ち、両面を平行平面度四分の一波長以下に研磨した透明
ガラス基板を用いたことによって、前記の製膜を行って
も基板変形が小さく、十分な波面精度を維持することが
できた。
As described above, the ferroelectric liquid crystal spatial light modulator according to the present invention requires the formation of many thin films on the substrate, and therefore the substrate receives strong mechanical stress from the films. Therefore, the substrate must have sufficient mechanical strength to withstand the mechanical stress from the membrane. Furthermore, since the device is applied as a spatial light modulator in fields such as optical information processing, it must maintain sufficient wavefront accuracy. In the manufacturing method of the present invention, the substrate 11a
, 11b, by using a transparent glass substrate having a thickness of 10% or more of the effective aperture diameter and polished on both sides to a parallel flatness of less than a quarter wavelength, the substrate does not deform even if the film is formed as described above. It was small and could maintain sufficient wavefront accuracy.

次に、基板間の間隙を制御して周辺を接着張り合わせを
行った。まず、基板11aの配向膜層13a上に、1.
0μmの平均粒径を持つシリカ球を樹脂に対して3重量
パーセント混入して撹拌した、常温に於ける粘度約15
000センチポアズの紫外線硬化樹脂(スリーボンド社
製#3030)を凸版印刷法を用いて印刷塗布した。そ
ののち、開口面内に間隙を制御するためのスペーサー粒
子を分散する事なく、一対の基板11a、llbを組み
立て、所定の間隙となるまで圧力を加え、加圧したまま
紫外線を照射して紫外線硬化樹脂を硬化させることによ
り、強誘電性液晶を挟持する間隙を形成した。
Next, the gap between the substrates was controlled and the periphery was bonded together. First, 1.
Silica spheres with an average particle size of 0 μm are mixed in at 3% by weight with respect to the resin and stirred, and the viscosity at room temperature is approximately 15.
000 centipoise ultraviolet curable resin (#3030 manufactured by Three Bond) was applied by printing using a letterpress printing method. After that, the pair of substrates 11a and llb are assembled without dispersing spacer particles for controlling the gap within the opening surface, pressure is applied until a predetermined gap is achieved, and ultraviolet rays are irradiated while the pressure is applied. By curing the cured resin, a gap was formed to sandwich the ferroelectric liquid crystal.

封入した強誘電性液晶組成物としては、5CE−6(B
DH社製)を用いた。
The encapsulated ferroelectric liquid crystal composition was 5CE-6 (B
(manufactured by DH) was used.

ここで、従来の方法との工程上の相違点である、開口面
内にスペーサー粒子を分散する工程の有無、スクリーン
印刷法に依って樹脂を塗布するか凸版印刷法に依って樹
脂を塗布するかの違い、圧着の方法の違いについて、そ
のメリットを説明する。
Here, there are differences in the process from the conventional method, such as whether or not there is a step of dispersing spacer particles within the opening surface, and whether the resin is applied using a screen printing method or a letterpress printing method. We will explain the advantages of the different crimping methods.

本発明に係る空間光変調器に於いては、その解像度は1
001p/mm以上であり、1μmφ程度のスペーサー
であっても欠点となる。従来の方法では、開口面内にス
ペーサー粒子を分散するため、スペーサー自身が欠点と
なるとともに粒子付近の強誘電性液晶分子及び層が影響
を受けて欠陥となる、あるいはスクリーン印刷法に依っ
て樹脂を塗布するため、スクリーン版との接触によって
配向lI!層の表面構造が破壊されて配向欠陥となる、
あるいは加圧しつつ加熱するため、加熱から冷却までに
非常に時間がかかり、工数が増加してコスト増となる、
といった不都合が生していたのであるが、本発明に係る
製造工程を採用することに依って、開口面内にはスペー
サー粒子を分散していないので、スペーサー自身による
欠点や、スペーサー粒子による配向欠陥は発生せず、ま
た、凸版印刷法に依って樹脂を塗布するため、開口面内
の配向膜層の表面構造が破壊されることはなく、全面に
わたって均一な配向を得ることができた。さらに、加圧
しつつ紫外線を照射することによって間隙を形成するこ
とに依って、加熱や冷却に要する時間は必要な(、短時
間でセル形成が可能であるのみならず、単色光を照射し
ての反射光の観測に依ってセル厚の分布をモニターする
ことができ、正確なセル厚の素子を形成することができ
た。
In the spatial light modulator according to the present invention, the resolution is 1
001 p/mm or more, and even a spacer with a diameter of about 1 μm becomes a drawback. In the conventional method, spacer particles are dispersed within the aperture surface, which causes defects in the spacer itself and also affects the ferroelectric liquid crystal molecules and layers near the particles, or causes defects in the resin by screen printing. to apply the orientation lI! by contact with the screen plate. The surface structure of the layer is destroyed, resulting in orientation defects.
Or, since it is heated while pressurizing, it takes a very long time from heating to cooling, which increases the number of man-hours and costs.
However, by adopting the manufacturing process according to the present invention, the spacer particles are not dispersed within the opening surface, so defects caused by the spacer itself and orientation defects caused by the spacer particles are caused. Moreover, since the resin was applied by letterpress printing, the surface structure of the alignment film layer within the opening plane was not destroyed, and uniform alignment could be obtained over the entire surface. Furthermore, by forming gaps by irradiating ultraviolet rays while applying pressure, the time required for heating and cooling is not only possible, but also by irradiating monochromatic light. By observing the reflected light, we were able to monitor the distribution of cell thickness, and it was possible to form a device with accurate cell thickness.

上記の強誘電性液晶空間光変調器は、外部から両基板の
透明電極間に直流電界を印加する事により強誘電性液晶
分子が基板表面からみて一軸に整列した安定状態となる
。また、印加電界の極性を反転することにより、もう一
方の、強誘電性液晶分子が基板表面からみて一軸に整列
した安定状態となる。この二状態間の電界による反転は
、強誘電性液晶層に印加される電界に対して、非線形性
と明確なしきい値を有する。二つの安定状態間の角度は
強誘電性液晶のコーン角に対応し、本実施例では光軸は
一酸化珪素の斜方蒸着方向からそれぞれ22.5° (
光軸間で45°ンの角度を有していた6二つの安定状態
のうちの一方は強誘電性液晶分子の光軸と偏光板の偏光
軸が一致するように設定したので、他方は強誘電性液晶
分子の光軸と偏光板の偏光軸が45″の角度を有する。
The above-described ferroelectric liquid crystal spatial light modulator is brought into a stable state in which the ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface by applying a DC electric field from the outside between the transparent electrodes of both substrates. Furthermore, by reversing the polarity of the applied electric field, a stable state is achieved in which the other ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface. This reversal between the two states due to the electric field has nonlinearity and a clear threshold with respect to the electric field applied to the ferroelectric liquid crystal layer. The angle between the two stable states corresponds to the cone angle of the ferroelectric liquid crystal, and in this example, the optical axis is 22.5° from the oblique deposition direction of silicon monoxide (
One of the six stable states with an angle of 45 degrees between the optical axes was set so that the optical axis of the ferroelectric liquid crystal molecules and the polarization axis of the polarizing plate coincided, so the other was The optical axis of the dielectric liquid crystal molecules and the polarization axis of the polarizing plate have an angle of 45''.

そのため、強誘電性液晶分子の光軸と偏光板の偏光軸が
一致している安定状態では入射光は強誘電性液晶層で何
等の変調も受けずに反射されて検光子に依って遮断され
暗状態となる。また、強誘電性液晶分子の光軸と偏光板
の偏光軸が45″′の角度を有する安定状態では、入射
光は強誘電性液晶層内で変調され、位相差φ=2π・Δ
n・2d/λで出てくる。このとき、反射光は検光子に
よって完全に遮断されることなく明状態となる。
Therefore, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the polarization axis of the polarizing plate match, the incident light is reflected by the ferroelectric liquid crystal layer without any modulation and is blocked by the analyzer. It becomes dark. In addition, in a stable state where the optical axis of the ferroelectric liquid crystal molecules and the polarization axis of the polarizing plate are at an angle of 45″′, the incident light is modulated within the ferroelectric liquid crystal layer, and the phase difference φ=2π・Δ
It comes out as n・2d/λ. At this time, the reflected light becomes bright without being completely blocked by the analyzer.

上記のような強誘電性液晶空間光変調器によれば、強誘
電性液晶素子のもつ双安定性により、消去電界印加によ
る消去後に消去電界と逆方向の、液晶層に分圧される電
圧が光導電層が暗時には闇値以下であり明時には闇値以
上であるような電界を印加しながらセル外面からの書き
込み光20によって光学像を照射、または半導体レーザ
ーを変調しつつポリゴンミラーやガルバノミラ−を用い
て走査を行なうことにより、光が照射された部分でのみ
液晶分子の反転がおこり、また、それが安定に保持され
るため、強誘電性液晶層14に像の書き込み、形成を行
なうことができた。また、書き込みにより形成された像
は、投影光21の照射により読み出すことが出来る。
According to the above-described ferroelectric liquid crystal spatial light modulator, due to the bistability of the ferroelectric liquid crystal element, after erasing by applying an erase electric field, the voltage divided across the liquid crystal layer in the opposite direction to the erase electric field is While applying an electric field such that the photoconductive layer is below the dark value when it is dark and above the dark value when it is bright, an optical image is irradiated with writing light 20 from the outer surface of the cell, or a polygon mirror or galvano mirror is modulated while a semiconductor laser is modulated. By performing scanning using the ferroelectric liquid crystal layer 14, the liquid crystal molecules are inverted only in the area irradiated with light, and this is maintained stably, so that an image can be written and formed on the ferroelectric liquid crystal layer 14. was completed. Further, the image formed by writing can be read out by irradiation with the projection light 21.

本発明に係る方法で製造された強誘電性液晶空間光変調
器は、開口面全面にわたって均一な配向を有し、面内の
スペーサーによる欠点がなく、波面収差の小さい素子と
なり、光情報処理等への応用に非常に有用であることが
わかった。
The ferroelectric liquid crystal spatial light modulator manufactured by the method according to the present invention has uniform alignment over the entire aperture surface, has no defects due to in-plane spacers, and is an element with small wavefront aberration, which can be used for optical information processing, etc. It was found to be very useful for applications.

[発明の効果] このように、本発明に係る製造方法によって、強誘電性
液晶空間光変調器の工数を削減してコストダウンを行う
ことが出来ると共に、本発明に係る方法で製造された強
誘電性液晶空間光変調器は、開口面全面にわたって均一
な配向を有し、面内のスペーサーによる欠点がなく、波
面収差の小さい素子となり、光情報処理、光コンピユー
テイング、マシンビジョン、デイスプレィ端末等への応
用に非常に有用である。
[Effects of the Invention] As described above, by the manufacturing method according to the present invention, it is possible to reduce the man-hours and cost of the ferroelectric liquid crystal spatial light modulator, and the manufacturing method according to the present invention can reduce the manufacturing cost. Dielectric liquid crystal spatial light modulators have uniform alignment over the entire aperture surface, do not have the drawbacks of in-plane spacers, and are devices with small wavefront aberrations, making them ideal for optical information processing, optical computing, machine vision, and display terminals. It is very useful for applications such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る強誘電性液晶空間光変調器の製
造工程を示す流れ図。 第2図は、本発明に係る強誘電性液晶空間光変調器の構
成を示す断面図、第3図は従来の製造工程を示す流れ図
である。 11a、llb・・・透明基板 12a、12b・・・透明電極 13a、13b−・・配向膜 14・・・強誘電性液晶層 15・・・光導電膜 16・・・誘電体ミラー 20・・・書き込み光 21・・・読み出し光 第1図    第3図
FIG. 1 is a flowchart showing the manufacturing process of a ferroelectric liquid crystal spatial light modulator according to the present invention. FIG. 2 is a sectional view showing the structure of a ferroelectric liquid crystal spatial light modulator according to the present invention, and FIG. 3 is a flowchart showing a conventional manufacturing process. 11a, llb...Transparent substrates 12a, 12b...Transparent electrodes 13a, 13b...Alignment film 14...Ferroelectric liquid crystal layer 15...Photoconductive film 16...Dielectric mirror 20...・Writing light 21...Reading light Fig. 1 Fig. 3

Claims (1)

【特許請求の範囲】[Claims]  一対の、電極を有する基板間の一方の電極上に光導電
層及び誘電体多層膜ミラーを具備し、両基板に液晶分子
を配向させる膜として、基板の法線方向に対して75°
から85°の範囲の角度で一酸化珪素を斜方蒸着したも
のを用い、これを一定の間隙に制御して対向させ、間隙
に封入する液晶組成物として、強誘電性液晶組成物を用
いた液晶素子の製造方法において、一対の基板として、
両面を平行平面度四分の一波長以下に研磨した、厚さが
有効開口径の10%以上のガラス基板を用い、該基板間
の間隙を制御して周辺を接着張り合わせするさい、開口
面内に間隙を制御するためのスペーサー粒子を分散する
事なく、間隙のねらい値に等しい平均粒径を持つシリカ
球あるいは樹脂球または間隙のねらい値に等しい平均直
径を持つグラスファイバーを、樹脂に対して0.1〜1
0重量パーセント混入して撹拌した1000センチポア
ズ以上の紫外線硬化樹脂を凸版印刷方を用いて印刷塗布
したのち一対の基板を組み立て、所定の間隙となるまで
圧力を加え、加圧したまま紫外線を照射して紫外線硬化
樹脂を硬化させる工程によって、強誘電性液晶を挟持す
る間隙を形成する事を特徴とする液晶空間光変調器の製
造方法。
A photoconductive layer and a dielectric multilayer film mirror are provided on one electrode between a pair of substrates having electrodes, and the film serves as a film for orienting liquid crystal molecules on both substrates at an angle of 75° to the normal direction of the substrates.
Silicon monoxide was obliquely vapor-deposited at an angle of 85 degrees from In the method for manufacturing a liquid crystal element, as a pair of substrates,
Using a glass substrate with a thickness of 10% or more of the effective aperture diameter, both sides of which have been polished to a parallel flatness of less than a quarter wavelength, the gap between the substrates is controlled and the periphery is bonded together. Silica spheres or resin spheres with an average particle size equal to the target gap value or glass fibers with an average diameter equal to the target gap value are applied to the resin without dispersing spacer particles to control the gap. 0.1~1
A UV curable resin of 1000 centipoise or more mixed with 0% by weight and stirred is applied by printing using a letterpress printing method, a pair of substrates are assembled, pressure is applied until a predetermined gap is created, and UV rays are irradiated while the pressure is applied. A method for manufacturing a liquid crystal spatial light modulator, characterized in that a gap for sandwiching a ferroelectric liquid crystal is formed by a step of curing an ultraviolet curable resin.
JP28377890A 1990-10-22 1990-10-22 Manufacture of space light modulator Pending JPH04157425A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28377890A JPH04157425A (en) 1990-10-22 1990-10-22 Manufacture of space light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28377890A JPH04157425A (en) 1990-10-22 1990-10-22 Manufacture of space light modulator

Publications (1)

Publication Number Publication Date
JPH04157425A true JPH04157425A (en) 1992-05-29

Family

ID=17670007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28377890A Pending JPH04157425A (en) 1990-10-22 1990-10-22 Manufacture of space light modulator

Country Status (1)

Country Link
JP (1) JPH04157425A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191841B1 (en) 1998-11-30 2001-02-20 Kabushiki Kaisha Toshiba Method of manufacturing liquid crystal display cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191841B1 (en) 1998-11-30 2001-02-20 Kabushiki Kaisha Toshiba Method of manufacturing liquid crystal display cell

Similar Documents

Publication Publication Date Title
US20140036183A1 (en) Tunable liquid crystal optical device
US8398798B2 (en) Curvature reduction for switchable liquid crystal lens array
Zhang et al. High quality assembly of phase-only liquid crystal on silicon (LCOS) devices
US6346975B2 (en) Liquid crystal display having alignment layer using ion bombarded amorphous material 100Å thickness or less
JP2564626B2 (en) Optical writing type spatial light modulator
JPH04157425A (en) Manufacture of space light modulator
JP2009294320A (en) Liquid crystal display device
JPH1090730A (en) Optical element, its drive method and display device
JPH04121709A (en) Production of space optical modulator
JPH05297339A (en) Liquid crystal light refracting element
JP2573322B2 (en) Manufacturing method of liquid crystal display device
KR102179535B1 (en) Method of forming alignment layer and fabrication method of liquid crystal display using the same
JP2871083B2 (en) Liquid crystal spatial light modulator and optical image processing device
JP2001051277A (en) Liquid crystal device, production thereof, liquid crystal display device and method of driving the same
JPH08304850A (en) Optical writing type spatial optical modulation element
JP2002099195A (en) Method of making phase type volume hologram optical element
JPH06258656A (en) Liquid crystal spatial optical modulator and its driving method
JP2540366B2 (en) Optical writing liquid crystal light valve
JPS63249820A (en) Optical deflector of liquid crystal
JP2000284259A (en) Liquid crystal device and its production as well as electronic apparatus using the same
JP2004191141A (en) Method of measuring flatness, method of measuring adsorption force, and electrooptic panel for measurement
JPH05232472A (en) Production of electrooptical device
JPH03209432A (en) Space optical modulating element
JPH04178625A (en) Reflection type liquid crystal electrooptical device
JPH11271798A (en) Liquid crystal display device