JPH06258656A - Liquid crystal spatial optical modulator and its driving method - Google Patents

Liquid crystal spatial optical modulator and its driving method

Info

Publication number
JPH06258656A
JPH06258656A JP4418093A JP4418093A JPH06258656A JP H06258656 A JPH06258656 A JP H06258656A JP 4418093 A JP4418093 A JP 4418093A JP 4418093 A JP4418093 A JP 4418093A JP H06258656 A JPH06258656 A JP H06258656A
Authority
JP
Japan
Prior art keywords
liquid crystal
spatial light
light modulator
crystal spatial
substrates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4418093A
Other languages
Japanese (ja)
Inventor
Naoki Kato
直樹 加藤
Rieko Sekura
利江子 瀬倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4418093A priority Critical patent/JPH06258656A/en
Publication of JPH06258656A publication Critical patent/JPH06258656A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the liquid crystal spatial optical modulator which can make continuous gradation display and has high reliability and the driving method for the modulator. CONSTITUTION:Transparent electrode layers 12a, 12b are formed on the surfaces of a pair of substrates 11a, 11b for holding a liquid crystal. A photoconductive layer 15 and a multilayered dielectric substance film mirror 16 are formed on the one transparent electrode 12a. Further the surfaces of both substrates 11a, 11b are provided with oriented film layers 13a, 13b. A sealing material prepd. by mixing and dispersing spacer materials into an outer peripheral sealing material is applied on a pair of these substrates 11a, 11b and thereafter, two sheets of the substrates 11a, 11b are adhered to form a spacing to hold the liquid crystal 14. A nematic liquid crystal compsn. having 180 to 360 deg. rotating angle is held in the spacing. An AC electric field is used as the driving method thereof. As a result, the continuous gradation expression is realized more easily and inexpensively than the use of a ferroelectric liquid crystal with high reliability with the spatial optical modulator to be used for systems, such as projection displays, optical information processing systems and optical neural networks.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はプロジェクションディス
プレイ、画像処理装置、光情報処理用空間光変調器等に
応用される光書き込み型液晶空間光変調器及びその駆動
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photo-writing type liquid crystal spatial light modulator applied to a projection display, an image processing device, a spatial light modulator for optical information processing and the like and a driving method thereof.

【0002】[0002]

【従来の技術】従来、液晶を用いた空間光変調器は入力
された画像情報を、リアルタイムで強度変調出力する素
子として用いられている。一般には表面安定化強誘電性
液晶を変調材料として用いた二値化デバイスが知られて
いる。また、筆者らは、特願平02−239594によ
って、上記素子に於て連続階調を有する出力を得る駆動
方法をも示した。
2. Description of the Related Art Conventionally, a spatial light modulator using a liquid crystal has been used as an element for intensity-modulating and outputting input image information in real time. Generally, a binarization device using a surface-stabilized ferroelectric liquid crystal as a modulation material is known. The authors have also shown, in Japanese Patent Application No. 02-239594, a driving method for obtaining an output having continuous gradation in the above device.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の表面安
定化強誘電性液晶を用いた空間光変調器及びその駆動方
法によっては、上記特願平02−239594に於いて
示したような方法を用いて連続駆動状態では階調表現が
可能となるものの、素子に直流バイアスを印加する必要
が生じ、信頼性上の問題があった。
However, depending on the conventional spatial light modulator using the surface-stabilized ferroelectric liquid crystal and its driving method, the method as disclosed in Japanese Patent Application No. 02-239594 is used. Although it is possible to express gradation in the continuous driving state by using it, it is necessary to apply a DC bias to the element, which causes a problem in reliability.

【0004】[0004]

【課題を解決するための手段】そこで、この発明は上記
問題を解決するために、液晶を用いた空間光変調器及び
その駆動方法に於いて、変調材料として用いる液晶組成
物を、180゜〜360゜の回転角を有する常温でネマ
チック相を取る組成物とし、交番電界によって駆動する
事により、液晶空間光変調器において連続階調を表現す
る事を可能とし、さらに素子の信頼性を向上せしむるも
のである。
In order to solve the above problems, the present invention provides a spatial light modulator using a liquid crystal and a method for driving the same, wherein a liquid crystal composition used as a modulation material is 180 ° to A composition having a nematic phase at a room temperature having a rotation angle of 360 ° and being driven by an alternating electric field makes it possible to express continuous gradation in a liquid crystal spatial light modulator and further improve the reliability of the device. It is a creaking.

【0005】[0005]

【作用】上記の方法を用いる事により、プロジェクショ
ンディスプレイ等の連続階調を必要とする用途において
も液晶空間光変調器が利用される可能性が生じ、さら
に、強誘電性液晶を用いた場合に起こる層構造の変形に
よる焼き付きが発生せず、対衝撃性も向上し、もってそ
の応用範囲を増大させる事ができるものである。
By using the above method, there is a possibility that the liquid crystal spatial light modulator can be used in applications such as projection displays that require continuous gradation. Furthermore, when a ferroelectric liquid crystal is used, The seizure due to the deformation of the layer structure that occurs does not occur, and the impact resistance is also improved, so that the range of application thereof can be increased.

【0006】[0006]

【実施例】以下に図面を用いて本発明を詳細に説明す
る。図1は、本発明に係る光書き込み型液晶空間光変調
器の構造を示す模式図である。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic view showing the structure of a photo-writing type liquid crystal spatial light modulator according to the present invention.

【0007】液晶分子を挟持するための基板11a、11bと
して、両面をHe-Neレーザー波長に於て平行平面度λ/5
以下に研磨した厚さ5mmの透明ガラス基板を用いた。両
基板の表面にはITO透明電極層12a、12bを設けた。光
による書き込み側の透明電極層12a上には3.0μmの
厚さの水素化アモルファスシリコン(a-Si:H)光導電層
15を形成した。さらに光導電層上には、ミラー層として
誘電体多層膜ミラー16を形成した。ただし、このミラー
層は、空間光変調器の用途によっては必要ない場合もあ
り、これを形成しない空間光変調器についても作製評価
を行った。ここで、ミラー層は互いに絶縁された金属膜
が配列された構造等であっても問題ない。
As substrates 11a and 11b for sandwiching liquid crystal molecules, both surfaces have parallel flatness λ / 5 at He-Ne laser wavelength.
A transparent glass substrate having a thickness of 5 mm, which was polished below, was used. ITO transparent electrode layers 12a and 12b were provided on the surfaces of both substrates. 3.0 μm thick hydrogenated amorphous silicon (a-Si: H) photoconductive layer is formed on the transparent electrode layer 12a on the light writing side.
Formed 15. Furthermore, a dielectric multilayer mirror 16 was formed as a mirror layer on the photoconductive layer. However, this mirror layer may not be necessary depending on the application of the spatial light modulator, and a spatial light modulator without this mirror layer was also manufactured and evaluated. Here, there is no problem even if the mirror layer has a structure in which metal films insulated from each other are arranged.

【0008】ミラー層の総厚は、使用波長における反射
率の要求によって決定されるが、総厚の増加は素子の解
像度に影響を与えるため、むやみに厚くすることはでき
ない。そのため、本実施例に於いて作成した誘電体多層
膜ミラーの総厚は2.6μmとした。
The total thickness of the mirror layer is determined by the requirement for the reflectance at the wavelength used, but an increase in the total thickness affects the resolution of the device and cannot be excessively increased. Therefore, the total thickness of the dielectric multilayer mirror formed in this example is set to 2.6 μm.

【0009】なお、光導電層15は、硫化カドミウム等の
他の材料を用いても問題なく、また、層厚はミラー層及
び液晶層の厚みによって最適値が変動するものであっ
て、0.5〜10μmの範囲内で上記各膜の電気的特性
及び膜厚を勘案して設定される。
It should be noted that the photoconductive layer 15 can be made of other materials such as cadmium sulfide without any problem, and the optimum value of the layer thickness varies depending on the thicknesses of the mirror layer and the liquid crystal layer. It is set in the range of 5 to 10 μm in consideration of the electrical characteristics and film thickness of each of the above films.

【0010】さらに両基板の表面には、ポリイミドから
なる配向膜層13a、13bを設けた。配向膜層13a、13bには、
両基板を組み合わせた状態で液晶分子の回転角が240
゜となるような方向にラビング処理を施した。ここで、
配向膜層としては、ポリイミド以外の高分子膜を用いて
も問題ない。また、一酸化珪素等を斜方蒸着した膜(こ
の場合はラビング処理は不要)であってもよい。
Furthermore, alignment film layers 13a and 13b made of polyimide are provided on the surfaces of both substrates. The alignment film layers 13a and 13b include
The rotation angle of liquid crystal molecules is 240 when both substrates are combined.
The rubbing treatment was performed in the direction such that the angle became °. here,
There is no problem even if a polymer film other than polyimide is used as the alignment film layer. Alternatively, a film obtained by obliquely depositing silicon monoxide or the like (in this case, rubbing treatment is not necessary) may be used.

【0011】次に、2.8μmの平均粒径を持つシリカ
球を外周シール材に混合分散し、凸版印刷法を用いて前
記シール材を印刷塗布した後2枚の基板を接着し、液晶
を狭持する間隙を形成した。ここで、本実施例において
は3.0μmの水素化アモルファスシリコン光導電層を
用いたため、液晶層厚を2.8μmとしたが、液晶層厚
は前記したように光導電層及びミラー層の条件によって
最適値が変動するため、1〜10μmの範囲内で設定さ
れる。
Next, silica spheres having an average particle diameter of 2.8 μm are mixed and dispersed in the outer peripheral sealing material, the sealing material is applied by printing using a letterpress printing method, and then two substrates are adhered to each other to form a liquid crystal. Formed a nipping space. Here, in this embodiment, since the hydrogenated amorphous silicon photoconductive layer having a thickness of 3.0 μm was used, the liquid crystal layer thickness was set to 2.8 μm. Since the optimum value fluctuates depending on the value, it is set within the range of 1 to 10 μm.

【0012】液晶組成物14としては、RDP21125
(ロディック社製)に2.6%の左遷性カイラル剤S−
811を添加したものを用い、真空注入した後一度アイ
ソトロピック相まで加熱、徐冷して均一な配向を得た。
使用した液晶RDP21125の屈折率異方性Δn=
0.254である。ここで、液晶の屈折率異方性は、使
用波長、液晶層厚、回転角、入射光の偏光方向によって
最適値が変動するが、本実施例においては使用波長63
3nmを想定したため、前記液晶を使用した。上記各条
件の設定によっては、当然液晶材料を変更することもあ
りうる。ただし、液晶層厚の増加は解像度の劣化につな
がるため、できるだけ薄い液晶層厚を用いることが望ま
しく、そのため液晶の屈折率異方性は0.05以上のも
のを用いる。
As the liquid crystal composition 14, RDP21125 is used.
(Rodick Co., Ltd.) containing 2.6% of a left-handed chiral agent S-
After using 811 added, it was vacuum-injected and then once heated to an isotropic phase and gradually cooled to obtain a uniform alignment.
Refractive index anisotropy Δn of the used liquid crystal RDP21125
It is 0.254. Here, the optimum value of the refractive index anisotropy of the liquid crystal varies depending on the wavelength used, the liquid crystal layer thickness, the rotation angle, and the polarization direction of the incident light.
The liquid crystal was used because 3 nm was assumed. Of course, the liquid crystal material may be changed depending on the setting of each of the above conditions. However, since an increase in the liquid crystal layer thickness leads to a deterioration in resolution, it is desirable to use a liquid crystal layer thickness that is as thin as possible. Therefore, a liquid crystal having a refractive index anisotropy of 0.05 or more is used.

【0013】ここで、本発明に類似した構成の空間光変
調器であり、高解像度プロジェクター用のライトバルブ
として実用に供されている垂直配向またはハイブリッド
配向のネマティック液晶や、90度ツイストのいわゆる
TNモードを用いた空間光変調器に対する本発明の利点
を記す。これらのモードを用いた液晶空間光変調器に於
いては、変調効率の維持のため本発明に係る空間光変調
器に較べて大きな液晶層厚を必要とする。駆動電圧に対
して、液晶層に分圧される電圧は、液晶層の層厚と抵抗
率及び光導電層の層厚と抵抗率(明時及び暗時)によっ
て定まるため、これらのモードを用いた空間光変調器
は、必然的に厚い光導電層を用いる必要がある。このた
め、液晶層及び光導電層共に厚くなり、解像度は本発明
に係る空間光変調器よりも格段に劣ったものとなる。ま
た、これらのモードの液晶層は、印加電圧に対するしき
い値の急峻性が本発明に係る空間光変調器に用いられた
液晶層に対して格段に劣るため、コントラストが大きく
取れない。本発明に於いては、液晶層の回転角度を18
0度から360度の範囲としているが、これは回転角が
180度以下の場合充分なしきい値の急峻性が得られ
ず、また、回転角が360度以上の場合、閾値近傍でヒ
ステリシスが生じて駆動が困難となるためである。本発
明の範囲に於いて、閾値は充分な急峻性を示した。
Here, a nematic liquid crystal of a vertical alignment or a hybrid alignment, which is a spatial light modulator having a structure similar to that of the present invention and which is practically used as a light valve for a high-resolution projector, or a so-called TN of 90 ° twist. The advantages of the present invention over spatial light modulators using modes are noted. The liquid crystal spatial light modulator using these modes requires a larger liquid crystal layer thickness than the spatial light modulator according to the present invention in order to maintain the modulation efficiency. The voltage divided by the liquid crystal layer with respect to the drive voltage is determined by the layer thickness and resistivity of the liquid crystal layer and the layer thickness and resistivity of the photoconductive layer (bright and dark). Spatial light modulators inevitably require the use of thick photoconductive layers. Therefore, both the liquid crystal layer and the photoconductive layer become thicker, and the resolution is significantly inferior to that of the spatial light modulator according to the present invention. Further, the liquid crystal layer of these modes has a sharpness of the threshold value with respect to the applied voltage which is significantly inferior to that of the liquid crystal layer used in the spatial light modulator according to the present invention, so that a large contrast cannot be obtained. In the present invention, the rotation angle of the liquid crystal layer is set to 18
The range is from 0 degree to 360 degrees, but when the rotation angle is 180 degrees or less, sufficient threshold steepness is not obtained, and when the rotation angle is 360 degrees or more, hysteresis occurs near the threshold value. Drive becomes difficult. Within the scope of the present invention, the threshold value shows sufficient steepness.

【0014】上記したような従来のネマティック液晶を
用いた空間光変調器を含めて、解像度、コントラストの
点で、現時点に於いて満足な特性を示す液晶空間光変調
器は、筆者らが特願平02−239594等に於いて示
した強誘電性液晶を用いたもののみであり、本発明に於
ける比較は強誘電性液晶を用いた空間光変調器との間で
行う。
Including the conventional spatial light modulator using a nematic liquid crystal as described above, the present inventors have applied for a liquid crystal spatial light modulator that shows satisfactory characteristics at the present time in terms of resolution and contrast. Only the liquid crystal using the ferroelectric liquid crystal shown in Japanese Patent Laid-Open No. 02-239594 is used, and the comparison in the present invention is made between the spatial light modulator using the ferroelectric liquid crystal.

【0015】本発明の空間光変調器は、変調材料として
ネマチック液晶を用いている。そのため、従来液晶空間
光変調器に用いられていた表面安定化強誘電性液晶層と
は異なり、層構造を有さず、間隙の精度に関する許容範
囲が拡大した。このため、基板は通常の液晶セルに用い
られているようなソーダガラス等のより安価な材料や、
プラスチック等でも問題なく、また、面精度の要求仕様
も上記実施例に示す値よりも緩やかである。また、液晶
層の間隙は強誘電性液晶の場合に比べて大きく、間隙の
分布の精度に関する要求も格段に小さい。このため、歩
留まりが格段に向上し、製造コストは格段に小さくな
る。
The spatial light modulator of the present invention uses a nematic liquid crystal as a modulation material. Therefore, unlike the surface-stabilized ferroelectric liquid crystal layer that has been conventionally used in a liquid crystal spatial light modulator, it does not have a layer structure, and the allowable range for the accuracy of the gap is expanded. Therefore, the substrate is a cheaper material such as soda glass, which is used in ordinary liquid crystal cells,
There is no problem even if it is made of plastic or the like, and the required specifications of surface accuracy are gentler than the values shown in the above embodiment. Further, the gap of the liquid crystal layer is larger than that of the ferroelectric liquid crystal, and the demand for the precision of the gap distribution is remarkably small. Therefore, the yield is remarkably improved, and the manufacturing cost is remarkably reduced.

【0016】さらに、上記したように層構造が存在しな
いため、信頼性、特に耐衝撃性は格段に向上した。図2
は書き込み、読み出し実験を行った光学系のシステム図
である。書き込み光源21としてハロゲンランプを用い、
干渉フィルター22aを通して波長分布を制御した。書き
込み光は本発明に係る液晶空間光変調器24へ照射され
る。なお、画像を書き込む場合は図中25にマスクを配置
し、レンズ26で空間光変調器24の入力面に結像した。読
み出し光源27は、ハロゲンランプを用い、光量を調節す
るための絞り28、波長分布を制御する干渉フィルター22
b、偏光子29、ビ−ムスプリッタ30を通って本発明に係
る液晶空間光変調器24の出力面へ照射され、液晶層で変
調されつつ液晶層と水素化アモルファスシリコン光導電
層の界面で反射され、再びビームスプリッタ30に入射す
る。ここで、ビームスプリッタ面で反射された光が検光
子31で検光され、CCDカメラ32で観測される。或いは
CCDカメラ32の位置に写真撮影用カメラを設置して読
み出し像の撮影を行う。偏光子29及び検光子31はクロス
ニコルに配置されており、使用波長で書き込み光の無い
状態では読み出しは暗状態となるように設定した。観察
はCCD32で取り込んだ画像をCRTに表示した。ま
た、フォトディテクター33を設置して光学応答をも測定
した。駆動は、自作のドライバー34を用いて行った。
Furthermore, since there is no layered structure as described above, reliability, especially impact resistance, is remarkably improved. Figure 2
[Fig. 3] is a system diagram of an optical system in which writing and reading experiments were performed. A halogen lamp is used as the writing light source 21,
The wavelength distribution was controlled through the interference filter 22a. The writing light is applied to the liquid crystal spatial light modulator 24 according to the present invention. When writing an image, a mask was placed at 25 in the figure, and an image was formed on the input surface of the spatial light modulator 24 by the lens 26. The readout light source 27 uses a halogen lamp, a diaphragm 28 for adjusting the amount of light, and an interference filter 22 for controlling the wavelength distribution.
b, through the polarizer 29, the beam splitter 30 to the output surface of the liquid crystal spatial light modulator 24 according to the present invention, at the interface between the liquid crystal layer and the hydrogenated amorphous silicon photoconductive layer while being modulated by the liquid crystal layer. It is reflected and again enters the beam splitter 30. Here, the light reflected by the beam splitter surface is detected by the analyzer 31 and observed by the CCD camera 32. Alternatively, a photograph camera is installed at the position of the CCD camera 32 to photograph the readout image. The polarizer 29 and the analyzer 31 are arranged in crossed Nicols, and the reading is set to be in the dark state when there is no writing light at the wavelength used. For observation, the image captured by the CCD 32 was displayed on the CRT. In addition, the photodetector 33 was installed and the optical response was also measured. The driving was performed using a self-made driver 34.

【0017】ここで、偏光子29及び検光子31をクロスニ
コルに配置したのは、ビームスプリッタ30に代えて偏光
ビームスプリッタを用い、偏光子29及び検光子31を除い
て光学系を簡素化することができるようにするためであ
る。ただし、本実施例のように偏光子29及び検光子31を
用いるのであれば、それぞれの角度を最適化する事によ
ってさらにコントラストを向上させることが可能であ
る。
Here, the polarizer 29 and the analyzer 31 are arranged in a crossed nicols, in which a polarizing beam splitter is used instead of the beam splitter 30, and the optical system is simplified except for the polarizer 29 and the analyzer 31. This is so that it can be done. However, if the polarizer 29 and the analyzer 31 are used as in the present embodiment, the contrast can be further improved by optimizing the respective angles.

【0018】なお、書き込みに用いられる光源はハロゲ
ンランプ、He−Neレーザー、Arレーザー、半導体
レーザー、LED等であり、読み出し光に用いられる光
源はハロゲンランプ、He−Neレーザー、Arレーザ
ー、半導体レーザー、LED等であればよい。
The light source used for writing is a halogen lamp, He-Ne laser, Ar laser, semiconductor laser, LED, etc., and the light source used for reading light is a halogen lamp, He-Ne laser, Ar laser, semiconductor laser. , LEDs, etc.

【0019】また、書き込み及び読み出し光源とは別に
バイアス光源を設置し、これからバイアス光を素子に与
えることにより、感度やガンマ特性の調整を行うことが
可能である。上記のシステムを用いて、書き込み実験を
行った。
It is possible to adjust sensitivity and gamma characteristics by providing a bias light source separately from the writing and reading light sources and applying bias light to the device. Writing experiments were performed using the above system.

【0020】駆動電圧として1kHz、10Vp-pの矩
形波を印加し、マスク25に階調を有する入力像(スライ
ドフィルム)を置いて書き込み、読み出しを行った場
合、十分な階調を持った再生像が得られた。印加電界の
周波数は、素子の各層の厚み等の設定によって10Hz
〜100kHzの範囲で設定される。
When a rectangular wave of 1 kHz and 10 Vp-p is applied as a driving voltage and an input image (slide film) having gradation is placed on the mask 25 for writing and reading, reproduction with sufficient gradation is performed. The image was obtained. The frequency of the applied electric field is 10 Hz depending on the settings such as the thickness of each layer of the element.
It is set in the range of up to 100 kHz.

【0021】ここで、本実施例の駆動方法は、直流成分
のない印加電圧を用いているため、液晶が直流電界によ
って劣化する恐れはなくなり、直流バイアス電界の印加
を必要とする強誘電性液晶を用いた階調表現に較べて素
子の信頼性が向上している。また、強誘電性液晶を用い
た空間光変調器で見られる層構造の変形による焼き付き
等の不都合は生ぜず、この点でも信頼性が向上してい
る。
Here, in the driving method of this embodiment, since the applied voltage having no DC component is used, there is no fear that the liquid crystal is deteriorated by the DC electric field, and the ferroelectric liquid crystal which requires the application of the DC bias electric field. The reliability of the device is improved compared to the gradation expression using. Further, there is no inconvenience such as image sticking due to the deformation of the layer structure which is seen in the spatial light modulator using the ferroelectric liquid crystal, and the reliability is improved also in this respect.

【0022】[0022]

【発明の効果】以上述べてきたように本発明の方法に依
れば、液晶を用いた空間光変調器及びその駆動方法に於
いて、変調材料として用いる液晶組成物を、180゜〜
360゜の回転角を有する常温でネマチック相を取る組
成物とし、交番電界によって駆動する事により、液晶空
間光変調器において連続階調を表現する事を可能とし、
プロジェクションディスプレイ等の連続階調を必要とす
る用途においても液晶空間光変調器が利用される可能性
が生じ、さらに、強誘電性液晶を用いた場合に起こる層
構造の変形による焼き付きが発生せず、対衝撃性をも向
上せしめ、その応用範囲を増大させる事ができる。
As described above, according to the method of the present invention, in the spatial light modulator using liquid crystal and the driving method thereof, the liquid crystal composition used as the modulating material is 180 °
A composition that takes a nematic phase at a room temperature having a rotation angle of 360 ° and is driven by an alternating electric field makes it possible to express continuous gradation in a liquid crystal spatial light modulator.
Liquid crystal spatial light modulators may be used in applications that require continuous gradation such as projection displays, and furthermore, image sticking due to deformation of the layer structure that occurs when ferroelectric liquid crystals are used does not occur. The impact resistance can also be improved and its application range can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明に係る光書き込み型液晶空間光
変調器の構造を示す模式図である。
FIG. 1 is a schematic diagram showing the structure of a photo-writing type liquid crystal spatial light modulator according to the present invention.

【図2】図2は、書き込み、読み出し実験を行った光学
系のシステム図である。
FIG. 2 is a system diagram of an optical system in which writing and reading experiments are performed.

【符号の説明】[Explanation of symbols]

11a、11b 明基板 12a、12b 明電極 13a、13b 向膜層 14 晶層 15 導電膜 16 電体多層膜ミラー 21 書き込み光源 22a、22b 干渉フィルター 24 液晶空間光変調器 25 マスク 26 レンズ 27 読み出し光源 28 絞り 29 偏光子 30 ビームスプリッタ 31 検光子 32 CCDカメラ 33 フォトディテクター 34 ドライバー 11a, 11b Bright substrate 12a, 12b Bright electrode 13a, 13b Directive layer 14 Crystal layer 15 Conductive film 16 Electroelectric multilayer film mirror 21 Writing light source 22a, 22b Interference filter 24 Liquid crystal spatial light modulator 25 Mask 26 Lens 27 Reading light source 28 Aperture 29 Polarizer 30 Beam splitter 31 Analyzer 32 CCD camera 33 Photodetector 34 Driver

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 光による書き込み手段、光による読み出
し手段及び電圧印加手段を具備し、透明電極上に光導電
膜が形成されたガラス基板と、透明電極の形成されたガ
ラス基板のそれぞれの対向する表面に液晶配向膜が形成
された一組のガラス基板が対向配置され、その間隙に液
晶組成物が封入されてなる液晶空間光変調器において、
該光導電膜は0.5〜10μmの厚みを有し、該液晶層
は1〜10μmの厚みを有し、該液晶組成物は常温でネ
マティック相を示す液晶組成物であり、該液晶層が狭持
された間隙間で対向する基板表面の配向方向は180゜
〜360゜の範囲の角度を有する事を特徴とする液晶空
間光変調器。
1. A glass substrate on which a photoconductive film is formed on a transparent electrode and a glass substrate on which a transparent electrode is formed, each of which is provided with a light writing device, a light reading device, and a voltage applying device. In a liquid crystal spatial light modulator in which a pair of glass substrates having a liquid crystal alignment film formed on the surface thereof are arranged to face each other, and a liquid crystal composition is sealed in the gap,
The photoconductive film has a thickness of 0.5 to 10 μm, the liquid crystal layer has a thickness of 1 to 10 μm, and the liquid crystal composition is a liquid crystal composition exhibiting a nematic phase at room temperature. A liquid crystal spatial light modulator, characterized in that the orientation directions of the surfaces of the substrates facing each other in the sandwiched space have an angle in the range of 180 ° to 360 °.
【請求項2】 該液晶組成物は常温における屈折率異方
性が0.05より大きいことを特徴とする請求項1記載
の液晶空間光変調器。
2. The liquid crystal spatial light modulator according to claim 1, wherein the liquid crystal composition has a refractive index anisotropy at room temperature of more than 0.05.
【請求項3】 該光導電膜はそのトータル膜厚が1〜1
0μmの範囲にあることを特徴とする請求項1記載の液
晶空間光変調器。
3. The photoconductive film has a total film thickness of 1 to 1.
The liquid crystal spatial light modulator according to claim 1, wherein the spatial light modulator is in a range of 0 μm.
【請求項4】 該光導電膜は、水素化アモルファスシリ
コン膜である事を特徴とする請求項1記載の液晶空間光
変調器。
4. The liquid crystal spatial light modulator according to claim 1, wherein the photoconductive film is a hydrogenated amorphous silicon film.
【請求項5】 該光導電膜と該液晶配向層の間に、ミラ
ー層が形成されている事を特徴とする請求項1記載の液
晶空間光変調器。
5. The liquid crystal spatial light modulator according to claim 1, wherein a mirror layer is formed between the photoconductive film and the liquid crystal alignment layer.
【請求項6】 印加される駆動電圧は、10Hz〜10
0kHzの周波数の範囲の交番電界であること特徴とす
る請求項1記載の液晶空間光変調器の駆動方法。
6. The applied drive voltage is 10 Hz to 10 Hz.
2. The method of driving a liquid crystal spatial light modulator according to claim 1, wherein the alternating electric field has a frequency range of 0 kHz.
【請求項7】 印加される駆動電圧は、矩形波またはサ
イン波であること特徴とする請求項6記載の液晶空間光
変調器の駆動方法。
7. The method of driving a liquid crystal spatial light modulator according to claim 6, wherein the applied drive voltage is a rectangular wave or a sine wave.
【請求項8】 クロスニコルに設定された読み出し光学
系に配置されることを特徴とする請求項6記載の液晶空
間光変調器の駆動方法。
8. The method of driving a liquid crystal spatial light modulator according to claim 6, wherein the liquid crystal spatial light modulator is arranged in a reading optical system set in a crossed Nicols.
【請求項9】 書き込み及び読み出し光に用いられる光
源以外に、書き込み側または読み出し側から、バイアス
光が照射され、このバイアス光の強度を制御する事を特
徴とする請求項6記載の液晶空間光変調器の駆動方法。
9. The liquid crystal spatial light according to claim 6, wherein bias light is irradiated from a writing side or a reading side in addition to a light source used for writing and reading light, and the intensity of the bias light is controlled. Driving method of modulator.
JP4418093A 1993-03-04 1993-03-04 Liquid crystal spatial optical modulator and its driving method Pending JPH06258656A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4418093A JPH06258656A (en) 1993-03-04 1993-03-04 Liquid crystal spatial optical modulator and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4418093A JPH06258656A (en) 1993-03-04 1993-03-04 Liquid crystal spatial optical modulator and its driving method

Publications (1)

Publication Number Publication Date
JPH06258656A true JPH06258656A (en) 1994-09-16

Family

ID=12684384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4418093A Pending JPH06258656A (en) 1993-03-04 1993-03-04 Liquid crystal spatial optical modulator and its driving method

Country Status (1)

Country Link
JP (1) JPH06258656A (en)

Similar Documents

Publication Publication Date Title
US5726723A (en) Sub-twisted nematic liquid crystal display
JPH11259007A (en) Reflection type display device
TW574518B (en) Liquid crystal display element and a display device using the same
CN109507820A (en) A kind of spatial light modulator
US6067142A (en) Vertically aligned pi-cell LCD having on-state with mid-plane molecules perpendicular to the substrates
US6271905B1 (en) Reflective liquid crystal display device
JP2564626B2 (en) Optical writing type spatial light modulator
EP0478299A2 (en) Liquid crystal display element of optical writing type
JPH049925A (en) Optical writing type liquid crystal display element
CA1260640A (en) Illumination of a liquid crystal display
US6801285B1 (en) Thin cell gap microdisplays with optimum optical properties
KR100434970B1 (en) Liquid crystal display
JPH06258656A (en) Liquid crystal spatial optical modulator and its driving method
JP2855649B2 (en) Projection display device
JPH083584B2 (en) Liquid crystal optical shutter
JP2871083B2 (en) Liquid crystal spatial light modulator and optical image processing device
US5854707A (en) Polarizing type optical apparatus
JPH09258219A (en) Liquid crystal display device
JPH0792487A (en) Optical modulation element
JPH02304526A (en) Liquid crystal display element
JPH1195212A (en) Reflection type liquid crystal display element and liquid crystal projector
JPH08234195A (en) Spatial optical modulation element
JPH11231807A (en) Reflection type liquid crystal display device
JPH09185031A (en) Liquid crystal display device
JPH0815696A (en) Color liquid crystal display element