JPH03209432A - Space optical modulating element - Google Patents
Space optical modulating elementInfo
- Publication number
- JPH03209432A JPH03209432A JP524490A JP524490A JPH03209432A JP H03209432 A JPH03209432 A JP H03209432A JP 524490 A JP524490 A JP 524490A JP 524490 A JP524490 A JP 524490A JP H03209432 A JPH03209432 A JP H03209432A
- Authority
- JP
- Japan
- Prior art keywords
- liquid crystal
- substrates
- substrate
- ferroelectric liquid
- beam splitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title abstract description 32
- 239000000758 substrate Substances 0.000 claims abstract description 31
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical group [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 15
- 239000005262 ferroelectric liquid crystals (FLCs) Substances 0.000 claims description 31
- 239000000203 mixture Substances 0.000 claims description 7
- 230000010287 polarization Effects 0.000 abstract description 10
- 239000011521 glass Substances 0.000 abstract description 2
- 238000007740 vapor deposition Methods 0.000 abstract 2
- 238000002788 crimping Methods 0.000 abstract 1
- 230000005684 electric field Effects 0.000 description 11
- 230000010365 information processing Effects 0.000 description 6
- 206010041662 Splinter Diseases 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 3
- 229910021417 amorphous silicon Inorganic materials 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- XXLJGBGJDROPKW-UHFFFAOYSA-N antimony;oxotin Chemical compound [Sb].[Sn]=O XXLJGBGJDROPKW-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Liquid Crystal (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
この発明は、光情報処理、光コンピユーテイング、マシ
ンビジョン、デイスプレィ端末等に用いられる液晶空間
光変調素子に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a liquid crystal spatial light modulator used in optical information processing, optical computing, machine vision, display terminals, and the like.
し発明の概要]
この発明は、光情報処理、光コンビニーティング、マシ
ンビジョン、デイスプレィ端末等に用いられる液晶空間
光変調素子に関し、一対の、電極を有する基板間の一方
の電極上に光導電層及び誘電体多層膜ミラーを具備し、
両基板に液晶分子を配向させる膜として、基板の法線方
向に対して750から85°の範囲の角度で一酸化珪素
を斜方蒸着したものを用い、これを一定の間隙に制御し
て対向させ、間隙に封入する液晶組成物として、強誘電
性液晶組成物を用いた液晶素子において、光導電層及び
誘電体多層膜ミラーを形成しない側の基板として゛、偏
光ビームスプリッタ−を用いることにより、光学系を小
型化し、もって光情報処理、光コンピユーテイング、マ
シンビジョン、デイスプレィ端末等のシステムへの応用
を容易ならしめるものである。Summary of the Invention] The present invention relates to a liquid crystal spatial light modulator used in optical information processing, optical combining, machine vision, display terminals, etc. layer and a dielectric multilayer mirror,
As a film for orienting liquid crystal molecules on both substrates, silicon monoxide was obliquely deposited at an angle of 750 to 85 degrees with respect to the normal direction of the substrates, and these were controlled to have a constant gap so that they faced each other. By using a polarizing beam splitter as the substrate on the side on which the photoconductive layer and dielectric multilayer mirror are not formed, in a liquid crystal element using a ferroelectric liquid crystal composition as the liquid crystal composition sealed in the gap. , the optical system is miniaturized, thereby making it easier to apply it to systems such as optical information processing, optical computing, machine vision, and display terminals.
[従来の技術]
従来、強誘電性液晶を用いた空間光変調素子は、素子外
部に偏光子及びハーフミラ−またはキューブビームスプ
リンター及び検光子を配置し、読みだし光を偏光子を通
して照射し、反射光を検光子を通して読み出す事により
、変調された像を得ていた。[Prior art] Conventionally, a spatial light modulator using ferroelectric liquid crystal has a polarizer and a half mirror or a cube beam splinter and an analyzer arranged outside the element, and readout light is irradiated through the polarizer and reflected. By reading out the light through an analyzer, a modulated image was obtained.
[発明が解決しようとする課題]
しかしながら、従来の方法では、光学系中に偏光子及び
ハーフミラ−またはキューブビームスプリッタ−及び検
光子を配置するため、大きな光学系のスペースを必要と
し、システムの小型化が難しいという課題があった。[Problems to be Solved by the Invention] However, in the conventional method, a polarizer and a half mirror or a cube beam splitter and an analyzer are arranged in the optical system, which requires a large space for the optical system and reduces the size of the system. The problem was that it was difficult to adapt.
[課題を解決するための手段]
上記課題を解決するために、この発明は、光情報処理、
光コンピユーテイング、マシンビジョン、デイスプレィ
端末等に用いられる強誘電性液晶空間光変調素子の光導
電層及び誘電体多層膜ミラーを形成しない側の基板とし
て、偏光ビームスプリッタ−を用いた。[Means for Solving the Problems] In order to solve the above problems, the present invention provides optical information processing,
A polarizing beam splitter was used as the substrate on the side on which the photoconductive layer and dielectric multilayer mirror are not formed in a ferroelectric liquid crystal spatial light modulator used in optical computing, machine vision, display terminals, etc.
光ビームスプリッタ−は、一対の直角プリズムの斜面同
士を張り合わせたもので、張り合わせた面には誘電体多
層膜コーティングが施されており、キューブの外表面に
0@で入射した単一波長の光線を偏光面が互いに直交す
る2つの直線偏光に分岐させることができる。分岐角は
90@であり、2つの射出光はそれぞれ外表面に0°で
射出され、外部に偏光子、ハーフミラ−またはキューブ
ビームスブリフタ−1検光子を配置する必要がなく、光
学系を小型化することができる。An optical beam splitter is a pair of right-angled prisms pasted together, and the joined surfaces are coated with a dielectric multilayer film. can be split into two linearly polarized lights whose polarization planes are orthogonal to each other. The branching angle is 90@, and the two exit beams are each emitted at 0° to the outer surface, eliminating the need for an external polarizer, half mirror, or cube beam splitter analyzer, making the optical system more compact. can be converted into
[実施例] 以下に本発明の内容を図面を用いて詳細に説明する。[Example] The contents of the present invention will be explained in detail below using the drawings.
第1図は本発明に係る液晶空間光変調素子の概念図であ
る。液晶分子を挟持するための基板11a、11bとし
て、光による書き込み側基板11aには透明ガラス基板
を、読みだし側基板11bには偏光ビームスプリッタ−
を用いた。両基板の表面には■TOi!明電極層12a
、12bを設けた。ここでITO電極12a、12b
は、酸化錫アンチモン等でも問題ない。偏光ビームスブ
リ、ターは、一対の直角プリズムの斜面同士を張り合わ
せたもので、張り合わせ面には誘電対多層膜コーティン
グが施されており、キューブの外表面にO°で入射した
単一波長の光線を偏光面が互いに直交する2つの直線偏
光に分岐させることができる。分岐角は90″であり、
2つの射出光はそれぞれ外表面に06で射出される。本
実施例に於いては、読み出し光にHe−Neレーザーを
用い、偏光ビームスプリッタ−を用いた基板11bには
メレスグリオ社製03PBSO37(25,4+nm角
)を用いた。両基板の表面には基板の法線方向から85
°の入射角で、かつ、偏光ビームスプリンター側からの
入射光の偏波面から22.5°の角度をなし、組み合わ
せた状態で書き込み側及び読みだし側の基板上の入射方
間が一致するように一酸化珪素を斜方蒸着した配向膜層
13a 、13bを設けた。FIG. 1 is a conceptual diagram of a liquid crystal spatial light modulator according to the present invention. As the substrates 11a and 11b for sandwiching liquid crystal molecules, a transparent glass substrate is used for the optical writing side substrate 11a, and a polarizing beam splitter is used for the reading side substrate 11b.
was used. ■TOi! on the surface of both boards! Bright electrode layer 12a
, 12b were provided. Here, ITO electrodes 12a, 12b
There is no problem with tin antimony oxide, etc. The polarizing beam beam mirror is made by pasting the slopes of a pair of right-angle prisms together, and the pasted surfaces are coated with a dielectric multilayer film. The light can be split into two linearly polarized lights whose polarization planes are orthogonal to each other. The branch angle is 90″;
The two emitted lights are each emitted at 06 onto the outer surface. In this example, a He-Ne laser was used for the readout light, and 03PBSO37 (25.4+nm square) manufactured by Melles Griot was used as the substrate 11b using a polarizing beam splitter. The surface of both substrates has a distance of 85 mm from the normal direction of the substrates.
The angle of incidence is 22.5° from the plane of polarization of the incident light from the polarized beam splinter side, so that the directions of incidence on the substrates on the writing side and reading side match in the combined state. Alignment film layers 13a and 13b formed by obliquely vapor-depositing silicon monoxide were provided.
−酸化珪素を斜方蒸着した配向膜層13a 、13bの
基板の法線方向からの入射角度は75″から85″の範
囲で特性を考慮して選択すればよい。光による書き込み
側の透明電極層12a上にはアモルファスシリコン光導
電層15を、SiF、を主体とするガスを放電分解して
、2μmの厚さのa−5i rH層とすることにより形
成した。ここで該アモルファスシリコン光導電層15は
、放電分解時にP、N等を添加した膜組成でも良く、ま
た、a−3i:8層上にn型、あるいはp型の、他の組
成の半導体膜を積層した構成であっても差し支えない。- The angle of incidence of the alignment film layers 13a and 13b on which silicon oxide is obliquely deposited from the normal direction of the substrate may be selected in the range of 75'' to 85'' in consideration of the characteristics. On the transparent electrode layer 12a on the writing side by light, an amorphous silicon photoconductive layer 15 was formed by discharging and decomposing a gas mainly composed of SiF to form an a-5i rH layer having a thickness of 2 μm. Here, the amorphous silicon photoconductive layer 15 may have a film composition to which P, N, etc. are added during discharge decomposition, or may be a semiconductor film of other composition such as n-type or p-type on the a-3i:8 layer. There is no problem even if the structure is a stacked structure.
さらに前記膜上に、投影光が光導電層15に入射しない
ように遮光層16を設け、さらに、SiO□とStを交
互に計15層積層した誘電体ミラー17を積層、形成し
た。さらに、基板11aとllbはその配向膜層13a
、13b側を対向させ、直径1.0μmのグラスファ
イバーを加えた接着剤よりなるスペーサ19を介して間
隙を制御、形成し、強誘電性液晶層14を挟持するよう
にした。Furthermore, a light shielding layer 16 was provided on the film to prevent projection light from entering the photoconductive layer 15, and a dielectric mirror 17 in which a total of 15 layers of SiO□ and St were alternately laminated was formed. Furthermore, the substrates 11a and llb have their alignment film layers 13a.
, 13b were placed opposite each other, and a gap was controlled and formed via a spacer 19 made of an adhesive to which glass fibers having a diameter of 1.0 μm were added, so that the ferroelectric liquid crystal layer 14 was sandwiched therebetween.
間隙は約1.0μmであった。封入した強誘電性液晶組
成物としては、5CE−6(BDH社製)を用いた。The gap was approximately 1.0 μm. 5CE-6 (manufactured by BDH) was used as the encapsulated ferroelectric liquid crystal composition.
上記の強誘電性液晶空間光変調素子は、外部から両基板
の透明電極間に直流電界を印加する事により強誘電性液
晶分子が基板表面からみて一軸に整列した安定状態とな
る。また、印加電界の極性を反転することにより、もう
一方の、強誘電性液晶分子が基板表面からみて一軸に整
列した安定状態となる。この二状態間の電界による反転
は、強誘電性液晶層に印加される電界に対して、非線形
性と明確なしきい値を有する。印加電界は、直流に交流
を重畳したものであっても差し支えない。The above-described ferroelectric liquid crystal spatial light modulator is brought into a stable state in which the ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface by applying a direct current electric field between the transparent electrodes of both substrates from the outside. Furthermore, by reversing the polarity of the applied electric field, a stable state is achieved in which the other ferroelectric liquid crystal molecules are uniaxially aligned when viewed from the substrate surface. This reversal between the two states due to the electric field has nonlinearity and a clear threshold with respect to the electric field applied to the ferroelectric liquid crystal layer. The applied electric field may be one in which alternating current is superimposed on direct current.
二つの安定状態間の角度は強誘電性液晶のコーン角に対
応し、本実施例では光軸は一酸化珪素の斜方蒸着方向か
らそれぞれ22.5” (光軸間で45″)の角度を
存していた。斜方蒸着方向の、入射光の偏波面に対する
角度は、使用する強誘電性液晶のコーン角に合わせて設
定すれば良い。偏光ビームスプリンターから入射する光
はS偏光であり、その偏波面と一酸化珪素の斜方蒸着方
向は22.5’に設定したため、偏波面は一方の安定状
態の強誘電性液晶分子の光軸と一致しているから、この
場合入射光は強誘電性液晶層で変調を受けずに反射され
る。読み出し方向(偏光ビームスプリッタ−を使用した
側の素子に対して垂直方向)から観察するとき、偏光ビ
ームスプリッタ−を透過する光はp偏光のみであるから
、この場合は光が透過せず暗状態となる。印加電界方向
を反転した場合のもう一方の安定状態では、入射光の偏
波面と強誘電性液晶分子の光軸が45@の角度をなすた
め、入射光は強誘電性液晶層内で複屈折による変調を受
け、p偏光成分が生じて、明状態となる。The angle between the two stable states corresponds to the cone angle of the ferroelectric liquid crystal, and in this example, the optical axes are each at an angle of 22.5"(45" between optical axes) from the oblique deposition direction of silicon monoxide. existed. The angle of the oblique deposition direction with respect to the polarization plane of the incident light may be set according to the cone angle of the ferroelectric liquid crystal used. The light incident from the polarization beam splinter is S-polarized light, and the plane of polarization and the oblique deposition direction of silicon monoxide are set at 22.5', so the plane of polarization is aligned with the optical axis of the ferroelectric liquid crystal molecules in one stable state. In this case, the incident light is reflected by the ferroelectric liquid crystal layer without being modulated. When observing from the readout direction (perpendicular to the element on the side using the polarizing beam splitter), only p-polarized light is transmitted through the polarizing beam splitter, so in this case no light is transmitted and the state is dark. becomes. In the other stable state when the direction of the applied electric field is reversed, the polarization plane of the incident light and the optical axis of the ferroelectric liquid crystal molecules form an angle of 45@, so the incident light undergoes birefringence within the ferroelectric liquid crystal layer. , a p-polarized light component is generated, and a bright state is achieved.
上記のような強誘電性液晶空間光変調素子によれば、強
誘電性液晶素子のもつ双安定性により、消去電界印加に
よる消去後に消去電界と逆方向の、液晶層に分圧される
電圧が光導電層が暗時には閾値以下であり引時には閾値
以上であるような電界を印加しながらセル外面からの書
き込み光20によって光学像を照射、または半導体レー
ザーを変調しつつポリゴンミラーやガルバノミラ−を用
いて走査を行なうことにより、光が照射された部分での
み液晶分子の反転がおこり、また、それが安定に保持さ
れるため、強誘電性液晶層14に像の書き込み、形成を
行なうことができた。また、書き込みにより形成された
像は、投影光21の照射により読み出すことが出来る。According to the ferroelectric liquid crystal spatial light modulator as described above, due to the bistability of the ferroelectric liquid crystal element, after erasing by applying an erasing electric field, the voltage divided across the liquid crystal layer in the opposite direction to the erasing electric field is While applying an electric field that is below the threshold value when the photoconductive layer is dark and above the threshold value when the photoconductive layer is dark, an optical image is irradiated with writing light 20 from the outside of the cell, or a polygon mirror or galvano mirror is used while modulating a semiconductor laser. By performing scanning, the liquid crystal molecules are inverted only in the area irradiated with light, and this is maintained stably, so that images can be written and formed on the ferroelectric liquid crystal layer 14. Ta. Further, the image formed by writing can be read out by irradiation with the projection light 21.
前記印加電圧は、交流波形を重畳した直流でもよい。さ
らに、前記書き込み時の電界方向とは逆方向の、液晶層
に分圧される電圧が光導電層が暗時には闇値以下であり
引時には闇値以上であるような電界を印加しながら、半
導体レーザーを変調しつつポリゴンミラーやガルバノミ
ラ−を用いて走査を行なうことにより、強誘電性液晶層
のレーザー光が照射された部分でのみ液晶分子の反転が
おこり、また、それが安定に保持されるため、像の部分
消去も行なうことができた。The applied voltage may be a direct current with an alternating current waveform superimposed thereon. Furthermore, while applying an electric field in the opposite direction to the electric field direction during writing, such that the voltage divided across the liquid crystal layer is below the dark value when the photoconductive layer is dark and above the dark value when the photoconductive layer is dark, By scanning using a polygon mirror or galvano mirror while modulating the laser, the liquid crystal molecules are inverted only in the areas of the ferroelectric liquid crystal layer that are irradiated with the laser light, and are stably maintained. Therefore, it was also possible to erase parts of the image.
第2図に従来の強誘電性液晶空間光変調素子を用いた場
合の読みだし光学系を、第3図に本発明に係る強誘電性
空間光変調素子を用いた場合の読みだし光学系を示す。Figure 2 shows a readout optical system when using a conventional ferroelectric liquid crystal spatial light modulator, and Figure 3 shows a readout optical system when a ferroelectric spatial light modulator according to the present invention is used. show.
第2図では、読みだし光21は検光子22を通った後、
ハーフミラ−23(またはビームスプリンター)で反射
されて強誘電性液晶素子24へ入射し、素子により変調
を受けて反射され、ハーフミラ−23、検光子25を通
って像として読み出される。第3図では、本発明に係る
強誘電性液晶空間光変調素子26を用いることにより、
読みたし側基板として偏光ビームスプリッタ−を用いて
いるため、外部に偏光子、ハーフミラ−またはキューブ
ビームスプリッタ−1検光子を配置する必要がなく、光
学系を小型化することができることがわかる。In FIG. 2, after the readout light 21 passes through the analyzer 22,
It is reflected by the half mirror 23 (or beam splinter), enters the ferroelectric liquid crystal element 24, is modulated by the element, is reflected, passes through the half mirror 23 and the analyzer 25, and is read out as an image. In FIG. 3, by using the ferroelectric liquid crystal spatial light modulator 26 according to the present invention,
It can be seen that since a polarizing beam splitter is used as the reading side substrate, there is no need to arrange an external polarizer, half mirror, or cube beam splitter 1 analyzer, and the optical system can be miniaturized.
[発明の効果]
このように、本発明に係る強誘電性液晶空間光変調素子
は、光情報処理、光コンピユーテイング、マシンビジョ
ン、デイスプレィ端末等に用いられる強誘電性液晶空間
光変調素子の光導電層及び誘電体多層膜ミラーを形成し
ない側の基板として、偏光ビームスプリッタ−を用いた
ことにより、光学系を小型化し、もって光情報処理、光
コンピユーテイング、マシンビジ目ン、デイスプレィ端
末等のシステムへの応用を容易ならしめることができる
。[Effects of the Invention] As described above, the ferroelectric liquid crystal spatial light modulator according to the present invention can be used as a ferroelectric liquid crystal spatial light modulator used in optical information processing, optical computing, machine vision, display terminals, etc. By using a polarizing beam splitter as the substrate on which the photoconductive layer and dielectric multilayer mirror are not formed, the optical system can be miniaturized, making it suitable for optical information processing, optical computing, machine viewing, display terminals, etc. can be easily applied to the system.
第1図は、本発明に係る強誘電性液晶空間光変調素子の
構造を示す断面図、第2図は、従来の強誘電性液晶空間
光変調素子を用いた場合の読みだし光学系の一例を示す
概略図、第3図は、本発明に係る強誘電性液晶空間光変
調素子を用いた場合の読みだし光学系の一例を示す概略
図である。
11a・・・透明基板
11b・・・偏光ビームスプリッタ−
12a、12b・・・透明電極
13a、13b・・・配向膜
14・・・強誘電性液晶層
15・・・光導電膜
16・・・遮光膜
17・・・誘電体ミラー
19・・・スペーサー
20・・・書き込み光
21・・・読み出し光
22・・・偏光子
23・・・ハーフミラ−
24・・・従来の強誘電性液晶空間光変調素子25・・
・検光子
26・・・本発明に係る強誘電性液晶空間光変調素子FIG. 1 is a cross-sectional view showing the structure of a ferroelectric liquid crystal spatial light modulator according to the present invention, and FIG. 2 is an example of a readout optical system using a conventional ferroelectric liquid crystal spatial light modulator. FIG. 3 is a schematic diagram showing an example of a readout optical system using the ferroelectric liquid crystal spatial light modulator according to the present invention. 11a... Transparent substrate 11b... Polarizing beam splitter 12a, 12b... Transparent electrodes 13a, 13b... Alignment film 14... Ferroelectric liquid crystal layer 15... Photoconductive film 16... Light shielding film 17...Dielectric mirror 19...Spacer 20...Writing light 21...Reading light 22...Polarizer 23...Half mirror 24...Conventional ferroelectric liquid crystal spatial light Modulation element 25...
・Analyzer 26...ferroelectric liquid crystal spatial light modulation element according to the present invention
Claims (1)
導電層及び誘電体多層膜ミラーを具備し、両基板に液晶
分子を配向させる膜として、基板の法線方向に対して7
5°から85°の範囲の角度で一酸化珪素を斜方蒸着し
たものを用い、これを一定の間隙に制御して対向させ、
間隙に封入する液晶組成物として、強誘電性液晶組成物
を用いた液晶素子において、光導電層及び誘電体多層膜
ミラーを形成しない側の基板として、偏光ビームスプリ
ッターを用いた事を特徴とする液晶空間光変調素子。(1) A photoconductive layer and a dielectric multilayer film mirror are provided on one electrode between a pair of substrates having electrodes, and the film serves as a film for orienting liquid crystal molecules on both substrates.
Silicon monoxide is obliquely deposited at an angle in the range of 5° to 85°, and these are controlled to have a certain gap and are faced to each other.
A liquid crystal element using a ferroelectric liquid crystal composition as a liquid crystal composition sealed in a gap, characterized in that a polarizing beam splitter is used as a substrate on the side on which a photoconductive layer and a dielectric multilayer mirror are not formed. Spatial light modulator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP524490A JPH03209432A (en) | 1990-01-12 | 1990-01-12 | Space optical modulating element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP524490A JPH03209432A (en) | 1990-01-12 | 1990-01-12 | Space optical modulating element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03209432A true JPH03209432A (en) | 1991-09-12 |
Family
ID=11605791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP524490A Pending JPH03209432A (en) | 1990-01-12 | 1990-01-12 | Space optical modulating element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03209432A (en) |
-
1990
- 1990-01-12 JP JP524490A patent/JPH03209432A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0075015A1 (en) | Liquid crystal light valve with birefringence compensation | |
JPH1164852A (en) | Projection type liquid crystal display device | |
US4643533A (en) | Differentiating spatial light modulator | |
JPH0511282A (en) | Spatial optical modulator and its driving method | |
JPH03209432A (en) | Space optical modulating element | |
JPH04342233A (en) | Optical write type liquid crystal display device | |
JP2540366B2 (en) | Optical writing liquid crystal light valve | |
JPH03209431A (en) | Space optical modulating element | |
JPH0317618A (en) | Optical write driving method for optical write type liquid crystal light valve | |
US4645304A (en) | Liquid crystal device having interdigitated electrodes with shade member | |
JPH01147527A (en) | Liquid crystal device for laser scan | |
JPH08211423A (en) | Deflector and image shift type image pickup device formed by using the same | |
JPH035736A (en) | Optical flip-flop array | |
JP2913823B2 (en) | Liquid crystal display device and driving method thereof | |
JP2003177370A (en) | Image converting element and its manufacturing method | |
JPH03240026A (en) | Projection display device | |
JPH03279925A (en) | Multicolor projecting display device | |
JPH04301819A (en) | Space optical modulating element | |
JPH0419707A (en) | Spatial optical modulator | |
JPH0792487A (en) | Optical modulation element | |
JPH0318829A (en) | Space optical modulation element | |
JPH06222383A (en) | Liquid crystal spatial optical modulation element | |
JPH04157425A (en) | Manufacture of space light modulator | |
JPH04316017A (en) | Liquid crystal light valve | |
JPH06250205A (en) | Spatial optical modulator |