JPH03208260A - Manufacture of connecting body between solid high polymer electrolyte membrane and electrode - Google Patents

Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Info

Publication number
JPH03208260A
JPH03208260A JP2001064A JP106490A JPH03208260A JP H03208260 A JPH03208260 A JP H03208260A JP 2001064 A JP2001064 A JP 2001064A JP 106490 A JP106490 A JP 106490A JP H03208260 A JPH03208260 A JP H03208260A
Authority
JP
Japan
Prior art keywords
reaction
gas diffusion
membrane
polymer electrolyte
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001064A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Isao Hirata
平田 勇夫
Hiroshi Nakajima
宏 中嶋
Yoshiyuki Takeuchi
善幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001064A priority Critical patent/JPH03208260A/en
Publication of JPH03208260A publication Critical patent/JPH03208260A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase the reaction efficiency and to realize a high output by connecting a solid high polymer electrolyte membrane and a gas diffusion electrode in the condition to permeate in the reaction membrane of the gas diffusion electrode. CONSTITUTION:Hydrophile reaction membranes 3A and 3B are formed at the ratio 0.7:7:3 of platinum of the mean particle diameter 50Angstrom , a hydrophile carbon black of the mean particle diameter 450Angstrom , and polytetrafluoroethylene of the mean particle diameter 0.3mum, and hydrophobic gas diffusion membranes 4A and 4B are formed at the ratio 7:3 of a hydrophobic carbon black of the mean particle diameter 420Angstrom and polytetrafluoroethylene of the mean particle diameter 0.3mum. The reaction membranes 3 and the diffusion membranes 4 are superposed and rolled, and Pt 0.56mg/cm<2> is held to the reaction membrane 3 side in the hydrogen chloroplatinate oxidization and reduction method to make into gas diffusion electrodes 2A and 2B. To the reaction membrane side of the electrodes 2, an alcohol solution of perfluorosulfuric acid polymer is spread. Two sheets of such gas diffusion electrodes 2 are connected at the reaction membrane sides, and a hot press is applied in the condition at 120 to 130 deg.C and 60kg/cm<2> to make a connecting body. In such a way, the area the catalyst reaction is generated is increased, the adhesive strength is increased, and the moving resistance of H<+> can be reduced.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、固体高分子電解寅羨と電極との接合体を製造
する方法に関し、その接合体を燃料電池や水電解等に用
いた場合に電池反応の効率が向上するように工夫したも
のである。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for producing an assembly of a solid polymer electrolyte and an electrode, and when the assembly is used in a fuel cell, water electrolysis, etc. It was devised to improve the efficiency of the battery reaction.

く従来の技術〉 燃料電池は、資源の枯渇wRjlIを有する石化燃料を
使う必要がない上、騒音をほとんど発生せず、エネルギ
の回収効率も他のエネルギ機関と較べて非常に高くでき
る等の優れた特徴を持っているため、例えばビルディン
グ単位や工場単位の比較的小型の発電プラントとして利
用されている。
Conventional technology> Fuel cells do not require the use of fossil fuels, which have resource depletion, and have the advantages of generating almost no noise and being able to recover energy much more efficiently than other energy engines. Because of these characteristics, it is used as a relatively small power generation plant for each building or factory, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、このモータにより車両等
を駆−することが考えられていろ。この場合に重要なこ
とは、反応によって生或する物質をできるだけ再利用す
ることは当然のこととして、車載用であることからも明
らかなように、余り大きな出力は必要でないものの、全
ての付膏設備と共に可能な限り小型であることが望まし
く、このような点から固体高分子電解質型燃料電池が注
目されていろ。
In recent years, it has been considered that fuel cells can be used as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and that the motor can drive a vehicle or the like. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and as it is clear from the fact that it is used in automobiles, a large output is not required, but all It is desirable that the equipment be as small as possible, and from this point of view, solid polymer electrolyte fuel cells are attracting attention.

ここで、一例として固体高分子電解質燃料電池本体の基
本構造を第3図を参照しながら説明する。同図に示すよ
うに、電池本体01は固体高分子電解質膜02の両側に
ガス拡散電極03A,03Bが接合されることにより構
成されている。そしてこの接合体は、固体高分子電解質
膜02の両側にガス拡散電極03A,03Bを合せた後
、ホットプレス等することにより製造される。また、ガ
ス拡散電極03A,03Bはそれぞれ反応膜04A,0
4B及びガス拡散膜05A,05Bが接合されたもので
あり、電解質膜02とは反応膜04A,04Bの表面が
接触している。したがって、電池反応は主に電解質膜0
2と反応111104A,04Bとの間の接触面で起こ
る。
Here, as an example, the basic structure of a solid polymer electrolyte fuel cell main body will be explained with reference to FIG. 3. As shown in the figure, the battery main body 01 is constructed by joining gas diffusion electrodes 03A and 03B to both sides of a solid polymer electrolyte membrane 02. This assembled body is manufactured by placing gas diffusion electrodes 03A and 03B on both sides of solid polymer electrolyte membrane 02, and then hot-pressing or the like. Further, gas diffusion electrodes 03A and 03B are connected to reaction films 04A and 03B, respectively.
4B and gas diffusion membranes 05A, 05B are joined, and the surfaces of the reaction membranes 04A, 04B are in contact with the electrolyte membrane 02. Therefore, the battery reaction is mainly caused by the electrolyte membrane 0
2 and reaction 111104A, 04B.

例えばガス拡散電極03Aを酸素極、ガス拡散電極03
Bを水素極とし、各々のガス拡散#05A,05Bを介
して酸素,水素を反応膜04A,04B側へ供給すると
、各反応膜04A,04Bと電解質膜02との界面で次
のような反応が起こる。
For example, gas diffusion electrode 03A is an oxygen electrode, gas diffusion electrode 03
When B is used as a hydrogen electrode and oxygen and hydrogen are supplied to the reaction membranes 04A and 04B through gas diffusion #05A and 05B, the following reaction occurs at the interface between each reaction membrane 04A and 04B and the electrolyte membrane 02. happens.

反応膜04Aの界面: 0 +4 H”+4 e −2 H O反応膜04Bの
界面: 2H−=4H”+4e ここで、4ぎは電解質膜02を通って水素極から酸素極
へ流れるが、4eは負荷06を通って水素極から酸素極
へ流れることになり、電気エネルギーが得られる。
Interface of reaction membrane 04A: 0 + 4 H"+4 e -2 HO Interface of reaction membrane 04B: 2H-=4H"+4e Here, 4g flows from the hydrogen electrode to the oxygen electrode through the electrolyte membrane 02, but 4e flows from the hydrogen electrode to the oxygen electrode through the load 06, and electrical energy is obtained.

く発明が解決しようとする課題〉 上述した構成の燃料電池本体01では、電池反応は主に
、電解質膜02と各反応膜04A,04Bとの接触面で
起こるので、電池性能を向上させるには電極自体を大き
くしなければならないという問題がある。
Problems to be Solved by the Invention In the fuel cell main body 01 having the above-described configuration, the cell reaction mainly occurs at the contact surface between the electrolyte membrane 02 and each reaction membrane 04A, 04B, so in order to improve the cell performance, There is a problem in that the electrode itself must be made larger.

すなわち、例えば燃料電池の小型化を追求するためには
、上述した電池本体01の単位体積当りの電池反応の向
上が必須となる。これは、水電解等を行う場合にも同様
である。
That is, for example, in order to pursue miniaturization of fuel cells, it is essential to improve the cell reaction per unit volume of the cell body 01 described above. This also applies when water electrolysis or the like is performed.

本発明はこのような事情に鑑み、燃料電池や水電解等に
用いた場合に電池反応効率が大幅に向上する、固体高分
子電解質膜と電極との接合体の製造方法を提供すること
を目的とする。
In view of these circumstances, an object of the present invention is to provide a method for producing an assembly of a solid polymer electrolyte membrane and an electrode, which greatly improves cell reaction efficiency when used in fuel cells, water electrolysis, etc. shall be.

〈課題を解決するための手段〉 前記目的を達成する本発明に係る固体高分子電解質膜と
電極との接合体の製造方法は、固体高分子電解質膜の両
側に、反応膜とガス拡散膜とからなる2枚のガス拡散電
極の反応膜側を接合してなる接合体を製造するに際し、
上記ガス拡散電極の少なくとも一方に上記固体高分子電
解質の溶液を塗布した後ホットプレスすることを特徴と
する。
<Means for Solving the Problems> A method for producing an assembly of a solid polymer electrolyte membrane and an electrode according to the present invention that achieves the above-mentioned object includes a reaction membrane and a gas diffusion membrane on both sides of a solid polymer electrolyte membrane. When manufacturing a bonded body made by bonding the reaction membrane sides of two gas diffusion electrodes,
The method is characterized in that the solution of the solid polymer electrolyte is applied to at least one of the gas diffusion electrodes and then hot pressed.

本発明で固体高分子電解質とは水が共存しても液体にな
らない電解質をいい、例えばバーフルオロスルフオン酸
ホリマー(ナフイオン:*品名)を挙げることができろ
。また、固体高分子電解質を溶液とするには、固体高分
子電解質を溶解すると共に、後のホットプレスの際に蒸
発除去しうろ溶媒を用いる必要があり、かかる溶媒とし
ては例えばメタノール,エタノール,イソプロビルアル
コールなどのアルコールを挙げることができる。
In the present invention, the solid polymer electrolyte refers to an electrolyte that does not become liquid even in the presence of water, such as perfluorosulfonic acid polymer (nafion: *product name). In addition, in order to make a solid polymer electrolyte into a solution, it is necessary to dissolve the solid polymer electrolyte and use a solvent that can be removed by evaporation during hot pressing. Such solvents include, for example, methanol, ethanol, isopropylene Mention may be made of alcohols such as beer alcohol.

ここで、溶液の濃度は、塗布の作業性に問題がなく、ホ
ットプレス後に全体に亘って固体高分子電解質膜が形成
されるような範囲であれば特に限定されない。なお、反
応効率の向上の点からすると、後述するように固体高分
子電解質膜は薄い方が望ましいので、溶液の濃度はでき
るだけ薄くするのがよい。勿論、本来の機能、すなわち
ガスバリア性等を有していることが前提となる。
Here, the concentration of the solution is not particularly limited as long as there is no problem in coating workability and a solid polymer electrolyte membrane is formed over the entire area after hot pressing. In addition, from the point of view of improving reaction efficiency, it is desirable that the solid polymer electrolyte membrane be thinner, as will be described later, and therefore, it is preferable to make the concentration of the solution as thin as possible. Of course, the premise is that it has the original function, ie, gas barrier properties.

本発明では、ガス拡散電極に固体高分子電解質の溶液を
塗布するが、この塗布方法は特に限定されず、要は、ガ
ス拡散電極の表面全体に亘ってほぼ均一に塗布できる方
法であればよい。なお、後述するように、溶液をガス拡
散電極の反応膜内に浸透させて反応効率を上昇させる点
を考慮すると、ガス拡散電極の反対側から吸引しつつ塗
布するのが望ましく、また、塗布は2枚のガス拡散電極
にするのが好ましい。
In the present invention, a solid polymer electrolyte solution is applied to the gas diffusion electrode, but the application method is not particularly limited, and any method that can be applied almost uniformly over the entire surface of the gas diffusion electrode may be used. . As will be described later, in order to increase the reaction efficiency by permeating the solution into the reaction membrane of the gas diffusion electrode, it is preferable to apply the solution while suctioning it from the opposite side of the gas diffusion electrode. Preferably, there are two gas diffusion electrodes.

また、塗布した後のホットプレスは、固体高分子電解質
溶液の溶媒が蒸発除去されて、固体高分子電解質膜を介
して2枚のガス拡散電極が接合される条件であれば特に
限定されない。
Further, hot pressing after coating is not particularly limited as long as the solvent of the solid polymer electrolyte solution is evaporated and the two gas diffusion electrodes are bonded via the solid polymer electrolyte membrane.

なお、ガス拡散電極は反応膜とガス拡散膜とを接合して
なるものなど、従来から知られていろ(例えば、特開昭
62−154571号公報参照)ものでよい。ここで、
反応膜は一般に、例えば白金金属及び/又はその酸化物
の他、Pt, Pd及び/又はIr等にRu,Sn等を
合金化したもの等からなる触媒若しくは触媒を担持させ
た親水性カーボン徴粒子をフッ素樹脂等に分散させたも
のである。
The gas diffusion electrode may be a conventionally known electrode, such as one formed by bonding a reaction membrane and a gas diffusion membrane (for example, see Japanese Patent Laid-Open No. 154571/1983). here,
The reaction membrane is generally made of a catalyst made of platinum metal and/or its oxide, or an alloy of Pt, Pd, and/or Ir with Ru, Sn, etc., or hydrophilic carbon particles supporting the catalyst. is dispersed in fluororesin or the like.

本発明方法によると、ガス拡散電緬の反応膜に、固体高
分子電解質溶液が浸透した状態でホットプレスされるの
で、反応膜に分散された触媒と固体高分子電解質膜との
接触面積が大きくなる。また、溶液を塗布した後ホット
プレスにより固体高分子電解質膜とするので、極めて薄
い膜を介して強固に接合することができ、これにより『
の移動抵抗が低下する。このような理由により、本発明
方法による接合体を燃料電池や水電解等に使用すると、
電池反応の効率が著しく向上する。
According to the method of the present invention, the reaction membrane of the gas diffusion electrolyte is hot-pressed in a state in which the solid polymer electrolyte solution has penetrated, so the contact area between the catalyst dispersed in the reaction membrane and the solid polymer electrolyte membrane is large. Become. In addition, since the solution is applied and then hot pressed to form a solid polymer electrolyte membrane, it is possible to firmly bond through an extremely thin membrane.
The movement resistance of is reduced. For these reasons, when the assembled body produced by the method of the present invention is used in fuel cells, water electrolysis, etc.,
The efficiency of the battery reaction is significantly improved.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Practical example Hereinafter, the present invention will be explained based on examples.

平均粒径50人の白金と平均粒径450人の親水性カー
ボンブラックと平均粒径0.3μのポリテトラフルオロ
エチレンとが0.7:7: 3の割合で成る親水性反応
膜と、平均粒径420人の疎水性カーボンブラックと平
均粒径0,3μのボリテトラブルオロエチレンとが7:
 3の割合から成る疎水性ガス拡散膜とからなるガス拡
散電極(厚さ0.6m)を製造した。ここで、親水性反
応膜及び疎水性ガス拡散膜は、白金以外の各原料粉末に
ソルベントナフサ、アルコール、水、炭化水素などの溶
接を混合した後、圧縮成形することにより得ろことがで
きる。そして、これらを重ねて圧延し、親水性反応膜側
に、塩化白金酸化還元法によりPtO.56IIIg/
/clIを担持させることによりガス拡散電緬とした。
A hydrophilic reaction membrane consisting of platinum with an average particle size of 50 μm, hydrophilic carbon black with an average particle size of 450 μm, and polytetrafluoroethylene with an average particle size of 0.3μ in a ratio of 0.7:7:3; Hydrophobic carbon black with a particle size of 420 people and bolite trouble oleoethylene with an average particle size of 0.3μ are 7:
A gas diffusion electrode (thickness: 0.6 m) was manufactured, which consisted of a hydrophobic gas diffusion membrane having a ratio of 1.3 to 3. Here, the hydrophilic reaction membrane and the hydrophobic gas diffusion membrane can be obtained by mixing raw material powders other than platinum with solvent naphtha, alcohol, water, hydrocarbon, etc., and then compression molding the mixture. Then, these are piled up and rolled, and PtO. 56IIIg/
By supporting /clI, it was made into a gas diffusion electron.

かかるガス拡散電極の反応膜側に、バーフルオロスルフ
ォン酸ホリマー(ナフィオン117:デュポン社製)の
アルコール溶液を塗布した。この塗布は、ガス拡散層を
真空引きプレート上に載置し、70℃の温度下で!!側
から吸引しながら行い、0.6g/cdの塗布量(含浸
深さは40〜50μm)とした。
An alcohol solution of a barfluorosulfonic acid polymer (Nafion 117, manufactured by DuPont) was applied to the reaction membrane side of the gas diffusion electrode. This coating is done by placing the gas diffusion layer on a vacuum plate and at a temperature of 70℃! ! This was done while suctioning from the side, and the coating amount was 0.6 g/cd (impregnation depth was 40 to 50 μm).

このような塗布を行ったガス拡散電極を2枚用意し、反
応膜側を合せて、120〜130℃で60秒間、60k
g/cIIの条件でホットプレスし、接合体とした。
Prepare two gas diffusion electrodes coated in this way, put the reaction membrane sides together, and heat them for 60k at 120-130℃ for 60 seconds.
A conjugate was obtained by hot pressing under the conditions of g/cII.

このようにして製造した接合体を2枚のガスセパレータ
で挾持し、発電試験を行った。
The thus manufactured assembled body was sandwiched between two gas separators and a power generation test was conducted.

第1図はその状態を概念的に示したものである。FIG. 1 conceptually shows this state.

第1図中、1は固体高分子電解質膜、2A,2Bはガス
拡散電極であり、ガス拡散電極2A,2Bはそれぞれ反
応膜3A,3B及びガス拡散膜4A,4Bからなる。な
お、固体高分子電解質溶液が反応膜3A,3B中に浸透
し、固体高分子電解質膜1となった領域を斜線で示して
ある。また、5,6はガスセバレータである。ガスセパ
レータ5は水素極となるガス拡散電極2人に水素を供給
するための水素供給溝5aとガス拡散電極2人を冷却す
る冷却水を流すための冷却水供給溝5bとを交互に有し
ており、ガスセパレータ6は酸素極となるガス拡散電極
2Bに酸素を供給するための酸素供給溝6aを有してい
る。
In FIG. 1, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, and the gas diffusion electrodes 2A and 2B are respectively composed of reaction membranes 3A and 3B and gas diffusion membranes 4A and 4B. Note that the area where the solid polymer electrolyte solution permeated into the reaction membranes 3A and 3B and became the solid polymer electrolyte membrane 1 is shown with diagonal lines. Further, 5 and 6 are gas separators. The gas separator 5 alternately has hydrogen supply grooves 5a for supplying hydrogen to two gas diffusion electrodes serving as hydrogen electrodes, and cooling water supply grooves 5b for flowing cooling water to cool the two gas diffusion electrodes. The gas separator 6 has an oxygen supply groove 6a for supplying oxygen to the gas diffusion electrode 2B serving as an oxygen electrode.

このような構成において、ガスセパレータ5へ水素及び
冷却水を供給すると共にガスセパレータ6へ酸素を供給
し、発電テストを行った。なお、酸素はガス圧1kg/
cjG,流量2. 6 1 / win,水素はガス圧
0.4kg/c+/G,流量2.01/winとし、冷
却水温度は70℃とした。また、ガス拡散電極2A,2
Bの有効面積は12X12cmであった。
In such a configuration, a power generation test was conducted by supplying hydrogen and cooling water to the gas separator 5 and supplying oxygen to the gas separator 6. In addition, oxygen has a gas pressure of 1 kg/
cjG, flow rate 2. 6 1/win, hydrogen gas pressure was 0.4 kg/c+/G, flow rate was 2.01/win, and cooling water temperature was 70°C. In addition, gas diffusion electrodes 2A, 2
The effective area of B was 12×12 cm.

比較のため、厚さ017mのナフィオン117 (デュ
ポン社製)からなる固体高分子電解質膜の両側に、上述
したものと同様のガス拡散電極をポットプレスで接合し
た接合体を用いる以外は上記実施例と同様にして発電テ
ストを行った。
For comparison, the above example was used, except that a bonded body in which gas diffusion electrodes similar to those described above were bonded by pot press to both sides of a solid polymer electrolyte membrane made of Nafion 117 (manufactured by DuPont) with a thickness of 0.17 m was used. A power generation test was conducted in the same manner.

これらの結果を第2図に示す。この結果からも明らかな
ように、本発明方法による接合体を用いた場合には、電
池反応の効率が向上し、出力が上昇するという効果を奏
した。
These results are shown in FIG. As is clear from these results, when the conjugate according to the method of the present invention was used, the efficiency of the cell reaction was improved and the output was increased.

く発明の効果〉 以上説明したように、本発明方法によると、ガス拡散電
極の反応膜に浸透した状態で固体高分子電解質膜とガス
拡散電極が接合されるので、触媒反応が生じる面積が増
大すると共に接着力が増大し、また、固体高分子電解質
膜の薄膜化により、H1の移動抵抗を低減することがで
きろ。したがって本発明方法による接合体を燃料電池や
水電解等に用いると反応効率が増大し、高出力化すると
いう効果を奏する。
Effects of the Invention> As explained above, according to the method of the present invention, the solid polymer electrolyte membrane and the gas diffusion electrode are joined in a state where the reaction membrane of the gas diffusion electrode is penetrated, so the area where the catalytic reaction occurs is increased. At the same time, the adhesive force increases, and by making the solid polymer electrolyte membrane thinner, the movement resistance of H1 can be reduced. Therefore, when the conjugate produced by the method of the present invention is used in fuel cells, water electrolysis, etc., the reaction efficiency increases and output is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概念図、第2図は発電
テストの結果を示すグラフ、第3図は従来技術に係る固
体高分子電解質膜燃料電池を示す概念図である。 図面中、 1は固体高分子電解質膜、 2A,2Bはガス拡散電極、 3A,3Bは反応膜、 4A,4Bはガス拡散膜、 5,6はガスセパレータ、 5mは水素供給溝、 5bは冷却水供給溝、 6aは酸素供給溝である。 1 2A, 2B 3A, 3B 4A, 4B 5,6 5a 5b 6a 固体高分子電解質膜 ガス拡敗電極 反応膜 ガス拡敗膜 ガスセバレータ 水素供紹虜 冷却水供給IK 酸素供紹溝 第 3 図 第l頁の続き @発明者 中 嶋 宏 @発 明 者 竹 内 芙 幸 ?県広島市西区観音新町4丁目 ■社広島研究所内 6県広島市西区観音新町4丁目 ■社広島研究所内 6番22号 6番22号 三菱重工業株 三菱重工業株
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, FIG. 2 is a graph showing the results of a power generation test, and FIG. 3 is a conceptual diagram showing a solid polymer electrolyte membrane fuel cell according to the prior art. In the drawing, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, 3A and 3B are reaction membranes, 4A and 4B are gas diffusion membranes, 5 and 6 are gas separators, 5m is a hydrogen supply groove, and 5b is a cooling The water supply groove 6a is an oxygen supply groove. 1 2A, 2B 3A, 3B 4A, 4B 5, 6 5a 5b 6a Solid polymer electrolyte membrane Gas diffusion electrode Reaction membrane Gas diffusion membrane Gas separator Hydrogen supply prisoner cooling water supply IK Oxygen supply groove 3 Figure 1 page Continuation @ Inventor Hiroshi Nakajima @ Inventor Fuyuki Takeuchi? 4-chome, Kannon-Shinmachi, Nishi-ku, Hiroshima City, Prefecture 6-4-chome, Kannon-Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture ■6-22, 6-22, Hiroshima Research Institute Mitsubishi Heavy Industries, Ltd. Mitsubishi Heavy Industries, Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)固体高分子電解質膜の両側に、反応膜とガス拡散
膜とからなる2枚のガス拡散電極の反応膜側を接合して
なる接合体を製造するに際し、上記ガス拡散電極の少な
くとも一方に上記固体高分子電解質の溶液を塗布した後
ホットプレスすることを特徴とする固体高分子電解質膜
と電極との接合体の製造方法。
(1) When producing a bonded body in which the reaction membrane sides of two gas diffusion electrodes each consisting of a reaction membrane and a gas diffusion membrane are joined to both sides of a solid polymer electrolyte membrane, at least one of the gas diffusion electrodes is A method for producing an assembly of a solid polymer electrolyte membrane and an electrode, the method comprising applying a solution of the solid polymer electrolyte to the surface and then hot pressing.
(2)固体高分子電解質がパーフルオロスルフォン酸ポ
リマーであり、そのアルコール溶液を用いる請求項1記
載の固体高分子電解質膜と電極との接合体の製造方法。
(2) The method for producing an assembly of a solid polymer electrolyte membrane and an electrode according to claim 1, wherein the solid polymer electrolyte is a perfluorosulfonic acid polymer and an alcohol solution thereof is used.
JP2001064A 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode Pending JPH03208260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001064A JPH03208260A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001064A JPH03208260A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Publications (1)

Publication Number Publication Date
JPH03208260A true JPH03208260A (en) 1991-09-11

Family

ID=11491110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001064A Pending JPH03208260A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Country Status (1)

Country Link
JP (1) JPH03208260A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
US7244280B2 (en) 2003-01-28 2007-07-17 Sony Corporation Method for producing electrochemical device
WO2008096598A1 (en) 2007-02-07 2008-08-14 Kuraray Co., Ltd. Catalyst layer, method for producing the same, membrane-electrode assembly using the catalyst layer, and solid polymer fuel cell
US7452441B2 (en) 2004-02-09 2008-11-18 Aisin Seiki Kabushiki Kaisha Method for manufacturing membrane electrode assembly
US7740968B2 (en) 2004-12-20 2010-06-22 Kuraray Co., Ltd. Ion-conductive binder membrane-electrode assembly and fuel cell
US7858254B2 (en) 2005-02-10 2010-12-28 Sony Corporation Electrochemical energy generating apparatus and method of driving the same
WO2014013879A1 (en) 2012-07-20 2014-01-23 株式会社トクヤマ Catalyst layer for anion-exchange membrane fuel cells, membrane-electrode assembly, anion-exchange membrane fuel cell using membrane-electrode assembly, and method for operating anion-exchange membrane fuel cell

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000054351A1 (en) * 1999-03-08 2000-09-14 Center For Advanced Science And Technology Incubation, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
US7344791B1 (en) 1999-03-08 2008-03-18 Toudai Tlo, Ltd. Electrolytic membrane for fuel cell and its manufacturing method, and fuel cell and its manufacturing method
JP2001236971A (en) * 2000-02-24 2001-08-31 Fuji Electric Co Ltd Method of producing solid high polymer fuel cell
FR2826781A1 (en) * 2001-06-29 2003-01-03 Commissariat Energie Atomique BILOUS DIFFUSER FUEL CELL ASSEMBLY AND CREATION METHOD
WO2003003490A3 (en) * 2001-06-29 2004-01-22 Commissariat Energie Atomique Fuel cell assembly with a two-layer diffuser and production method of same
US7244280B2 (en) 2003-01-28 2007-07-17 Sony Corporation Method for producing electrochemical device
US7452441B2 (en) 2004-02-09 2008-11-18 Aisin Seiki Kabushiki Kaisha Method for manufacturing membrane electrode assembly
US7740968B2 (en) 2004-12-20 2010-06-22 Kuraray Co., Ltd. Ion-conductive binder membrane-electrode assembly and fuel cell
US7858254B2 (en) 2005-02-10 2010-12-28 Sony Corporation Electrochemical energy generating apparatus and method of driving the same
WO2008096598A1 (en) 2007-02-07 2008-08-14 Kuraray Co., Ltd. Catalyst layer, method for producing the same, membrane-electrode assembly using the catalyst layer, and solid polymer fuel cell
US8420276B2 (en) 2007-02-07 2013-04-16 Kuraray Co., Ltd. Catalyst layer and preparation process thereof, and membrane-electrode assembly and polymer electrolyte fuel cell using the catalyst layer
WO2014013879A1 (en) 2012-07-20 2014-01-23 株式会社トクヤマ Catalyst layer for anion-exchange membrane fuel cells, membrane-electrode assembly, anion-exchange membrane fuel cell using membrane-electrode assembly, and method for operating anion-exchange membrane fuel cell

Similar Documents

Publication Publication Date Title
US6723464B2 (en) Membrane-electrode-assembly with solid polymer electrolyte
US3457113A (en) Laminar electrode including hydrophobic and hydrophilic layfrs; method of making; fuel cell therewith; and method of using fuel cell
JP3712768B2 (en) Production method of polymer electrolyte fuel cell
EP0819320A1 (en) Fuel cell with solid polymer electrolytes
JPH07296818A (en) Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JPH03208260A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JPH03167752A (en) Gas diffusion electrode and solid macromolecular electrolyte furl cell main body using it
JP3446254B2 (en) Fuel cell and method of manufacturing the same
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JPH04169069A (en) Joining body of solid polyelectrolyte film and electrode
JP2001085019A (en) High polymer solid fuel cell and manufacture of electrode therefor
JPH04206162A (en) Cell unit for solid high polymer electrolyte film fuel cell
US8430985B2 (en) Microporous layer assembly and method of making the same
JPH03295172A (en) Junction body of solid polymer electrolyte film and electrode
JPH03208262A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP3398013B2 (en) Method for manufacturing cell for polymer electrolyte fuel cell
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
JP3420508B2 (en) Polymer electrolyte fuel cell
JPH0521079A (en) Hydrogen pressure raising device and fuel cell using this
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPH03208261A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JPH03295169A (en) Junction body of solid polymer electrolyte film and electrode
JP2781630B2 (en) Method for activating a joined body of a solid polymer electrolyte membrane and an electrode
JPH06203849A (en) Manufacture of solid high polymer fuel cell