JPH03208262A - Manufacture of connecting body between solid high polymer electrolyte membrane and electrode - Google Patents

Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Info

Publication number
JPH03208262A
JPH03208262A JP2001066A JP106690A JPH03208262A JP H03208262 A JPH03208262 A JP H03208262A JP 2001066 A JP2001066 A JP 2001066A JP 106690 A JP106690 A JP 106690A JP H03208262 A JPH03208262 A JP H03208262A
Authority
JP
Japan
Prior art keywords
membrane
gas diffusion
polymer electrolyte
electrolyte membrane
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001066A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Isao Hirata
平田 勇夫
Hiroshi Nakajima
宏 中嶋
Yoshiyuki Takeuchi
善幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001066A priority Critical patent/JPH03208262A/en
Publication of JPH03208262A publication Critical patent/JPH03208262A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To increase the reaction efficiency and to realize a high electric power by connecting a solid high polymer electrolyte membrane and a gas diffusion electrode in the condition to soften or solve the soild high polymer electrolyte membrane in alcohol. CONSTITUTION:Hydrophile reaction membranes 3A and 3B are formed at the ratio 0.7:7:3 of platinum of the mean particle diameter 50Angstrom , a hydrophile carbon black of the mean particle diameter 450Angstrom , and polytetrafluoroethylene of the mean particle diameter 0.3mum, and hydrophobic gas diffusion membranes 4A and 4B are formed at the ratio 7:3 of a hydrophobic carbon black of the mean particle diameter 420Angstrom and polytetrafluoroethylene of the mean particle diameter 0.3mum. They are superposed and rolled, and Pt 0.56mg/cm<2> is held at the hydrophile reaction membrane side in the hydrogen chloroplatinate oxidization and reduction method to make into gas diffusion electrodes 2A and 2B. A perfluorosulfuric acid polymer membrane of the thickness 0.17mm is held between two sheets of such diffusion electrodes 2, and a hot press is applied in a mixture solution of the ratio 1:1 of isopropyle alcohol and a pure water in the condition at 120 to 130 deg.C and 60kg/cm<2> to form a connecting body. In such a way, the connection is made easily, and the connecting body of a thin membrane thickness and a low movement resistance of H<+> can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、固体高分子電解質膜と電極との接合体を製造
する方法に関し、その接合体を燃料電池や水電解等に用
いた場合に電池反応の効率が向上するように工夫したも
のである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for manufacturing an assembly of a solid polymer electrolyte membrane and an electrode, and when the assembly is used in a fuel cell, water electrolysis, etc. This was devised to improve the efficiency of battery reactions.

く従来の技術〉 燃料m池は、資源の枯渇問題を有する石化燃料を使う必
要がない上、騒音をほとんど発生せず、エネルギの回収
効率も他のエネルギ機関と較べて非常に高くできる等の
優れた特徴を持っているため、例えばビルディング単位
や工場単位の比較的小型の発電プラントとして利用され
ている。
Conventional technology> Fuel ponds do not require the use of fossil fuels, which have resource depletion issues, generate almost no noise, and have very high energy recovery efficiency compared to other energy engines. Because of their excellent characteristics, they are used as relatively small power generation plants for buildings and factories, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、とのモータにより車両等
をwAIIIすることが考えられている。この場合に重
要なことは、反応によって生成する物質をできるだけ再
利用することは当然のこととして、車載用であることか
らも明らかなように、余り大きな出力は必要でないもの
の、全ての付帯設備と共に可能な限り小型であることが
望ましく、このような点から固体高分子電解質膜燃料電
池が注目されている。
In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to power a vehicle or the like using the motor. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and as it is clear from the fact that it is for automotive use, although a large output is not required, It is desirable to be as small as possible, and from this point of view, solid polymer electrolyte membrane fuel cells are attracting attention.

ここで、一例として固体高分子電解質膜燃料電池本体の
基本構造を第4図を参照しながら説明する。同図に示す
ように、電池本体01は固体高分子電解質1j02の両
側にガス拡散電極o3A,03Bが接合されることによ
り構成されている。そしてこの接合体は、固体高分子電
解質膜02の両側にガス拡散電極03A,03Bを合せ
た後、ホットプレス等することにより製造される。また
、ガス拡散S極03A,03Bはそれぞれ反応MU 4
 A,04B及びガス拡散$0 5 A., 0 5 
Bカ接合されたものであり、電解質膜02とは反応膜0
4A,04Bの表面が接触している。したがって、電池
反応は主に電解質膜02と反応膜04A,04Bとの間
の接触面で起こる。
Here, as an example, the basic structure of a solid polymer electrolyte membrane fuel cell main body will be explained with reference to FIG. 4. As shown in the figure, the battery main body 01 is constructed by joining gas diffusion electrodes o3A, 03B to both sides of a solid polymer electrolyte 1j02. This assembled body is manufactured by placing gas diffusion electrodes 03A and 03B on both sides of solid polymer electrolyte membrane 02, and then hot-pressing or the like. In addition, gas diffusion S poles 03A and 03B each have a reaction MU 4
A, 04B and gas diffusion $0 5 A. , 0 5
The electrolyte membrane 02 is the reaction membrane 0.
The surfaces of 4A and 04B are in contact. Therefore, the battery reaction mainly occurs at the contact surface between the electrolyte membrane 02 and the reaction membranes 04A and 04B.

例えばガス拡散電極03Aを酸素極、ガス拡散電aii
03Bを水素極とし、各々のガス拡散膜05A,05B
を介して酸素,水素を反応膜04A,04B側へ供給す
ると、各反応膜04A,04Bと電解質膜02との界面
で次のような反応が起こる。
For example, gas diffusion electrode 03A is an oxygen electrode, gas diffusion electrode aii
03B is the hydrogen electrode, and each gas diffusion film 05A, 05B
When oxygen and hydrogen are supplied to the reaction membranes 04A and 04B through the reaction membranes 04A and 04B, the following reaction occurs at the interface between each reaction membrane 04A and 04B and the electrolyte membrane 02.

反応膜04Aの界面: 0 +4 H”+4 e −2 H 0反応膜04Bの
界面: 2 H →4 H +4 e ここで、4Kは電解質膜02を通って水素極から酸″素
極へ流れるが、4eiよ負荷06を通って水素極から酸
素極へ流れることになり、電気エネルギーが得られる。
Interface of reaction membrane 04A: 0 +4 H''+4 e -2 H 0 Interface of reaction membrane 04B: 2 H → 4 H +4 e Here, 4K flows from the hydrogen electrode to the oxygen electrode through the electrolyte membrane 02. , 4ei will flow from the hydrogen electrode to the oxygen electrode through the load 06, and electrical energy will be obtained.

〈発明が解決しようとする課題〉 上述した構成の燃料電池本体01では、電池反応は主に
、電解質WA02と各反応膜04A,04Bとの接触面
で起こるので、電池性能を向上させるには電極自体を大
きくしなければならないというR題がある。
<Problems to be Solved by the Invention> In the fuel cell body 01 configured as described above, the cell reaction mainly occurs at the contact surface between the electrolyte WA02 and each reaction membrane 04A, 04B, so in order to improve the cell performance, it is necessary to There is an R title that requires making itself larger.

すなわち、例えば燃料電池の小型化を追求するためには
、上述した電池本体01の単位体積当りの電池反応の向
上が必須となる。これは、水電解等を行う場合にも同様
である。
That is, for example, in order to pursue miniaturization of fuel cells, it is essential to improve the cell reaction per unit volume of the cell body 01 described above. This also applies when water electrolysis or the like is performed.

本発明はこのような事情に鑑み、燃料電池や水電解等に
用いた場合に電池反応効率が大幅に向上する、固体高分
子電解質膜と電極との接合体の製造方法を提供すること
を目的とずる。
In view of these circumstances, an object of the present invention is to provide a method for producing an assembly of a solid polymer electrolyte membrane and an electrode, which greatly improves cell reaction efficiency when used in fuel cells, water electrolysis, etc. Tozuru.

〈課題を解決するための手段〉 前記目的を達成する本発明に係る固体高分子電解質膜と
電極との接合体の製造方法は、反応膜とガス拡散膜とか
らなる2枚のガス拡散電極の反応膜側で固体高分子電解
質膜を挾んだ挾持体を、溶媒中で加熱・加圧することに
より接合体とすることを特徴とする。
<Means for Solving the Problems> A method for producing an assembly of a solid polymer electrolyte membrane and an electrode according to the present invention that achieves the above-mentioned object is a method for manufacturing a solid polymer electrolyte membrane and electrode assembly according to the present invention, which consists of two gas diffusion electrodes each consisting of a reaction membrane and a gas diffusion membrane. The method is characterized in that the sandwiching body sandwiching the solid polymer electrolyte membrane on the reaction membrane side is heated and pressurized in a solvent to form a bonded body.

本発明で固体高分子電解質膜とCよ水が共存しても液体
にならない電解質膜をいい,例えばパーフルオロスルフ
オン酸ポリマー膜(ナフィオン:商品名)を挙げること
ができる。
In the present invention, it refers to an electrolyte membrane that does not become liquid even when a solid polymer electrolyte membrane and carbon and water coexist, and an example thereof includes a perfluorosulfonic acid polymer membrane (Nafion: trade name).

一方、ガス拡散電極は反応膜とガス拡散膜とを接合して
なる也のなど、従来から知られているもの(例えば、特
開昭62−154571号公報#照)でよい。ここで、
反応膜は一般に、例えば白金金属及び/又はその酸化物
の他、Pt, Pd及び/又ぱIr等に}to,Sn等
を合金化したもの等からなる触媒若しくは触媒を担持さ
せた親水性カーボン黴粒子をフッ素樹脂等に分散させた
ものである。
On the other hand, the gas diffusion electrode may be a conventionally known electrode, such as one formed by bonding a reaction membrane and a gas diffusion membrane (for example, see Japanese Patent Laid-Open No. 154571/1983). here,
The reaction membrane is generally made of a catalyst made of platinum metal and/or its oxide, an alloy of Pt, Pd, and/or Ir, etc., or a hydrophilic carbon supporting a catalyst. It is made by dispersing mold particles in fluororesin, etc.

本発明方法では、2枚のガス拡散電極で固体高分子電解
質膜を挾持した挾持体を溶媒中で加熱・加圧(ホットプ
レス)することにより接合体とする。ここで、溶媒とは
、メタノール,エタノール,イソプロパノールなどのア
ルコール類、アセトンなどのケトン類あるいはエーテル
類などの有機溶媒から選んだ一種以上からなる純粋な有
機溶媒から有機溶媒と水との混合溶媒までをいい、例え
ば、アルコールに水を50%以上添加してなるアルコー
ル水溶液が好適である。また、溶媒中でホッl・プレス
する方法としては、空気中で挾持体とした後これを溶媒
中に浸漬するようにしてもよいし、溶媒中で挾持体とし
てもよく、要は、ホットプレスのときに少なくとも挾持
体の周囲に溶媒が存在するようにすればよい。
In the method of the present invention, a sandwich body in which a solid polymer electrolyte membrane is sandwiched between two gas diffusion electrodes is heated and pressurized (hot pressed) in a solvent to form a bonded body. Here, the term "solvent" refers to anything from pure organic solvents consisting of one or more organic solvents selected from alcohols such as methanol, ethanol, and isopropanol, ketones such as acetone, and organic solvents such as ethers to mixed solvents of organic solvents and water. For example, an alcohol aqueous solution prepared by adding 50% or more water to alcohol is suitable. In addition, as for the method of hot pressing in a solvent, it is possible to form a sandwiched body in the air and then immerse it in the solvent, or it is also possible to form a sandwiched body in a solvent. At this time, the solvent may be present at least around the clamping body.

なお、接合後は溶媒を除去した後接合体とする必要があ
る。
Note that after bonding, it is necessary to remove the solvent and then form a bonded body.

本発明方法によると、固体高分子電解質膜が溶媒中で軟
化又はその一部が溶解してl!潤した状態となるので、
ガス拡散電極との接合が容易となる。しかも、このとき
固体高分子電解質膜がガス拡散電極の反応膜内に入り込
み易いので触媒反応が生じる面積が大きくなり、また、
結果的に固体高分子電解質膜がきわめて薄くなるのでイ
オン導電の抵抗が低下するという効果を奏する。
According to the method of the present invention, the solid polymer electrolyte membrane softens or partially dissolves in the solvent, resulting in l! It will be in a moist state,
Bonding with the gas diffusion electrode becomes easy. Moreover, at this time, the solid polymer electrolyte membrane easily enters the reaction membrane of the gas diffusion electrode, increasing the area where the catalytic reaction occurs.
As a result, the solid polymer electrolyte membrane becomes extremely thin, resulting in the effect of lowering the resistance of ionic conduction.

く実 施 例〉 以下、本発明を実施例に基づいて説明する。Example of implementation Hereinafter, the present invention will be explained based on examples.

平均粒径50人の白金と平均粒径450人の親水性カー
ボンブラックと平均粒径0.3μのポリテトラフルオロ
エチレンとが0773の割合で成る親水性反応膜と、平
均粒径420人の疎水性カーボンブラックと平均粒径0
.3μのポリテトラフルオロエチレンとが7 3の割合
から成る疎水性ガス拡散膜と平均粒径0.31のガス拡
散電極(W−さ0. 6 wm )を製造した。
A hydrophilic reaction membrane consisting of platinum with an average particle size of 50, hydrophilic carbon black with an average particle size of 450, and polytetrafluoroethylene with an average particle size of 0.3μ in a ratio of 0,773, and a hydrophobic membrane with an average particle size of 420. carbon black and average particle size 0
.. A hydrophobic gas diffusion membrane consisting of a 7:3 ratio of 3μ polytetrafluoroethylene and a gas diffusion electrode (W-size: 0.6 wm) with an average particle size of 0.31 were manufactured.

ここで、親水性反応幕及び疎水性ガス拡散膜Lよ、白金
以外の各原料粉末にソルベントナフサ、アルコール、水
、炭化水素などの溶媒を混合した後、圧縮成形すること
により得ることができる。そして、これらを重ねて圧延
し、親水性反応膜側に、塩化白金酸化還元法にょりpt
o.ss.g/cIlを担持させろことによりガス拡散
電極とした。
Here, the hydrophilic reaction membrane and the hydrophobic gas diffusion membrane L can be obtained by mixing each raw material powder other than platinum with a solvent such as solvent naphtha, alcohol, water, or hydrocarbon, and then compression molding the mixture. Then, these are stacked and rolled, and a platinum chloride redox method is applied to the hydrophilic reaction membrane side.
o. ss. By supporting g/cIl, it was used as a gas diffusion electrode.

このような2枚のガス拡散電極の間に、0.17+w[
のバーフルオロスルフォン酸ホリマー膜(ナフィオン:
デュポン社製)をはさみ、イソブロビルアルコールと純
水との1:1の混合液中にて120〜130℃で60秒
間、60kg/cI17の条件でホットプレスし、接合
体とした。
Between these two gas diffusion electrodes, 0.17+w[
barfluorosulfonic acid polymer membrane (Nafion:
(manufactured by DuPont) and hot pressed in a 1:1 mixture of isobrobyl alcohol and pure water at 120 to 130° C. for 60 seconds at 60 kg/cI17 to obtain a bonded body.

本実施例に用いたホットプレス装置を第1図に示す。同
図に示すように、この装置ζよ上型コ]及び下型]2を
有し、この上型11及び下型l2の間にOリング13を
挾持することにより外気と遮断されるプレス室14が形
成できるようになっており、このプレス室14内で2枚
のガス拡散電極で固体高分子Ti解質膜を挾んだ挾持体
15をホットプレスする構造となっている。そして、下
型12にはプレス室13に連通するアルコール供給通$
16及びアルコール排出通路工7が形成されており、こ
れら通路16.17を介してプレス室14内にアルコー
ルを充たすことができるようになっている。一方、上型
11及び下型l2の上,下側にはこれら上・下型11.
12を加熱するためのヒータ1.8,19が設けられて
いる。また、上型11内には渇度センサ20が設けられ
ている。
The hot press apparatus used in this example is shown in FIG. As shown in the figure, this apparatus ζ has an upper die 11 and a lower die 2, and an O-ring 13 is sandwiched between the upper die 11 and the lower die 12, so that the press chamber is isolated from the outside air. 14 can be formed, and the structure is such that a sandwiching body 15 sandwiching a solid polymer Ti desolate film between two gas diffusion electrodes is hot-pressed in this press chamber 14. The lower die 12 has an alcohol supply port communicating with the press chamber 13.
16 and an alcohol discharge passageway 7 are formed, through which the press chamber 14 can be filled with alcohol. On the other hand, above and below the upper mold 11 and the lower mold l2, these upper and lower molds 11.
Heaters 1.8, 19 are provided for heating 12. Further, a thirst sensor 20 is provided inside the upper mold 11.

このような装置を用いてホットプレスを実施するには下
型12上にOリング13を載置し、この中に2枚のガス
拡散t4極で固体高分子電解質膜を挾んだ挾持体15を
載雪する。
To carry out hot pressing using such a device, an O-ring 13 is placed on the lower mold 12, and a clamping member 15 in which the solid polymer electrolyte membrane is sandwiched between two gas diffusion T4 electrodes is placed inside the O-ring 13. to put on snow.

この状態で上型11を合わせた後、アルコール供給通路
16からイソプロパノールと純水との1 1の混合液を
アルコール排出通路17から排出するまで供給する。そ
して、このようにプレス室14内にアルニールを適度に
満たした状態で設定温度に加熱しつつ加圧する。
After the upper mold 11 is assembled in this state, a mixture of isopropanol and pure water is supplied from the alcohol supply passage 16 until it is discharged from the alcohol discharge passage 17. Then, the press chamber 14 is pressurized while being heated to a set temperature while appropriately filling the press chamber 14 with alnil.

加熱後、プレス室14に冷却水を流してプレス室14の
温度を下げ、治具をはずして接合体を取り出す。この接
合体を100℃位の純水の流れの中に浸たし、アルコー
ル除去することにより上述したような接合体が作成され
ろ。なお、アルコールの除去方法は、特に限定されず、
例えばN2雰囲気中で100℃以下に恒温檀内で蒸発さ
せることを可能である。
After heating, cooling water is poured into the press chamber 14 to lower the temperature of the press chamber 14, the jig is removed, and the bonded body is taken out. The above-mentioned bonded body is prepared by immersing this bonded body in a flow of pure water at about 100° C. and removing alcohol. Note that the method for removing alcohol is not particularly limited.
For example, it is possible to evaporate in a constant temperature chamber at 100° C. or lower in an N2 atmosphere.

このようにして製造した接合体を2枚のガスセパレータ
で挾持し、発電試験を行った。
The thus manufactured assembled body was sandwiched between two gas separators and a power generation test was conducted.

第2図はその状態を概念的に示したものである。FIG. 2 conceptually shows this state.

第2図中、1は固体高分子電解質膜、2A,2Bはガス
拡散電緬であり、ガス拡散電極2A,2Bはそれぞれ反
応1[3A,3B及びガス拡散膜4A,4Bからなる。
In FIG. 2, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, and the gas diffusion electrodes 2A and 2B are each composed of reaction 1[3A and 3B and gas diffusion membranes 4A and 4B.

また、5,6はガスセバレー夕である。ガスセパレータ
5は水T:極となるガス拡散電極2人に水素を供給する
ための水素供給溝5aとガス拡散電極2人を冷却する冷
却水を流すための冷却水供給溝5bとを交互に有してお
り、ガスセパレータ6はm素極となるガス拡散電極2B
に酸素を供給するための酸素供給溝6aを有していろこ
のような構成において、ガスセパレータ5へ水素及び冷
却水を供給すると共にガスセパ1ノ一夕6へ酸素を供給
し、発電テストを行った。なお、酸素はガス圧1kg/
cjG,流量2. 6 / / win,水素はガス圧
o,akg7cic.,FA量2.01/llinとし
、冷却水温度1よ70℃とした。また、ガス拡散電gi
i2A,2Bの有効面積は12X12emてあった。
In addition, 5 and 6 are gas barre evenings. The gas separator 5 has water T: a hydrogen supply groove 5a for supplying hydrogen to the two gas diffusion electrodes serving as poles, and a cooling water supply groove 5b for flowing cooling water to cool the two gas diffusion electrodes, alternately. The gas separator 6 has a gas diffusion electrode 2B serving as the m element electrode.
In this configuration, hydrogen and cooling water were supplied to the gas separator 5, and oxygen was also supplied to the gas separator 1 and 6 to conduct a power generation test. Ta. In addition, oxygen has a gas pressure of 1 kg/
cjG, flow rate 2. 6 / / win, hydrogen gas pressure o, akg7cic. , the FA amount was 2.01/llin, and the cooling water temperature was 1 to 70°C. In addition, the gas diffusion voltage gi
The effective area of i2A and 2B was 12×12em.

比較のため、溶媒中ではなく空気中で同様ホッ7・プレ
スした以外は上述したものと同様の接合体を用い、上記
実施例と同様にして発電テストを行った。
For comparison, a power generation test was conducted in the same manner as in the above example using the same bonded body as described above except that it was pressed in air instead of in a solvent.

これらの結果を第3図に示す。この結果からも明らかな
ように、本発明方法による接合体を用いた場合には、電
池反応の効率が向上し、出力が上昇するという効果を奏
した。
These results are shown in FIG. As is clear from these results, when the conjugate according to the method of the present invention was used, the efficiency of the cell reaction was improved and the output was increased.

4 く発明の効果〉 以上説明したように、本発明方法によると、固体高分子
電解質膜がアルコール中で軟化若しくは溶解した状態で
ガス拡散電極とが接合されるので、接合が容易にでき且
つ固体高分子電解質膜が反応膜内に入り込んで接触によ
り触媒反応が生じる面積が増大すると共に膜自体が薄く
なるので、イの移動抵抗が低減されろ。したがって本発
明方法による接合体を燃料電池や水電解等に用いると反
応効率が増大し、高出力化するという効果を奏する。
4. Effects of the Invention> As explained above, according to the method of the present invention, the solid polymer electrolyte membrane is bonded to the gas diffusion electrode in a state in which it is softened or dissolved in alcohol, so that bonding can be easily performed and the solid polymer electrolyte membrane can be easily bonded to the gas diffusion electrode. The polymer electrolyte membrane penetrates into the reaction membrane and the area where catalytic reactions occur due to contact increases, and the membrane itself becomes thinner, so the movement resistance (a) is reduced. Therefore, when the conjugate produced by the method of the present invention is used in fuel cells, water electrolysis, etc., the reaction efficiency increases and output is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を実施するための装置を示す
*,t図、第2図はその試験方法を示す概念図、第3図
は発電テストの結果を示すグラフ、第4図は従来技術に
係る固体高分子電解質膜燃料電池を示す概念図である。 図  面  中、 1は固体高分子電解質膜、 2A,2Bはガス拡散電極、 3A.,3Bは反応膜、 4A,4Bはガス拡散膜、 5,6はガスセバレータ、 5aは水素供給溝、 5bは冷却水供給溝、 6aは酸素供給溝、 11は上型、 12は下型、 13はOリング、 14はプレス室、 15は挾持体、 16はアルコール供給通路、 17ぱアルコール排出通略、 18,19はヒータ、 20は温度センサである。 特  許  出  願 人 三菱重工業株式会社 代    理    人
Fig. 1 is a *,t diagram showing a device for carrying out an embodiment of the present invention, Fig. 2 is a conceptual diagram showing its test method, Fig. 3 is a graph showing the results of a power generation test, Fig. 4 1 is a conceptual diagram showing a solid polymer electrolyte membrane fuel cell according to the prior art. In the drawing, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, 3A. , 3B are reaction membranes, 4A and 4B are gas diffusion membranes, 5 and 6 are gas separators, 5a is a hydrogen supply groove, 5b is a cooling water supply groove, 6a is an oxygen supply groove, 11 is an upper mold, 12 is a lower mold, 13 14 is an O-ring, 14 is a press chamber, 15 is a clamping body, 16 is an alcohol supply passage, 17 is an alcohol exhaust system, 18 and 19 are heaters, and 20 is a temperature sensor. Patent applicant Mitsubishi Heavy Industries, Ltd. Agent

Claims (1)

【特許請求の範囲】[Claims] 反応膜とガス拡散膜とからなる2枚のガス拡散電極の反
応膜側で固体高分子電解質膜を挾んだ挾持体を、溶媒中
で加熱・加圧することにより接合体とすることを特徴と
する固体高分子電解質膜と電極との接合体の製造方法。
It is characterized by forming a bonded body by heating and pressurizing a sandwiching body that sandwiches a solid polymer electrolyte membrane on the reaction membrane side of two gas diffusion electrodes consisting of a reaction membrane and a gas diffusion membrane in a solvent. A method for producing an assembly of a solid polymer electrolyte membrane and an electrode.
JP2001066A 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode Pending JPH03208262A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001066A JPH03208262A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001066A JPH03208262A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Publications (1)

Publication Number Publication Date
JPH03208262A true JPH03208262A (en) 1991-09-11

Family

ID=11491160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001066A Pending JPH03208262A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Country Status (1)

Country Link
JP (1) JPH03208262A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005222894A (en) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd Manufacturing method of membrane electrode junction
WO2006004120A1 (en) * 2004-07-06 2006-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP2007507067A (en) * 2003-09-26 2007-03-22 パウル・シェラー・インスティトゥート Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
JP2008530728A (en) * 2005-02-07 2008-08-07 シーメンス アクチエンゲゼルシヤフト Method and apparatus for continuously bonding a polymer electrolyte membrane and at least one gas diffusion electrode
US7976972B2 (en) 2004-06-14 2011-07-12 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
JP2011520237A (en) * 2008-05-09 2011-07-14 スリーエム イノベイティブ プロパティズ カンパニー Method for activating membrane electrode assembly, membrane electrode assembly and polymer electrolyte fuel cell using the same
US8003239B2 (en) 2004-06-14 2011-08-23 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007507067A (en) * 2003-09-26 2007-03-22 パウル・シェラー・インスティトゥート Membrane-electrode assembly, manufacturing method thereof, and manufacturing method of membrane to be combined in membrane-electrode assembly
JP2005222894A (en) * 2004-02-09 2005-08-18 Aisin Seiki Co Ltd Manufacturing method of membrane electrode junction
US7976972B2 (en) 2004-06-14 2011-07-12 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US8003239B2 (en) 2004-06-14 2011-08-23 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US8021772B2 (en) 2004-06-14 2011-09-20 Panasonic Corporation Preservation assembly of polymer electrolyte fuel cell stack
US8137829B2 (en) 2004-06-14 2012-03-20 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
US8435657B2 (en) 2004-06-14 2013-05-07 Panasonic Corporation Method of preserving polymer electrolyte fuel cell stack and preservation assembly of polymer electrolyte fuel cell stack
WO2006004120A1 (en) * 2004-07-06 2006-01-12 Matsushita Electric Industrial Co., Ltd. Process for producing gas diffusion electrode and polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
US7883817B2 (en) 2004-07-06 2011-02-08 Panasonic Corporation Method for producing gas diffusion electrode and method for producing polymer electrolyte fuel cell, and gas diffusion electrode and polymer electrolyte fuel cell
JP2008530728A (en) * 2005-02-07 2008-08-07 シーメンス アクチエンゲゼルシヤフト Method and apparatus for continuously bonding a polymer electrolyte membrane and at least one gas diffusion electrode
US9461325B2 (en) 2005-02-07 2016-10-04 Siemens Aktiengesellschaft Method and device for permanently bonding a polymer electrolyte membrane to at least one gas diffusion electrode
JP2011520237A (en) * 2008-05-09 2011-07-14 スリーエム イノベイティブ プロパティズ カンパニー Method for activating membrane electrode assembly, membrane electrode assembly and polymer electrolyte fuel cell using the same

Similar Documents

Publication Publication Date Title
EP3208880B1 (en) Electrochemical hydrogen pump
CN100369311C (en) Method for operating fuel cell
JPH03167752A (en) Gas diffusion electrode and solid macromolecular electrolyte furl cell main body using it
Liu et al. Development and performance evaluation of a passive direct ammonia fuel cell
JPH03208262A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP3364028B2 (en) Solid polymer electrolyte membrane fuel cell body
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JPH03208260A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP4228643B2 (en) Method for producing membrane electrode assembly of polymer electrolyte fuel cell
JP3358820B2 (en) Hydrogen booster and fuel cell using the same
JPH04169069A (en) Joining body of solid polyelectrolyte film and electrode
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
US20090181235A1 (en) Microporous layer assembly and method of making the same
JP2781630B2 (en) Method for activating a joined body of a solid polymer electrolyte membrane and an electrode
JPH05109418A (en) Joint body of solid high polymer electrolytic film and electrode
JP3117280B2 (en) Method and apparatus for filling solid polymer electrolyte into gas diffusion electrode
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
WO1999040237A1 (en) Asymmetric electrodes for direct-feed fuel cells
US11631877B2 (en) Method of bonding acid-doped membranes and a bonded polybenzimidazole membrane structure
Pichonat et al. A Porous Silicon‐Based Ionomer‐Free Membrane Electrode Assembly for Miniature Fuel Cells
JPH08138715A (en) Solid polymer fuel cell and manufacture thereof
JPH06203849A (en) Manufacture of solid high polymer fuel cell
JP2005235556A (en) Method of manufacturing catalytic electrode, membrane electrode junction, and electrochemical device
JPH03295171A (en) Manufacture of electrode for fuel cell