JP2781630B2 - Method for activating a joined body of a solid polymer electrolyte membrane and an electrode - Google Patents

Method for activating a joined body of a solid polymer electrolyte membrane and an electrode

Info

Publication number
JP2781630B2
JP2781630B2 JP1338749A JP33874989A JP2781630B2 JP 2781630 B2 JP2781630 B2 JP 2781630B2 JP 1338749 A JP1338749 A JP 1338749A JP 33874989 A JP33874989 A JP 33874989A JP 2781630 B2 JP2781630 B2 JP 2781630B2
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
electrode
solid polymer
gas diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1338749A
Other languages
Japanese (ja)
Other versions
JPH03203164A (en
Inventor
長一 古屋
国延 市川
香 和田
勇夫 平田
宏 中嶋
竹内  善幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1338749A priority Critical patent/JP2781630B2/en
Publication of JPH03203164A publication Critical patent/JPH03203164A/en
Application granted granted Critical
Publication of JP2781630B2 publication Critical patent/JP2781630B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Materials Engineering (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、固体高分子電解質膜と電極との接合体の活
性化処理方法に関し、その接合体を燃料電池や水電解等
に用いた場合に電池反応の効率が向上するように工夫し
たものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for activating a joined body of a solid polymer electrolyte membrane and an electrode, wherein the joined body is used for a fuel cell, water electrolysis, or the like. In this way, the efficiency of the battery reaction is improved.

〈従来の技術〉 燃料電池は、資源の枯渇問題を有する石化燃料を使う
必要がない上、騒音をほとんど発生せず、エネルギの回
収効率も他のエネルギ機関と較べて非常に高くできる等
の優れた特徴を持っているため、例えばビルディング単
位や工場単位の比較的小型の発電プラントとして利用さ
れている。
<Conventional technology> Fuel cells do not require the use of fossil fuels, which have the problem of resource depletion, generate little noise, and have extremely high energy recovery efficiency compared to other energy engines. Because of this feature, it is used as a relatively small power plant, for example, in buildings or factories.

近年、この燃料電池を車載用の内燃機関に代えて作動
するモータの電源として利用し、このモータにより車両
等を駆動することが考えられている。この場合に重要な
ことは、反応によって生成する物質をできるだけ再利用
することは当然のこととして、車載用であることからも
明らかなように、余り大きな出力は必要でないものの、
全ての付帯設備と共に可能な限り小型であることが望ま
しく、このような点から固体高分子電解質型燃料電池が
注目されている。
In recent years, it has been considered that this fuel cell is used as a power source of a motor that operates instead of an internal combustion engine mounted on a vehicle, and a vehicle or the like is driven by the motor. In this case, it is important to recycle the substances generated by the reaction as much as possible.
It is desirable that all the incidental equipment be as small as possible, and in view of this, a solid polymer electrolyte fuel cell is receiving attention.

ここで、一例として固体高分子電解質燃料電池本体の
基本構造を第3図を参照しながら説明する。同図に示す
ように、電池本体01は固体高分子電解質膜02の両側にガ
ス拡散電極03A,03Bが接合されることにより構成されて
いる。そしてこの接合体は、固体高分子電解質膜02の両
側にガス拡散電極03A,03Bを合せた後、ホットプレス等
することにより製造される。また、ガス拡散電極03A,03
Bはそれぞれ反応膜04A,04B及びガス拡散膜05A,05Bが接
合されたものであり、電解質膜02とは反応膜04A,04Bの
表面が接触している。したがって、電池反応は主に電解
質膜02と反応膜04A,04Bとの間の接触面で起こる。
Here, as an example, the basic structure of the polymer electrolyte fuel cell main body will be described with reference to FIG. As shown in the figure, the battery main body 01 is configured by joining gas diffusion electrodes 03A and 03B to both sides of a solid polymer electrolyte membrane 02. The joined body is manufactured by, for example, hot-pressing the gas diffusion electrodes 03A and 03B on both sides of the solid polymer electrolyte membrane 02. In addition, gas diffusion electrodes 03A, 03
B is formed by bonding reaction films 04A and 04B and gas diffusion films 05A and 05B, respectively, and the surfaces of the reaction films 04A and 04B are in contact with the electrolyte membrane 02. Therefore, the battery reaction mainly occurs at the contact surface between the electrolyte membrane 02 and the reaction membranes 04A and 04B.

例えばガス拡散電極03Aを酸素極、ガス拡散電極03Bを
水素極とし、各々のガス拡散膜05A,05Bを介して酸素,
水素を反応膜04A,04B側へ供給すると、各反応膜04A,04B
と電解質膜02との界面で次のような反応が起こる。
For example, the gas diffusion electrode 03A is an oxygen electrode, the gas diffusion electrode 03B is a hydrogen electrode, and oxygen and oxygen are passed through the respective gas diffusion films 05A and 05B.
When hydrogen is supplied to the reaction films 04A and 04B, each of the reaction films 04A and 04B
The following reaction occurs at the interface between the electrolyte and the electrolyte membrane 02.

反応膜04Aの界面: O2+4H++4e-→2H2O 反応膜04Bの界面: 2H2→4H++4e- ここで、4H+は電解質膜02を通って水素極から酸素極
へ流れるが、4e-は負荷06を通って水素極から酸素極へ
流れることになり、電気エネルギーが得られる。
Interface of the reaction film 04A: O 2 + 4H + + 4e → 2H 2 O Interface of the reaction film 04B: 2H 2 → 4H + + 4e - Here, 4H + flows from the hydrogen electrode to the oxygen electrode through the electrolyte membrane 02, 4e - is will flow from the hydrogen electrode to the oxygen electrode through the load 06, electrical energy is obtained.

〈発明が解決しようとする課題〉 上述した構成の燃料電池本体01では、電池反応は主
に、電解質膜02と各反応膜04A,04Bとの接触面で起こる
ので、電池性能を向上させるには電極自体を大きくしな
ければならないという問題がある。
<Problems to be Solved by the Invention> In the fuel cell main body 01 having the above-described configuration, the cell reaction mainly occurs at the contact surface between the electrolyte membrane 02 and each of the reaction membranes 04A and 04B. There is a problem that the electrode itself must be enlarged.

すなわち、例えば燃料電池の小型化を追求するために
は、上述した電池本体01の単位体積当りの電池反応の向
上が必須となる。これは、水電解等を行う場合にも同様
である。
That is, for example, in order to pursue miniaturization of the fuel cell, it is essential to improve the battery reaction per unit volume of the battery main body 01 described above. This is the same when performing water electrolysis or the like.

本発明はこのような事情に鑑み、燃料電池や水電解等
に用いた場合の電池反応効率を大幅に向上させる、固体
高分子電解質膜と電極との接合体の活性化処理方法を提
供することを目的とする。
In view of such circumstances, the present invention provides a method for activating a joined body of a solid polymer electrolyte membrane and an electrode, which greatly improves the reaction efficiency of a cell when used in a fuel cell, water electrolysis, or the like. With the goal.

〈課題を解決するための手段〉 前記目的を達成する本発明に係る固体高分子電解質膜
と電極との接合体の活性化処理方法は、反応膜とガス拡
散膜とからなる2枚のガス拡散電極の反応膜側を固体高
分子電解質膜の両側に接合してなる接合体を、上記固体
高分子電解質膜のガラス転移温度の130℃以上でその分
解温度の270℃以下の温度範囲で、加熱処理することを
特徴とする。
<Means for Solving the Problems> A method for activating a joined body of a solid polymer electrolyte membrane and an electrode according to the present invention, which achieves the above object, comprises two gas diffusion layers each comprising a reaction membrane and a gas diffusion membrane. A bonded body obtained by bonding the reaction membrane side of the electrode to both sides of the solid polymer electrolyte membrane is heated in a temperature range of 130 ° C. or more of the glass transition temperature of the solid polymer electrolyte membrane and 270 ° C. or less of its decomposition temperature. Processing.

本発明で、ガス拡散電極は反応膜とガス拡散膜とを接
合してなるものなどをいい、従来から知られているもの
(例えば、特開昭62−154571号公報)でよい。ここで、
反応膜は一般に、例えば白金金属及び/又はその酸化物
の他、Pt,Pd及び/又はIr等にRu,Sn等を合金化したもの
等からなる触媒あるいはこのような触媒を担持させた親
水性カーボン微粒子をフッ素樹脂等に分散させたもので
ある。
In the present invention, the gas diffusion electrode refers to one formed by joining a reaction film and a gas diffusion film, and may be a conventionally known one (for example, JP-A-62-154571). here,
In general, the reaction film is made of, for example, platinum metal and / or its oxide, a catalyst made of Pt, Pd and / or Ir, etc. alloyed with Ru, Sn, or the like, or a hydrophilic catalyst carrying such a catalyst. Carbon fine particles are dispersed in a fluororesin or the like.

また、本発明で固体高分子電解質膜とは、水が共存し
ても液体にならない電解質をいい、例えばパーフルオロ
スフォン酸ポリマー膜(ナフィオン:商品名)を挙げる
ことができる。
Further, in the present invention, the solid polymer electrolyte membrane refers to an electrolyte that does not become a liquid even when water is present, and includes, for example, a perfluorosulfonic acid polymer membrane (Nafion: trade name).

本発明では、このようなガス拡散電極と固体高分子電
解質膜との接合体を、当該固体高分子電解質膜のガラス
転移温度の130℃以上でその分解温度の270℃以下の温度
で加熱処理する。これにより接合体の活性化を図ること
ができ、例えば燃料電池、電解などに用いた場合に電池
反応の効率が向上するという効果を奏する。
In the present invention, such a joined body of the gas diffusion electrode and the solid polymer electrolyte membrane is subjected to a heat treatment at a temperature of 130 ° C. or higher and a decomposition temperature of 270 ° C. or lower of the glass transition temperature of the solid polymer electrolyte membrane. . Thereby, activation of the joined body can be achieved. For example, when the joined body is used for a fuel cell, electrolysis, or the like, there is an effect that a cell reaction efficiency is improved.

このように接合体が活性化される理由は明らかではな
いが、接合体の製造過程において汚染した触媒が活性化
され、さらに電極中の揆水性物質の安定化されると共に
その突孔が清掃化されるなどの理由が考えられる。
It is not clear why the joined body is activated in this way, but the contaminated catalyst is activated during the manufacturing process of the joined body, the water repellent substance in the electrode is stabilized, and the projecting holes are cleaned. The reason is considered.

本発明の加熱処理は、上記範囲の温度で上述した効果
が発揮されるように行えば、その方法等は特に限定され
ず、例えば固体高分子電解質膜としてパーフルオロスル
フォン酸ポリマー膜を用いた場合には、後述の試験例か
らも明らかなように130〜280℃で例えば30〜60分間程度
処理すればよい。
The heat treatment of the present invention is not particularly limited as long as the above-described effects are exerted at a temperature in the above range, for example, when a perfluorosulfonic acid polymer membrane is used as the solid polymer electrolyte membrane. In this case, the treatment may be performed at 130 to 280 ° C. for, for example, about 30 to 60 minutes, as is clear from the test examples described later.

〈実施例〉 以下、本発明を実施例に基づいて説明する。<Example> Hereinafter, the present invention will be described based on examples.

親水性カーボンブラック及びポリテトラフルオロエチ
レンからなる親水性反応膜と、疎水性カーボンブラック
及びポリテトラフルオロエチレンからなる疎水性ガス拡
散膜とからなるガス拡散電極(厚さ0.6mm)の反応膜側
に、塩化白金酸化還元法によりPt0.56mg/cm2を担持させ
た。
On the reaction film side of a gas diffusion electrode (thickness 0.6 mm) composed of a hydrophilic reaction film composed of hydrophilic carbon black and polytetrafluoroethylene and a hydrophobic gas diffusion film composed of hydrophobic carbon black and polytetrafluoroethylene Then, Pt 0.56 mg / cm 2 was supported by a platinum chloride redox method.

このような2枚のガス拡散電極の間に、0.17mm厚のパ
ーフルオロスルフォン酸ポリマー膜(ナフィオン:デュ
ポン社製)をはさみ、120〜130℃で60秒間、60kg/cm2
条件でホットプレスし、接合体とした。
A 0.17 mm-thick perfluorosulfonic acid polymer film (Nafion: manufactured by DuPont) is sandwiched between such two gas diffusion electrodes, and hot-pressed at 120 to 130 ° C. for 60 seconds at 60 kg / cm 2. Then, a joined body was obtained.

そして、この接合体を100℃,150℃,200℃,250℃及び3
00℃でそれぞれ30分間、また、150℃,200℃,250℃でそ
れぞれ60分間加熱処理した。
Then, the joined body is heated at 100 ° C, 150 ° C, 200 ° C, 250 ° C and 3 ° C.
Heat treatment was performed at 00 ° C. for 30 minutes and at 150 ° C., 200 ° C., and 250 ° C. for 60 minutes.

このようにして製造した各接合体をそれぞれ2枚のガ
スセパレータで挾持し、発電試験を行った。第1図はそ
の状態を概念的に示したものである。
Each of the joined bodies thus manufactured was sandwiched between two gas separators, and a power generation test was performed. FIG. 1 conceptually shows the state.

第1図中、1は固体高分子電解質膜、2A,2Bはガス拡
散電極であり、ガス拡散電極2A,2Bはそれぞれ反応膜3A,
3B及びガス拡散膜4A,4Bからなる。また、5,6はガスセパ
レータである。ガスセパレータ5は水素極となるガス拡
散電極2Aに水素を供給するための水素供給溝5aとガス拡
散電極2Aを冷却する冷却水を流すための冷却水供給溝5b
とを交互に有しており、ガスセパレータ6は酸素極とな
るガス拡散電極2Bに酸素を供給するための酸素供給溝6a
を有している。
In FIG. 1, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, and gas diffusion electrodes 2A and 2B are reaction membranes 3A and 3A, respectively.
3B and gas diffusion films 4A and 4B. Reference numerals 5 and 6 denote gas separators. The gas separator 5 has a hydrogen supply groove 5a for supplying hydrogen to the gas diffusion electrode 2A serving as a hydrogen electrode and a cooling water supply groove 5b for flowing cooling water for cooling the gas diffusion electrode 2A.
The gas separator 6 has an oxygen supply groove 6a for supplying oxygen to the gas diffusion electrode 2B serving as an oxygen electrode.
have.

このような構成において、ガスセパレータ5へ水素及
び冷却水を供給すると共にガスセパレータ6へ酸素を供
給し、発電テストを行った。なお、酸素はガス圧1kg/cm
2G,流量2.6l/min,水素はガス圧0.4kg/cm2G,流量2.0l/mi
nとし、冷却水温度は70℃とした。また、ガス拡散電極2
A,2Bの有効面積は12×12cmであった。
In such a configuration, a power generation test was performed by supplying hydrogen and cooling water to the gas separator 5 and supplying oxygen to the gas separator 6. The oxygen gas pressure is 1kg / cm
2 G, flow rate 2.6 l / min, hydrogen gas pressure 0.4 kg / cm 2 G, flow rate 2.0 l / mi
n and the cooling water temperature was 70 ° C. In addition, gas diffusion electrode 2
The effective area of A, 2B was 12 × 12cm.

比較のため、加熱処理しない同様の接合体を用い、上
記実施例と同様にして発電テストを行った。
For comparison, a power generation test was performed in the same manner as in the above example using a similar joined body without heat treatment.

これらの結果を第2図に示す。この結果からも明らか
なように、本発明方法により活性化処理した接合体を用
いた場合には、電池反応の効率が向上し、出力が上昇す
るという効果を奏した。
These results are shown in FIG. As is clear from the results, when the joined body activated by the method of the present invention was used, there was an effect that the efficiency of the battery reaction was improved and the output was increased.

〈発明の効果〉 以上説明したように、本発明方法によると、固体高分
子電解質膜とガス拡散電極との接合体を加熱処理するこ
とにより活性化することができるので、その接合体を燃
料電池や水電解等に用いると反応効率が増大し、高出力
化するという効果を奏する。
<Effects of the Invention> As described above, according to the method of the present invention, the assembly of the solid polymer electrolyte membrane and the gas diffusion electrode can be activated by heat treatment. When used for water electrolysis or the like, the effect of increasing the reaction efficiency and increasing the output is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す概念図、第2図は発電
テストの結果を示すグラフ、第3図は従来技術に係る固
体高分子電解質膜燃料電池を示す概念図である。 図面中、 1は固体高分子電解質膜、2A,2Bはガス拡散電極、3A,3B
は反応膜、4A,4Bはガス拡散膜、5,6はガスセパレータ、
5aは水素供給溝、5bは冷却水供給溝、6aは酸素供給溝で
ある。
FIG. 1 is a conceptual diagram showing one embodiment of the present invention, FIG. 2 is a graph showing the results of a power generation test, and FIG. 3 is a conceptual diagram showing a conventional solid polymer electrolyte membrane fuel cell. In the drawing, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, 3A and 3B
Is a reaction film, 4A and 4B are gas diffusion films, 5 and 6 are gas separators,
5a is a hydrogen supply groove, 5b is a cooling water supply groove, and 6a is an oxygen supply groove.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中嶋 宏 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (72)発明者 竹内 善幸 広島県広島市西区観音新町4丁目6番22 号 三菱重工業株式会社広島研究所内 (56)参考文献 特開 昭64−62489(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 4/86 - 4/96 H01M 8/02,8/10──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Hiroshi Nakajima 4-6-22 Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture Mitsubishi Heavy Industries, Ltd. Hiroshima Research Laboratory (72) Inventor Yoshiyuki Takeuchi 4-chome Kannon Shinmachi, Nishi-ku, Hiroshima City, Hiroshima Prefecture No. 6-22 Mitsubishi Heavy Industries, Ltd. Hiroshima Laboratory (56) References JP-A-64-62489 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 4/86-4 / 96 H01M 8 / 02,8 / 10

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】反応膜とガス拡散膜とからなる2枚のガス
拡散電極の反応膜側を固体高分子電解質膜の両側に接合
してなる接合体を、上記固体高分子電解質膜のガラス転
移温度の130℃以上でその分解温度の270℃以下の温度範
囲で、加熱処理することを特徴とする固体高分子電解質
膜と電極との接合体の活性化処理方法。
1. A joined body obtained by joining the reaction membrane side of two gas diffusion electrodes comprising a reaction membrane and a gas diffusion membrane to both sides of a solid polymer electrolyte membrane, and forming a glass transition of the solid polymer electrolyte membrane. A method for activating a joined body of a solid polymer electrolyte membrane and an electrode, wherein a heat treatment is performed in a temperature range of 130 ° C. or more and a decomposition temperature of 270 ° C. or less.
JP1338749A 1989-12-28 1989-12-28 Method for activating a joined body of a solid polymer electrolyte membrane and an electrode Expired - Lifetime JP2781630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1338749A JP2781630B2 (en) 1989-12-28 1989-12-28 Method for activating a joined body of a solid polymer electrolyte membrane and an electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1338749A JP2781630B2 (en) 1989-12-28 1989-12-28 Method for activating a joined body of a solid polymer electrolyte membrane and an electrode

Publications (2)

Publication Number Publication Date
JPH03203164A JPH03203164A (en) 1991-09-04
JP2781630B2 true JP2781630B2 (en) 1998-07-30

Family

ID=18321097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1338749A Expired - Lifetime JP2781630B2 (en) 1989-12-28 1989-12-28 Method for activating a joined body of a solid polymer electrolyte membrane and an electrode

Country Status (1)

Country Link
JP (1) JP2781630B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell
US7582713B2 (en) 2002-07-08 2009-09-01 Asahi Glass Company, Limited Ion exchange polymer dispersion, process for its production and its use

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6479177B1 (en) * 1996-06-07 2002-11-12 Ballard Power Systems Inc. Method for improving the cold starting capability of an electrochemical fuel cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7582713B2 (en) 2002-07-08 2009-09-01 Asahi Glass Company, Limited Ion exchange polymer dispersion, process for its production and its use
JP2007179852A (en) * 2005-12-27 2007-07-12 Nissan Motor Co Ltd Highly durable fuel cell

Also Published As

Publication number Publication date
JPH03203164A (en) 1991-09-04

Similar Documents

Publication Publication Date Title
JP3805495B2 (en) Polymer electrolyte fuel cell
US5338412A (en) Electrochemical device for removal and regeneration of oxygen and method
US4659559A (en) Gas fueled fuel cell
JP2831061B2 (en) Gas diffusion electrode and solid polymer electrolyte fuel cell body using the same
JP3153817B2 (en) Solid polymer electrolyte membrane fuel cell
JPH09199145A (en) Fuel cell and manufacture of fuel cell
US5087534A (en) Gas-recirculating electrode for electrochemical system
CN1529921A (en) Method for operating fuel cells fed with gas containing hydrogen and carbon oxide and devices relating thereof
JP3446254B2 (en) Fuel cell and method of manufacturing the same
JP2781630B2 (en) Method for activating a joined body of a solid polymer electrolyte membrane and an electrode
JPH04169069A (en) Joining body of solid polyelectrolyte film and electrode
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JP3364028B2 (en) Solid polymer electrolyte membrane fuel cell body
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
JPH03208260A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP3358820B2 (en) Hydrogen booster and fuel cell using the same
JPH05109418A (en) Joint body of solid high polymer electrolytic film and electrode
JPH03208262A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
US20050014037A1 (en) Fuel cell with recombination catalyst
JPH09219206A (en) Electrochemical element
JPH06223836A (en) Fuel cell
JPH08138715A (en) Solid polymer fuel cell and manufacture thereof
JP2000067887A (en) Solid polymer fuel cell
JPH06203849A (en) Manufacture of solid high polymer fuel cell
JPH0428166A (en) Joining body of solid high molecule electrolyte film and electrode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090515

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100515

Year of fee payment: 12