JPH03208261A - Manufacture of connecting body between solid high polymer electrolyte membrane and electrode - Google Patents

Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Info

Publication number
JPH03208261A
JPH03208261A JP2001065A JP106590A JPH03208261A JP H03208261 A JPH03208261 A JP H03208261A JP 2001065 A JP2001065 A JP 2001065A JP 106590 A JP106590 A JP 106590A JP H03208261 A JPH03208261 A JP H03208261A
Authority
JP
Japan
Prior art keywords
reaction
gas diffusion
membrane
electrode
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001065A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Isao Hirata
平田 勇夫
Hiroshi Nakajima
宏 中嶋
Yoshiyuki Takeuchi
善幸 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001065A priority Critical patent/JPH03208261A/en
Publication of JPH03208261A publication Critical patent/JPH03208261A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To increase the reaction efficiency and to realize a high output by connecting a solid high polymer electrolyte membrane and a gas diffusion electrode in the condition sulfuric acid is permeated in the reaction membrane of the gas diffusion electrode. CONSTITUTION:Hydrophile reaction membranes 3A and 3B are formed at the ratio 0.7:7:3 of platinum of the mean particle diameter 50Angstrom , a hydrophile carbon black of the mean particle diameter 450Angstrom , and polytetrafluoroethylene of the mean particle diameter 0.3mum, and hydrophobic gas diffusion membranes 4A and 4B are formed at the ratio 7:3 of the hydrophobic carbon black of the mean particle diameter 420Angstrom and polytetrafluoroechylene of the mean particle diameter 0.3mum. The reaction membrances 3 and the diffusion membranes 4 are superposed and rolled, and Pt 0.56mg/cm<2> is held to the reaction membrane 3 side in the hydrogen chloroplatinate oxidization and reduction method to make into gas diffusion electrodes 2A and 2B. At the reaction membrane side of the electrodes 2, an isopropyle alcohol solution of sulfuric acid is spread. A perfluorosulfuric acid polymer of the thickness 0.17mm is held between two sheets of such electrodes 2A and 2B, and a hot press is applied in the condition at 120 to 130 deg.C and 60kg/cm<2>, to connect them. In such a way, the area of generating a catalyst reaction is increased, and the contact resistance is reduced.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、固体高分子電解質膜と電極との接合体を製造
する方法に関し、その接合体を燃v4電池や水電解等に
用いた場合に電池反応の効率が向上するように工夫した
ものである。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for manufacturing an assembly of a solid polymer electrolyte membrane and an electrode, and relates to a method for manufacturing an assembly of a solid polymer electrolyte membrane and an electrode, and when the assembly is used in a fuel V4 battery, water electrolysis, etc. It was devised to improve the efficiency of the battery reaction.

く従来の技術〉 燃料電池は、資源の枯渇問題を有する石化燃料を使う必
要がない上、騒音をほとんど発生せず、エネルギの回収
効率も他のエネルギ機関と較べて非常に高くできる等の
優れた特徴を持っているため、例えばビルディング単位
や工場単位の比較的小型の発電プラントとして利用され
ている。
(Conventional technology) Fuel cells do not require the use of fossil fuels, which have resource depletion issues, generate almost no noise, and have very high energy recovery efficiency compared to other energy engines. Because of these characteristics, it is used as a relatively small power generation plant for each building or factory, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、乙のモータにより車両等
を駆動することが考えられている。この場合に重要なこ
とは、反応によって生成する物質をできるだけ再利用す
ることは当然のこととして、車載用であることからも明
らかなように、余り大きな出力は必要でないものの、全
ての付帯設備と共に可能な限り小型であることが望まし
く、このような点から固体高分子電解質型燃料電池が注
目されている。
In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to drive a vehicle or the like by the motor. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and as it is clear from the fact that it is for automotive use, although a large output is not required, It is desirable that the fuel cell be as small as possible, and from this point of view, solid polymer electrolyte fuel cells are attracting attention.

ここで、一例として固体高分子電解質燃料電池本体の基
本構造を第3図を参照しながら説明する。同図に示すよ
うに、電池本体01は固体高分子電解質膜02の両側に
ガス拡散電極03A,03Bが接合されることにより構
成されている。そしてこの接合体は、固体高分子電解質
膜02の両側にガス拡散電極03A.,03Bを合せた
後、ホットプレス等することにより製造される。また、
ガス拡散竜極03A,03Bはそれぞれ反応膜04A,
04B及びガス拡散膜05A,05Bが接合されたもの
であり、電解質膜02とは反応膜04A,04Bの表面
が接触している。したがって、電池反応は主に電解質膜
02と反応膜04A.,04Bとの間の接触面で起こる
Here, as an example, the basic structure of a solid polymer electrolyte fuel cell main body will be explained with reference to FIG. 3. As shown in the figure, the battery main body 01 is constructed by joining gas diffusion electrodes 03A and 03B to both sides of a solid polymer electrolyte membrane 02. This assembly has gas diffusion electrodes 03A on both sides of the solid polymer electrolyte membrane 02. , 03B and then hot pressing. Also,
Gas diffusion dragon poles 03A and 03B are reaction membranes 04A and 03B, respectively.
04B and gas diffusion membranes 05A, 05B are joined, and the surfaces of the reaction membranes 04A, 04B are in contact with the electrolyte membrane 02. Therefore, the battery reaction mainly occurs between the electrolyte membrane 02 and the reaction membrane 04A. , 04B.

例えばガス拡散電極03Aを酸素極、ガス拡散電極03
Bを水素極とし、各々のガス拡散膜05A,05Bを介
して酸素,水素を反応膜04A,04B側へ供給すると
、各反応Wl04A,04Bと電解質膜02との界面で
次のような反応が起こる。
For example, gas diffusion electrode 03A is an oxygen electrode, gas diffusion electrode 03
When B is used as a hydrogen electrode and oxygen and hydrogen are supplied to the reaction membranes 04A and 04B through the respective gas diffusion membranes 05A and 05B, the following reactions occur at the interface between each reaction W104A and 04B and the electrolyte membrane 02. happen.

反応膜04Aの界面: 0 +4 H”+4 e −=2 H O反応膜04B
の界面: 2H−=4H”+4e ここで、4H+は電解質農02を通って水素極から酸素
極へ流れるが、4eは負荷06を通って水素極から酸素
極へ流れることになり、電気エネルギーが得られる。
Interface of reaction film 04A: 0 +4 H"+4 e -=2 H O reaction film 04B
Interface: 2H-=4H''+4e Here, 4H+ flows from the hydrogen electrode to the oxygen electrode through the electrolyte 02, but 4e flows from the hydrogen electrode to the oxygen electrode through the load 06, and electrical energy is can get.

く発明が解決しようとする課題〉 上述した構成の燃料電池本体01では、電池反応は主に
、電解質膜02と各反応膜04A,04Bとの接触面で
起こるので、電池性能を向上させるには電極自体を大き
くしなければならないという問題がある。
Problems to be Solved by the Invention In the fuel cell main body 01 having the above-described configuration, the cell reaction mainly occurs at the contact surface between the electrolyte membrane 02 and each reaction membrane 04A, 04B, so in order to improve the cell performance, There is a problem in that the electrode itself must be made larger.

すなわち、例えば燃料電池の小型化を追求するためには
、上述した電池本体01の単位体積当りの電池反応の向
上が必須となる。これは、水電解等を行う場合にも同様
である。
That is, for example, in order to pursue miniaturization of fuel cells, it is essential to improve the cell reaction per unit volume of the cell body 01 described above. This also applies when water electrolysis or the like is performed.

本発明はこのような事情に鑑み、燃料電池や水電解等に
用いた場合に電池反応効率が大幅に向上する、固体高分
子電解質膜と電極との接合体の製造方法を提供すること
を目的とする。
In view of these circumstances, an object of the present invention is to provide a method for producing an assembly of a solid polymer electrolyte membrane and an electrode, which greatly improves cell reaction efficiency when used in fuel cells, water electrolysis, etc. shall be.

く課題を解決するための手段〉 前記目的を達成する本発明に係る固体高分子電解質羨と
電極との接合体の製造方法は、固体高分子電解質膜の両
側に、反応膜とガス拡散膜とからなる2枚のガス拡散電
極の反応膜側を接合するに際し、上記ガス拡散電極の反
応膜側に硫酸のアルコール溶液を塗布した後接合するこ
とを特徴とする。
Means for Solving the Problems> A method for manufacturing a solid polymer electrolyte-electrode assembly according to the present invention that achieves the above-mentioned object comprises forming a reaction membrane and a gas diffusion membrane on both sides of a solid polymer electrolyte membrane. When bonding the reaction membrane sides of the two gas diffusion electrodes, the bonding is performed after applying an alcoholic solution of sulfuric acid to the reaction membrane side of the gas diffusion electrodes.

本発明で固体高分子電解質膜とは水が共存しても液体に
ならない電解質膜をいい、例えばパーフルオロスルフォ
ン酸ボリマー膜(ナフィオン:商品名)を挙げることが
できろ。
In the present invention, the solid polymer electrolyte membrane refers to an electrolyte membrane that does not become liquid even in the presence of water, and includes, for example, a perfluorosulfonic acid polymer membrane (Nafion: trade name).

本発明では、ガス拡散電極の反応膜側に硫酸のアルコー
ル溶液を塗布するが、この鷺布方法(よ特に隈定されず
、要は、ガス拡散電極の表面全体に亘ってほぼ均一に塗
布できる方法であればよい。なお、後述するように、溶
液をガス拡散電極の反応膜内に浸透させて反応効率を上
昇させる点を考慮すると、ガス拡散電極の反対側から吸
引しつつ塗布するのが望ましく、また、塗布は2枚のガ
ス拡散電極にするのが好ましい。
In the present invention, an alcoholic solution of sulfuric acid is applied to the reaction membrane side of the gas diffusion electrode, but this method (it is not particularly limited; in short, it can be applied almost uniformly over the entire surface of the gas diffusion electrode) However, as will be described later, considering that the reaction efficiency is increased by allowing the solution to permeate into the reaction membrane of the gas diffusion electrode, it is recommended to apply it while suctioning it from the opposite side of the gas diffusion electrode. Preferably, the coating is performed using two gas diffusion electrodes.

ここで、硫酸のアルコール溶液の濃度は特に限定されな
いが、後の工程(乾燥工程又はホットプレス工程)にお
いて除去される程度とするのが望ましい。また、アルコ
ールとしてはメタノール,エタノール,イソプロビルア
ルコール等を用いるのが望ましい。
Here, the concentration of the alcohol solution of sulfuric acid is not particularly limited, but it is desirable to set it to a level that can be removed in a subsequent step (drying step or hot pressing step). Further, as the alcohol, it is desirable to use methanol, ethanol, isopropyl alcohol, etc.

また、硫酸のアルコール溶液を塗布した場合、アルコー
ルを乾燥した後ホットプレスすることなく接合体とする
こともできるが、好ましくはホットプレスにより接合す
るのがよい。ホットプレスは固体高分子電解質展を介し
て2枚のガス拡散電極が接合される条件であれば特に限
定されないが、好ましくは硫酸のアルコールWl液中の
アルコールが蒸発除去されろ条件がよい。
Furthermore, when an alcoholic solution of sulfuric acid is applied, a bonded body can be obtained without hot pressing after drying the alcohol, but it is preferable to bond by hot pressing. Hot pressing is not particularly limited as long as the two gas diffusion electrodes are bonded through solid polymer electrolyte expansion, but preferably the conditions are such that the alcohol in the sulfuric acid alcohol Wl solution is evaporated and removed.

なお、ガス拡散電極は反応膜とガス拡散展とを接合して
なるものなど、従来から知られているもの(例えば、特
開昭62−154571号公報参照)でよい。ここで、
反応膜は一般に、例えば白金金属及び/又はその酸化物
の他、Pt, Pd及び/又はIr等にRu, Sn等
を合金化したもの等からなる触媒若しくは触媒を担持さ
せた親水性カーボン微粒子をフッ素樹脂等に分散させた
ものである。
The gas diffusion electrode may be a conventionally known electrode, such as one formed by bonding a reaction membrane and a gas diffusion electrode (for example, see Japanese Patent Laid-Open No. 154571/1983). here,
The reaction membrane generally includes a catalyst made of platinum metal and/or its oxide, an alloy of Pt, Pd, and/or Ir with Ru, Sn, etc., or hydrophilic carbon fine particles supporting a catalyst. It is dispersed in fluororesin, etc.

本発明方法によると、ガス拡散電極の反応膜に、硫酸が
浸透した状態で且つこの硫酸を介して接合されるので、
反応膜に分散された触媒と固体高分子電解質膜との接触
面積が実質的に大きくなることになる。また、ガス拡散
電極と固体高分子電解質膜との密着性が高められて接触
抵抗の低下が図られ、H″′の移動抵抗が低下する。こ
のような理由により、本発明方法による接合体を燃料電
池や水電解等に使用すると、電池反応の効率が著しく向
上する。
According to the method of the present invention, since the reaction membrane of the gas diffusion electrode is bonded with sulfuric acid permeated through the sulfuric acid,
The contact area between the catalyst dispersed in the reaction membrane and the solid polymer electrolyte membrane becomes substantially larger. In addition, the adhesion between the gas diffusion electrode and the solid polymer electrolyte membrane is improved, reducing the contact resistance and reducing the movement resistance of H''. When used in fuel cells, water electrolysis, etc., the efficiency of cell reactions is significantly improved.

く実 施 例〉 息下、本発明を実施例に基づいて説明する。Example of implementation The present invention will now be explained based on examples.

平均粒径50人の白金と平均粒径450人の親水性カー
ボンブラックと平均粒径0.3μのポリテトラフルオロ
エチレンとが0.7:7: 3の割合で成る親水性反応
誤と、平均粒径420人の疎水性カーボンブラックと平
均粒径0.3μのポリテトラフルオロエチレンとが7:
 3の割合から成る疎水性ガス拡散膜とからなるガス拡
散電極(厚さ0.6m)を製造した。ここで、親水性反
応膜及び疎水性ガス拡散膜は、白金以外の各原料粉末に
ソルベントナフサ、アルコール、水、炭化水素などの溶
接を混合した後、圧縮成形することにより得ることがで
きる。そして、これらを重ねて圧延し、親水性反応膜側
に、塩化白金酸化還元法によりP t O. 5 6+
+Ig/elIrを担持させることによりガス拡散電極
とした。
A hydrophilic reaction error consisting of platinum with an average particle size of 50, hydrophilic carbon black with an average particle size of 450, and polytetrafluoroethylene with an average particle size of 0.3 μ in a ratio of 0.7:7:3, and the average Hydrophobic carbon black with a particle size of 420 people and polytetrafluoroethylene with an average particle size of 0.3μ are 7:
A gas diffusion electrode (thickness: 0.6 m) was manufactured, which consisted of a hydrophobic gas diffusion membrane having a ratio of 1.3 to 3. Here, the hydrophilic reaction membrane and the hydrophobic gas diffusion membrane can be obtained by mixing raw material powders other than platinum with solvent naphtha, alcohol, water, hydrocarbon, etc., and then compression molding the mixture. Then, these are piled up and rolled, and P t O. 5 6+
By supporting +Ig/elIr, it was made into a gas diffusion electrode.

かかるガス拡散電極の反応膜側に、硫酸のイソプロビル
アルコール溶液を塗布した。この塗布は、ガス拡散層を
真空引きプレート上に載置し、70℃の温度下で裏側か
ら吸引しながら行い、硫酸量として0.6llg/dの
塗布量(含浸深さは40〜50μm)とした。
An isopropyl alcohol solution of sulfuric acid was applied to the reaction membrane side of the gas diffusion electrode. This coating was carried out by placing the gas diffusion layer on a vacuum plate and suctioning it from the back side at a temperature of 70°C.The amount of sulfuric acid applied was 0.6 llg/d (the impregnation depth was 40 to 50 μm). And so.

このような塗布を行った2枚のガス拡散電極の間に、0
.17閤厚のパーフルオロスルフォン酸ボリマー膜(ナ
フィオン:デュポン社製)をはさみ、120〜130℃
で60秒間、60kg/cdの条件でホットプレスし、
接合体とした。
Between the two gas diffusion electrodes coated in this way, 0
.. A perfluorosulfonic acid polymer membrane (Nafion: manufactured by DuPont) with a thickness of 17 mm was sandwiched and heated at 120 to 130°C.
Hot press at 60kg/cd for 60 seconds,
It was made into a zygote.

このようにして製造した接合体を2枚のガスセパレータ
で挾持し、発電試験を行った。
The thus manufactured assembled body was sandwiched between two gas separators and a power generation test was conducted.

第1図はその状態を概念的に示したものである。FIG. 1 conceptually shows this state.

第1図中、1は固体高分子電解質展、2A,2Bはガス
拡散電極であり、ガス拡散電極2A,2Bはそれぞれ反
応1113A,3B及びガス拡散[4A,4Bからなる
。なお、反応膜3A,3B中に硫酸が浸透した領域を斜
線で示してある。また、5,6はガスセパレー夕である
In FIG. 1, 1 is a solid polymer electrolyte, 2A and 2B are gas diffusion electrodes, and the gas diffusion electrodes 2A and 2B are composed of reactions 1113A and 3B and gas diffusion [4A and 4B, respectively. Note that the regions where sulfuric acid has permeated into the reaction membranes 3A and 3B are shown with diagonal lines. Further, 5 and 6 are gas separators.

ガスセパレータ5は水素極となるガス拡散電極2人に水
素を供給するための水素供給溝5aとガス拡散電極2人
を冷却する冷却水を流すための冷却水供給溝5bとを交
互に有しており、ガスセパレータ6は酸素極となるガス
拡散電極2Bに酸素を供給するための酸素供給溝68を
有している。
The gas separator 5 alternately has hydrogen supply grooves 5a for supplying hydrogen to two gas diffusion electrodes serving as hydrogen electrodes, and cooling water supply grooves 5b for flowing cooling water to cool the two gas diffusion electrodes. The gas separator 6 has an oxygen supply groove 68 for supplying oxygen to the gas diffusion electrode 2B serving as an oxygen electrode.

このような構成において、ガスセパレータ5へ水素及び
冷却水を供給すると共にガスセパレータ6へ酸素を供給
し、発電テストを行った。なお、酸素はガス圧1 kg
/dG ,流量2. 6 1 / win,水素はガス
圧0.4kg/aIIG,流量2.017■inとし、
冷却水温度は70℃とした。また、ガス拡散電極2A,
2Bの有効面積は12X12anであった。
In such a configuration, a power generation test was conducted by supplying hydrogen and cooling water to the gas separator 5 and supplying oxygen to the gas separator 6. In addition, oxygen has a gas pressure of 1 kg
/dG, flow rate 2. 6 1 / win, hydrogen gas pressure is 0.4 kg/a IIG, flow rate is 2.017 ■ in,
The cooling water temperature was 70°C. In addition, gas diffusion electrode 2A,
The effective area of 2B was 12×12 an.

比較のため、ガス拡散電極に硫酸のアルコール+1¥液
を建布しないこと以外は上述したものと同様の接合体を
用い、上記実施例と同様にして発電テストを行った。
For comparison, a power generation test was conducted in the same manner as in the above example using the same assembly as described above except that sulfuric acid alcohol + 1 yen liquid was not applied to the gas diffusion electrode.

これらの結果を第2図に示す。この結果からも明らかな
ように、本発明方法による接合体を用いた場合には、電
池反応の効率が向上し、出力が上昇するという効果を奏
した。
These results are shown in FIG. As is clear from these results, when the conjugate according to the method of the present invention was used, the efficiency of the cell reaction was improved and the output was increased.

く発明の効果〉 以上説明したように、本発明方法によると、ガス拡散電
極の反応展に硫酸が浸透した状態で固体高分子電解質膜
とガス拡散電極とが接合されるので、硫酸と固体高分子
電解質膜との接触により触媒反応が生じる面積が増大す
ると共に接着抵抗が低下し、Kの移動抵抗を低減するこ
とができる。したがって本発明方法による接合体を燃料
電池や水電解等に用いると反応効率が増大し、高出力化
するという効果を奏する。
Effects of the Invention> As explained above, according to the method of the present invention, the solid polymer electrolyte membrane and the gas diffusion electrode are joined with sulfuric acid permeating the reaction mixture of the gas diffusion electrode. The area where a catalytic reaction occurs increases due to contact with the molecular electrolyte membrane, and the adhesion resistance decreases, making it possible to reduce the movement resistance of K. Therefore, when the conjugate produced by the method of the present invention is used in fuel cells, water electrolysis, etc., the reaction efficiency increases and output is increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す概念図、第2図は発電
テストの結果を示すグラフ、第3図は従来技術に係る固
体高分子電解質膜燃料電池を示す概念図である。 図面中、 1は固体高分子電解質膜、 2A,2Bはガス拡散電極、 3A,3Bは反応膜、 4A,4Bはガス拡散膜、 5,6はガスセパレータ) 5aは水素供給溝、 5bは冷却水供給溝、 6aは酸素供給溝である。
FIG. 1 is a conceptual diagram showing an embodiment of the present invention, FIG. 2 is a graph showing the results of a power generation test, and FIG. 3 is a conceptual diagram showing a solid polymer electrolyte membrane fuel cell according to the prior art. In the drawing, 1 is a solid polymer electrolyte membrane, 2A and 2B are gas diffusion electrodes, 3A and 3B are reaction membranes, 4A and 4B are gas diffusion membranes, and 5 and 6 are gas separators) 5a is a hydrogen supply groove, 5b is a cooling hole The water supply groove 6a is an oxygen supply groove.

Claims (2)

【特許請求の範囲】[Claims] (1)固体高分子電解質膜の両側に、反応膜とガス拡散
膜とからなる2枚のガス拡散電極の反応膜側を接合する
に際し、上記ガス拡散電極の反応膜側に硫酸のアルコー
ル溶液を塗布した後接合することを特徴とする固体高分
子電解質膜と電極との接合体の製造方法。
(1) When joining the reaction membrane sides of two gas diffusion electrodes consisting of a reaction membrane and a gas diffusion membrane to both sides of the solid polymer electrolyte membrane, apply an alcoholic solution of sulfuric acid to the reaction membrane side of the gas diffusion electrode. A method for producing a bonded body of a solid polymer electrolyte membrane and an electrode, characterized by bonding after coating.
(2)固体高分子電解質膜がパーフルオロスルフォン酸
ポリマー膜である請求項1記載の固体高分子電解質膜と
電極との接合体の製造方法。
(2) The method for producing an assembly of a solid polymer electrolyte membrane and an electrode according to claim 1, wherein the solid polymer electrolyte membrane is a perfluorosulfonic acid polymer membrane.
JP2001065A 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode Pending JPH03208261A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001065A JPH03208261A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001065A JPH03208261A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Publications (1)

Publication Number Publication Date
JPH03208261A true JPH03208261A (en) 1991-09-11

Family

ID=11491135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001065A Pending JPH03208261A (en) 1990-01-09 1990-01-09 Manufacture of connecting body between solid high polymer electrolyte membrane and electrode

Country Status (1)

Country Link
JP (1) JPH03208261A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079630A3 (en) * 1999-06-18 2001-05-25 Gore Enterprise Holdings Inc Fuel cell membrane electrode assemblies with improved power outputs and poison resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000079630A3 (en) * 1999-06-18 2001-05-25 Gore Enterprise Holdings Inc Fuel cell membrane electrode assemblies with improved power outputs and poison resistance

Similar Documents

Publication Publication Date Title
US6723464B2 (en) Membrane-electrode-assembly with solid polymer electrolyte
US3457113A (en) Laminar electrode including hydrophobic and hydrophilic layfrs; method of making; fuel cell therewith; and method of using fuel cell
JP3446254B2 (en) Fuel cell and method of manufacturing the same
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JPH03208260A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP2001085019A (en) High polymer solid fuel cell and manufacture of electrode therefor
JP3555209B2 (en) Power generation layer of fuel cell and method of manufacturing the same
JPH04169069A (en) Joining body of solid polyelectrolyte film and electrode
JP3364028B2 (en) Solid polymer electrolyte membrane fuel cell body
JP3358820B2 (en) Hydrogen booster and fuel cell using the same
JPH07147162A (en) Manufacture of jointed body of electrolytic film and electrode
US8430985B2 (en) Microporous layer assembly and method of making the same
JPH06251779A (en) Formation of joined body of solid polymer electrolyte layer and electrode for fuel cell
JPH03208262A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPH03208261A (en) Manufacture of connecting body between solid high polymer electrolyte membrane and electrode
JPH03295172A (en) Junction body of solid polymer electrolyte film and electrode
US20070184329A1 (en) Liquid feed fuel cell with orientation-independent fuel delivery capability
JPH06223836A (en) Fuel cell
JPH1116584A (en) Cell for solid high polymer type fuel cell and its manufacture
US20080248358A1 (en) Polymer electrolyte fuel cell and production method thereof
JPH05109418A (en) Joint body of solid high polymer electrolytic film and electrode
JPH06203849A (en) Manufacture of solid high polymer fuel cell