JPH03295169A - Junction body of solid polymer electrolyte film and electrode - Google Patents

Junction body of solid polymer electrolyte film and electrode

Info

Publication number
JPH03295169A
JPH03295169A JP2095170A JP9517090A JPH03295169A JP H03295169 A JPH03295169 A JP H03295169A JP 2095170 A JP2095170 A JP 2095170A JP 9517090 A JP9517090 A JP 9517090A JP H03295169 A JPH03295169 A JP H03295169A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
electrolyte film
catalyst
electrolyte membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2095170A
Other languages
Japanese (ja)
Inventor
Choichi Furuya
長一 古屋
Kuninobu Ichikawa
市川 国延
Ko Wada
和田 香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2095170A priority Critical patent/JPH03295169A/en
Publication of JPH03295169A publication Critical patent/JPH03295169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To obtain a junction body of a solid polymer electrolyte film and gas diffusing electrodes having a large catalyst carrying quantity per unit area by hot-pressing a pinch body arranged with gas diffusing films on both sides of the solid polymer electrolyte film deposited with catalysts on both faces. CONSTITUTION:A perfluorosulfonic acid polymer film is used for a solid polymer electrolyte film 1, and a catalyst layer 2 made of Pt fine grains is formed on it by the adsorption reduction method. Gas diffusing electrodes 3A, 3B are constituted of hydrophilic reaction films 4A, 4B and hydrophobic gas diffusing films 5A, 5B. The solid polymer electrolyte film 1 is sandwiched between two gas diffusing electrodes 3A, 3B to form a pinch body, which is hot-pressed under the coexistence of moisture to obtain a junction body. The junction body thus manufactured carries a catalyst 4-5mg/cm<2>, and the performance can be sharply improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、固体高分子電解質膜と電極との接合体に関し
、燃料電池や水電解等に用いて好適なものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an assembly of a solid polymer electrolyte membrane and an electrode, and is suitable for use in fuel cells, water electrolysis, and the like.

〈従来の技術〉 燃料電池は、資源の枯渇問題を有する石化燃料を使う必
要がない上、騒音をほとんど発生せず、エネルギの回収
効率も他のエネルギ機関と較べて非常に高くできる等の
優れた特徴を持っているため、例えばビルディング単位
や工場単位の比較的小型の発電プラントとして利用され
ている。
<Conventional technology> Fuel cells do not require the use of fossil fuels, which have resource depletion issues, generate almost no noise, and have very high energy recovery efficiency compared to other energy engines. Because of these characteristics, it is used as a relatively small power generation plant for each building or factory, for example.

近年、この燃料電池を車載用の内燃機関に代えて作動す
るモータの電源として利用し、とのモータにより車両等
を駆動することが考えられている。この場合に重要なこ
とは、反応によって生成する物質をできるだけ再利用す
ることは当然のこととして、車載用であることからも明
らかなように、余り大きな出力は必要でないものの、全
ての付帯設備と共に可能な限り小型であることが望まし
く、このような点から固体高分子電解質膜燃料電池が注
目されている。
In recent years, it has been considered to use this fuel cell as a power source for a motor that operates in place of an internal combustion engine in a vehicle, and to drive a vehicle or the like with the motor. What is important in this case is that it is natural to reuse the substances produced by the reaction as much as possible, and as it is clear from the fact that it is for automotive use, although a large output is not required, It is desirable to be as small as possible, and from this point of view, solid polymer electrolyte membrane fuel cells are attracting attention.

ここで、−例として固体高分子電解質膜燃料電池本体の
基本構造を第3図を参照しながら説明する。同図に示す
ように、電池本体01は固体高分子電解質膜02の両側
にガス拡散電極03A、03Bが接合されることによ咬
構成されている。そしてこの接合体は、固体高分子電解
質膜02の両側にガス拡散電極03A、03Bを合せた
後、ホットプレス等することにより製造される。また、
ガス拡散電極03A、03Bはそれぞれ反応膜04A。
Here, as an example, the basic structure of a solid polymer electrolyte membrane fuel cell main body will be explained with reference to FIG. As shown in the figure, the battery body 01 has a diagonal structure in which gas diffusion electrodes 03A and 03B are joined to both sides of a solid polymer electrolyte membrane 02. This assembled body is manufactured by placing the gas diffusion electrodes 03A and 03B on both sides of the solid polymer electrolyte membrane 02, and then hot pressing or the like. Also,
Gas diffusion electrodes 03A and 03B are each a reaction membrane 04A.

04B及びガス拡散膜05A、05Bが接合されたもの
であ抄、電解質!1I02とlよ反応膜04A、04B
の表面が接触している。したがって、電池反応は主に電
解質膜02と反応膜04A、04Bとの間の接触面で起
こる。
04B and gas diffusion membranes 05A and 05B are joined together, making it an electrolyte! 1I02 and l reaction membranes 04A, 04B
surfaces are in contact. Therefore, the battery reaction mainly occurs at the contact surface between the electrolyte membrane 02 and the reaction membranes 04A and 04B.

例えばガス拡散電極03Aを酸素極、ガス拡散電極03
Bを水素極とし、各々のガス拡散膜05A、05Bを介
して酸素、水素を反応膜04A、04B側へ供給すると
、各反応膜04A、04Bと電解質膜02との界面で次
のような反応が起こる。
For example, gas diffusion electrode 03A is an oxygen electrode, gas diffusion electrode 03
When B is used as a hydrogen electrode and oxygen and hydrogen are supplied to the reaction membranes 04A and 04B through the respective gas diffusion membranes 05A and 05B, the following reaction occurs at the interface between each reaction membrane 04A and 04B and the electrolyte membrane 02. happens.

反応膜04Aの界面: 0 +4 H”+4 e −=2 HO反応膜04Bの
界面: 2 H−4H”+ 4 e ここで、4H”は電解質膜02を通って水素屑から酸素
極へ流れるが、4eは負荷06を通って水素極から酸素
極へ流れることになり、電気エネルギーが得られる。
Interface of reaction membrane 04A: 0 + 4 H''+4 e -=2 Interface of HO reaction membrane 04B: 2 H-4H''+ 4 e Here, 4H'' flows from hydrogen scraps to the oxygen electrode through electrolyte membrane 02. , 4e flow from the hydrogen electrode to the oxygen electrode through the load 06, and electrical energy is obtained.

〈発明が解決しようとする課題〉 上述した構成の燃料電池本体01では、電池反応は主に
、電解質膜02と各反応!l!04A。
<Problems to be Solved by the Invention> In the fuel cell main body 01 having the above-mentioned configuration, the cell reactions are mainly caused by various reactions with the electrolyte membrane 02! l! 04A.

04Bとの接触面で起こるので、電池性能を向上させる
には電極自体を大きくあるいは多層にしなければならな
いという問題がある。
Since this occurs at the contact surface with 04B, there is a problem in that the electrode itself must be made larger or multilayered in order to improve battery performance.

すなわち、例えば燃料電池の小型化を追求するためには
、上述した電池本体01の単位体積当りの電池反応の向
上が必須となる。これは、水電解等を行う場合にもri
8iI様である。
That is, for example, in order to pursue miniaturization of fuel cells, it is essential to improve the cell reaction per unit volume of the cell body 01 described above. This also applies when performing water electrolysis, etc.
This is Mr. 8iI.

そして、単位体積当りの電池反応を向上させるためには
、例えば上記反応膜04A、04Bの触媒担持量を増大
させるのが有効である。
In order to improve the battery reaction per unit volume, it is effective, for example, to increase the amount of catalyst supported on the reaction membranes 04A and 04B.

しかし、上述した反応膜04A、04Bは一般に、例え
ば白金系触媒若しくは白金系触媒を担持させた親水性カ
ーボン微粒子をフッ素樹脂等に分散させたものであり、
触媒担持量には限界があり、例えばIIIIg/d程度
までである。
However, the reaction membranes 04A and 04B described above are generally made by dispersing, for example, a platinum-based catalyst or hydrophilic carbon fine particles supporting a platinum-based catalyst in a fluororesin or the like.
There is a limit to the amount of catalyst supported, for example up to about IIIg/d.

本発明:よこのような事情に鑑み、燃料電池や水電解等
に用いた場合に電池反応効率を大幅に向上させるために
触媒担持量を増大させた、固体高分子電解質膜と電極と
の接合体を提供することを目的とする。
The present invention: In view of the above circumstances, the present invention provides a bond between a solid polymer electrolyte membrane and an electrode, which has an increased amount of catalyst supported in order to significantly improve cell reaction efficiency when used in fuel cells, water electrolysis, etc. The purpose is to provide the body.

く課題を解決するための手段〉 前記目的を達成する本発明に係る固体高分子電解質膜と
電極との接合体は、両面に触媒を析出した固体高分子電
解質膜の両側に、必要に応じて内側に反応膜を有する2
枚のガス拡散膜を配した挾持体を、ホットプレスしてな
ることを特徴とする。
Means for Solving the Problems〉 The assembly of a solid polymer electrolyte membrane and an electrode according to the present invention that achieves the above object includes a solid polymer electrolyte membrane on both sides of which a catalyst is deposited, as needed. 2 with a reaction membrane inside
It is characterized in that it is made by hot-pressing a clamping body on which two gas diffusion membranes are arranged.

本発明で固体高分子電解質膜とは水が共存しても液体に
ならない電解質膜をいい、好適なものとしてはパーフル
オロスルフォン酸ポリマー膜(ナフィオン:デュポン社
商品名)を挙げろことができるが、例えばスチレン系イ
オン交換膜などの一般のイオン交換膜も用箋ろことがで
きる。
In the present invention, the solid polymer electrolyte membrane refers to an electrolyte membrane that does not become liquid even when water coexists, and a preferred example is a perfluorosulfonic acid polymer membrane (Nafion: trade name of DuPont). For example, general ion exchange membranes such as styrene-based ion exchange membranes can also be used.

このような固体高分子電解質膜の両面に白金系触媒を析
出させたものを得るには例えば待開昭55−38934
号公報に記載された方法を用いればよい。すなわち、固
体高分子電解質膜の一面側に触媒金属塩溶液を、他面側
に還元剤溶液をそれぞれ配することにより触媒金属塩溶
液側の面に触媒を析出し、その後、両側の溶液を逆にし
て他方の面に触媒を析出するようにする。なお、ここで
、触媒としては、好ましくは白金、ロジウム、パラジウ
ム、ルテニウムおよびイリジウムなどの白金族金属が用
いられ、また、還元剤としてはホウ素化ナトリウム、ジ
メチルアミノボランなどが用いられる。
To obtain such a solid polymer electrolyte membrane with a platinum catalyst deposited on both sides, for example,
The method described in the publication may be used. That is, by disposing a catalyst metal salt solution on one side of the solid polymer electrolyte membrane and a reducing agent solution on the other side, the catalyst is deposited on the surface facing the catalyst metal salt solution, and then the solutions on both sides are inverted. so that the catalyst is deposited on the other side. Here, platinum group metals such as platinum, rhodium, palladium, ruthenium, and iridium are preferably used as the catalyst, and sodium boride, dimethylaminoborane, etc. are used as the reducing agent.

また、本発明で用いろガス拡散電極は、通気性はあるが
通水性は有さず導電性のあるものであれば特に限定され
ないが、一般に疎水性カーボン及びフッ素樹脂などの疎
水性樹脂からなる。
Further, the gas diffusion electrode used in the present invention is not particularly limited as long as it has air permeability but no water permeability and is conductive, but it is generally made of hydrophobic resin such as hydrophobic carbon and fluororesin. .

本発明では、両面に触媒を析出させた固体高分子電解質
膜の両側にガス拡散膜を配した挾持体をホットプレスす
ることにより接合体とする。このときのホットプレスの
条件は接合する条件であれば特に限定されないが、−般
に、120〜250℃の温度で100〜600kg /
 clrの圧力で行えばよい。
In the present invention, a bonded body is obtained by hot pressing a sandwich body in which a gas diffusion membrane is arranged on both sides of a solid polymer electrolyte membrane on which a catalyst is deposited on both sides. The hot pressing conditions at this time are not particularly limited as long as they are bonding conditions, but - generally, the temperature is 120 to 250°C and the pressure is 100 to 600 kg/
It can be done at a pressure of clr.

また、このときガス拡散膜の内側に反応膜を配してもよ
い。すなわち、固体高分子電解質膜燃料電池等に用いら
れるガス拡散膜と反応膜とからなるガス拡散電極を用い
ることもできる。ここで、反応膜は触媒を担持させたも
のをいい、一般に、疎水性カーボン及びフッ素樹脂など
の疎水性樹脂に、触媒を担持させた親水性カーボン微粒
子若しくは触媒微粒子を担持させたもので、電解質や水
などを透過させる性質を有しているものである。
Further, at this time, a reaction membrane may be arranged inside the gas diffusion membrane. That is, it is also possible to use a gas diffusion electrode consisting of a gas diffusion membrane and a reaction membrane used in solid polymer electrolyte membrane fuel cells and the like. Here, the reaction membrane refers to a membrane on which a catalyst is supported, and generally, hydrophilic carbon fine particles or catalyst fine particles on which a catalyst is supported are supported on hydrophobic carbon and a hydrophobic resin such as a fluororesin. It has the property of allowing water to pass through it.

このように形成した接合体では、固体高分子電解質膜と
ガス拡散膜苦しくLよ反応膜との界面に存在する触媒量
が、例えば固体高分子電解質膜に直接、反応膜を接合し
た場合に比べて大幅に大きくなる。
In the bonded body formed in this way, the amount of catalyst present at the interface between the solid polymer electrolyte membrane, the gas diffusion membrane, and the reaction membrane is lower than, for example, when the reaction membrane is bonded directly to the solid polymer electrolyte membrane. becomes significantly larger.

く実 施 例ン 以下、本発明を実施例に基づいて説明する。Practical example Hereinafter, the present invention will be explained based on examples.

第1図には一実施例に係る固体高分子電解質膜とガス拡
散電極との接合体の断面を示す。
FIG. 1 shows a cross section of an assembly of a solid polymer electrolyte membrane and a gas diffusion electrode according to one embodiment.

同図中、1は固体高分子電解質膜、2はその両面に析出
された触媒層であり、この両側にガス拡散電極3A、3
Bを接合して接合体としている。
In the figure, 1 is a solid polymer electrolyte membrane, 2 is a catalyst layer deposited on both sides, and gas diffusion electrodes 3A, 3 are on both sides of the membrane.
B is joined to form a joined body.

ここで、固体高分子電解質膜1としては厚さ0.17−
のデュポン社製のナフィオン117(商品名)を用い、
これに前述した吸着還元法によりPt黴籾粒子らなる触
媒層2を形成した。
Here, the solid polymer electrolyte membrane 1 has a thickness of 0.17-
Using Nafion 117 (product name) manufactured by DuPont,
A catalyst layer 2 made of Pt rice mold particles was formed thereon by the adsorption-reduction method described above.

一方、ガス拡散電極3A、3Bは、平均粒径50人の白
金と平均粒径450人の親水性カーボンブラックと平均
粒径0,3μのポリテトラプルオロエチレンとが0.7
:  7:  3の割合で成る親水性反応膜4A、4B
と、平均粒径420人の疎水性カーボンブラックと平均
粒径0.3μのポリテトラフルオロエチレンとが7: 
3の割合から成る疎水性ガス拡散膜5A。
On the other hand, the gas diffusion electrodes 3A and 3B are made of platinum with an average particle size of 50, hydrophilic carbon black with an average particle size of 450, and polytetrafluoroethylene with an average particle size of 0.3μ.
: Hydrophilic reaction membranes 4A and 4B with a ratio of 7:3
7: Hydrophobic carbon black with an average particle size of 420 and polytetrafluoroethylene with an average particle size of 0.3μ.
The hydrophobic gas diffusion membrane 5A consists of a ratio of 3.

5Bとから構成されている。親水性反応膜4A。It is composed of 5B. Hydrophilic reaction membrane 4A.

4B及び疎水性ガス拡散膜5A、5Bは、白金以外の各
原料粉末にソルベントナフサ、アルコール、水、炭化水
素などの溶媒を混合した後、圧縮成形することにより得
る乙とができる。そして、これらを重ねて圧延し、親水
性反応膜4A、4B側に、塩化白金酸化還元法によりP
tO,56g/cIlを担持させることによりガス拡散
電極3A、3Bが製造される。
4B and the hydrophobic gas diffusion membranes 5A and 5B can be obtained by mixing each raw material powder other than platinum with a solvent such as solvent naphtha, alcohol, water, or hydrocarbon, and then compression molding the mixture. Then, these are piled up and rolled, and P is coated on the hydrophilic reaction membranes 4A and 4B using a platinum chloride oxidation-reduction method.
Gas diffusion electrodes 3A and 3B are manufactured by supporting tO, 56 g/cIl.

そして、2枚のガス拡散電極3A、3Bの間に固体高分
子電解質膜1を挾んで挾持体とし、水分共存下180℃
で3 Q Oateの条件で300秒間ホットプレスす
ることにより接合体とした。
Then, the solid polymer electrolyte membrane 1 is sandwiched between the two gas diffusion electrodes 3A and 3B as a sandwich body, and the temperature is increased to 180°C in the coexistence of water.
A bonded body was obtained by hot pressing for 300 seconds under the conditions of 3 Q Oate.

このように製造した接合体は、触媒が4〜5■/clI
r担持されており、大幅な性能向上を図ることができる
The thus produced conjugate has a catalyst content of 4 to 5 μ/clI.
r, and can significantly improve performance.

第2図には上述した実施例の接合体と、固体高分子電解
質膜1の表面に触媒層2を形成しない接合体(比較例)
について発電テストを行った結果を示すが、実施例の接
合体の方が著しく高性能であることが認められた。
FIG. 2 shows the assembly of the above-mentioned example and the assembly in which the catalyst layer 2 is not formed on the surface of the solid polymer electrolyte membrane 1 (comparative example).
The results of a power generation test are shown below, and it was found that the combined body of the example had significantly higher performance.

〈発明の効果〉 以上説明したように、本発明に係る接合体は、単位面積
当りの触媒担持量が著しく大きいので、燃料電池や水電
解等に用いた場合の電池反応効率が大幅に向上するとい
う効果を秦する。
<Effects of the Invention> As explained above, since the bonded body according to the present invention has a significantly large amount of catalyst supported per unit area, the cell reaction efficiency is greatly improved when used in fuel cells, water electrolysis, etc. The effect of Qin.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一実施例に係る接合体の断面図、第2図は発明
テストの結果を示すグラフ、第3図は固体高分子電解質
膜燃料電池本体の基本構造の概念図である。 図  面  中、 1は固体高分子電解質膜、 2は触媒層、 3A、3Bはガス拡散電極、 4A、4Bは親水性反応膜、 5A。 Bは疎水性ガス拡散膜である。 三菱重工業株式会社
FIG. 1 is a sectional view of an assembly according to one embodiment, FIG. 2 is a graph showing the results of an invention test, and FIG. 3 is a conceptual diagram of the basic structure of a solid polymer electrolyte membrane fuel cell main body. In the drawing, 1 is a solid polymer electrolyte membrane, 2 is a catalyst layer, 3A and 3B are gas diffusion electrodes, 4A and 4B are hydrophilic reaction membranes, and 5A. B is a hydrophobic gas diffusion membrane. Mitsubishi Heavy Industries, Ltd

Claims (1)

【特許請求の範囲】[Claims] 両面に触媒を析出した固体高分子電解質膜の両側に、必
要に応じて内側に反応膜を有する2枚のガス拡散膜を配
した挾持体を、ホットプレスしてなることを特徴とする
固体高分子電解質膜と電極との接合体。
A solid polymer electrolyte membrane characterized in that it is made by hot pressing a sandwiching body in which two gas diffusion membranes having a reaction membrane on the inside are placed on both sides of a solid polymer electrolyte membrane with a catalyst deposited on both sides. A combination of a molecular electrolyte membrane and an electrode.
JP2095170A 1990-04-12 1990-04-12 Junction body of solid polymer electrolyte film and electrode Pending JPH03295169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2095170A JPH03295169A (en) 1990-04-12 1990-04-12 Junction body of solid polymer electrolyte film and electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2095170A JPH03295169A (en) 1990-04-12 1990-04-12 Junction body of solid polymer electrolyte film and electrode

Publications (1)

Publication Number Publication Date
JPH03295169A true JPH03295169A (en) 1991-12-26

Family

ID=14130288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2095170A Pending JPH03295169A (en) 1990-04-12 1990-04-12 Junction body of solid polymer electrolyte film and electrode

Country Status (1)

Country Link
JP (1) JPH03295169A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888011A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Solid polymer electrolyte fuel cell
US6129614A (en) * 1996-04-12 2000-10-10 Maschinenfabrik Rieter Ag Apparatus for grinding clothing of a textile machine
US7037181B1 (en) * 1998-09-09 2006-05-02 Maschinenfabrik Rieter Ag Device for grinding of clothing in a textile machine
JP2010102953A (en) * 2008-10-23 2010-05-06 Kurita Water Ind Ltd Microbiological power generation device and positive electrode for the microbiological power generation device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0888011A (en) * 1994-09-19 1996-04-02 Hitachi Ltd Solid polymer electrolyte fuel cell
US6129614A (en) * 1996-04-12 2000-10-10 Maschinenfabrik Rieter Ag Apparatus for grinding clothing of a textile machine
US7037181B1 (en) * 1998-09-09 2006-05-02 Maschinenfabrik Rieter Ag Device for grinding of clothing in a textile machine
JP2010102953A (en) * 2008-10-23 2010-05-06 Kurita Water Ind Ltd Microbiological power generation device and positive electrode for the microbiological power generation device

Similar Documents

Publication Publication Date Title
US3457113A (en) Laminar electrode including hydrophobic and hydrophilic layfrs; method of making; fuel cell therewith; and method of using fuel cell
US5523177A (en) Membrane-electrode assembly for a direct methanol fuel cell
JPH07296818A (en) Polymer solid electrolyte fuel cell electrode and joint of same with polymer solid electrolyte
JP3153817B2 (en) Solid polymer electrolyte membrane fuel cell
JP2000123850A (en) Solid polymer electrolyte fuel cell
WO2004001884A1 (en) Fuel cell, electrode for fuel cell and method for producing them
JPH08162123A (en) Polymer electrolyte-type electro-chemical cell and its manufacture
JP3446254B2 (en) Fuel cell and method of manufacturing the same
JPH03167752A (en) Gas diffusion electrode and solid macromolecular electrolyte furl cell main body using it
CN1529921A (en) Method for operating fuel cells fed with gas containing hydrogen and carbon oxide and devices relating thereof
WO2003105265A1 (en) Liquid fuel feed type fuel cell
JPH04169069A (en) Joining body of solid polyelectrolyte film and electrode
JP2516750Y2 (en) Assembly of solid polymer electrolyte membrane and electrode
JPH03295169A (en) Junction body of solid polymer electrolyte film and electrode
JP3364028B2 (en) Solid polymer electrolyte membrane fuel cell body
JPH03295172A (en) Junction body of solid polymer electrolyte film and electrode
JP2948376B2 (en) Method for producing reaction film and method for producing electrochemical cell
US3607426A (en) Fuel cell electrode
JP2649470B2 (en) Fuel cell
JPH07326365A (en) Manufacture of polymeric film electrode
JP3420508B2 (en) Polymer electrolyte fuel cell
JP2781630B2 (en) Method for activating a joined body of a solid polymer electrolyte membrane and an electrode
JPH08148151A (en) Fuel cell electrode and manufacture thereof
JPH09219206A (en) Electrochemical element
JPH07176310A (en) Electrode and junction body between electrode and ion exchange membrane