JPH0888011A - Solid polymer electrolyte fuel cell - Google Patents

Solid polymer electrolyte fuel cell

Info

Publication number
JPH0888011A
JPH0888011A JP6222332A JP22233294A JPH0888011A JP H0888011 A JPH0888011 A JP H0888011A JP 6222332 A JP6222332 A JP 6222332A JP 22233294 A JP22233294 A JP 22233294A JP H0888011 A JPH0888011 A JP H0888011A
Authority
JP
Japan
Prior art keywords
electrode
solid polymer
polymer electrolyte
electrolyte membrane
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6222332A
Other languages
Japanese (ja)
Other versions
JP2741574B2 (en
Inventor
Jinichi Imahashi
甚一 今橋
Tatsuo Horiba
達雄 堀場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6222332A priority Critical patent/JP2741574B2/en
Publication of JPH0888011A publication Critical patent/JPH0888011A/en
Application granted granted Critical
Publication of JP2741574B2 publication Critical patent/JP2741574B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

PURPOSE: To enhance electrode reaction and increase the contact of an electrolyte catalyst layer with gas by forming a catalyst layer and a eutectoid layer in a solid polymer electrolyte film, and connecting to a gas diffusion layer to form an electrode-electrolyte film connecting body. CONSTITUTION: A solid polymer electrolyte film 1, a hydrogen electrode 3 and an oxygen electrode 4 having gas diffusion layers 8, 10 facing each other through the film 1 are arranged. Catalyst layers 7, 9 are arranged on the film 1 side of the diffusion layers 8, 10, and eutectoid layers 2 formed by co- depositing an active component are formed on one surface of the film 1, and both surfaces of the film 1 are connected to the diffusion layers 8, 10 to form an electrode-electrolyte film connecting body. Thereby, since the eutectoid layers 2 and the catalyst layer 9 of the electrode 4 are made of a similar component, they can be joined by hot pressing, adhesion between the electrode and the electrolyte film interface is enhanced, proton movement of the hydrogen electrode 3 and the oxygen electrode 4 is made easy. The active component is dispersed together with carbon carrier by co-deposition with a reducing agent on the surface of the film 1 to arrange the catalyst layer 7 necessary for electrode reaction, thereby, the catalyst layer 7 can be made thin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、燃料電池に係り、特に
固体高分子電解質型水素ー酸素燃料電池一般に応用可能
な固体高分子電解質型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell, and more particularly to a solid polymer electrolyte fuel cell applicable to solid polymer electrolyte hydrogen-oxygen fuel cells in general.

【0002】[0002]

【従来の技術】従来の固体高分子電解質型燃料電池にお
いては、一般に2つの集電体と、固体高分子電解質膜
(以下、電解質膜と称す)と、固体高分子電解質膜を介
して互いに対向して設けられガス拡散層を有する水素極
及び酸素極と、水素含有ガス又は酸素含有ガスを水素極
又は酸素極に供給する手段とを備えた構成である。2つ
の電極は、触媒と、この触媒を坦持する坦体と、電解質
膜と同様な固体高分子のイオン(プロトン)伝導体と、
これらを固める結着剤とよりなる。2つの電極は水素極
と酸素極とであり、それぞれの電極における電気化学反
応は次のようになる。
2. Description of the Related Art In a conventional solid polymer electrolyte fuel cell, generally, two current collectors, a solid polymer electrolyte membrane (hereinafter referred to as an electrolyte membrane), and a solid polymer electrolyte membrane face each other. And a hydrogen electrode and an oxygen electrode each having a gas diffusion layer, and means for supplying the hydrogen-containing gas or the oxygen-containing gas to the hydrogen electrode or the oxygen electrode. The two electrodes are a catalyst, a carrier carrying this catalyst, and a solid polymer ionic (proton) conductor similar to the electrolyte membrane.
It consists of a binder that hardens these. The two electrodes are a hydrogen electrode and an oxygen electrode, and the electrochemical reaction at each electrode is as follows.

【0003】水素極では、水素分子がイオン化されてプ
ロトンになり電子を放出する。この電気化学反応は(化
1)式で表わせる。
At the hydrogen electrode, hydrogen molecules are ionized to become protons and emit electrons. This electrochemical reaction can be represented by the formula (Formula 1).

【0004】[0004]

【化1】 Embedded image

【0005】プロトンは電極内のイオン伝導体を伝導し
て電解質膜に到達し、さらに電解質膜内を通過して反対
側の酸素極に移動する。一方、放出された電子は外部回
路を通って酸素極へ移動する。酸素極では(化2)式に
従ってプロトンが水素極から放出された電子と結合して
水が生成される。
Protons conduct through the ionic conductor in the electrode, reach the electrolyte membrane, pass through the electrolyte membrane, and move to the oxygen electrode on the opposite side. On the other hand, the emitted electrons move to the oxygen electrode through the external circuit. At the oxygen electrode, the proton is combined with the electron released from the hydrogen electrode according to the formula (2) to generate water.

【0006】[0006]

【化2】 Embedded image

【0007】以上の燃料電池の反応プロセスは主に次の
4つの段階よりなる。 (A)水素及び酸素の触媒表面への拡散、(B)水素極
及び酸素極内の触媒表面での反応、(C)プロトンの両
極内部及び電解質膜内部における伝導、(D)生成水の
放出、それぞれの段階における燃料ガスの拡散の程度及
び反応速度の程度が電池出力特性に大きく影響する。
The above reaction process of the fuel cell mainly comprises the following four stages. (A) Diffusion of hydrogen and oxygen to the catalyst surface, (B) Reaction on the catalyst surface in the hydrogen electrode and oxygen electrode, (C) Conduction of protons inside both electrodes and inside the electrolyte membrane, (D) Release of produced water The degree of diffusion of the fuel gas and the degree of reaction rate at each stage greatly affect the cell output characteristics.

【0008】前記(A)の段階は、燃料の触媒表面への
供給及び拡散を効率的に行うため、特開昭60−354
72号公報の第1図に示された波型集電体、又は特開平
3−102774号公報及び特開平2−86071号公
報等に開示された矩形溝を有する炭素板を使用すること
が提案されている。これらの波型集電体や矩形溝を有す
る炭素板の、溝を有する側を電極に接触させると接触面
に空間が生じ、この空間を通して燃料が電極表面に拡散
する。固体高分子電解質型燃料電池では通常、前記のよ
うな構造が採用されており、ある程度の出力が発現され
ている。
In the step (A), the fuel is efficiently supplied to the catalyst surface and diffused, and therefore, the method is disclosed in JP-A-60-354.
It is proposed to use the corrugated current collector shown in FIG. 1 of Japanese Unexamined Patent Publication No. 72 or the carbon plate having a rectangular groove disclosed in Japanese Unexamined Patent Publication No. 3-102774 and Japanese Unexamined Patent Publication No. 2-86071. Has been done. When the grooved side of the corrugated current collector or the carbon plate having the rectangular groove is brought into contact with the electrode, a space is created on the contact surface, and the fuel diffuses to the electrode surface through this space. In the solid polymer electrolyte fuel cell, the structure as described above is usually adopted, and the output is exhibited to some extent.

【0009】電解質膜を通過してきたプロトンは、電解
質膜と酸素極との界面で(化2)式の電気化学反応が進
むため酸素極界面で水が生成され、特に高電流密度では
水膜が形成され、いわゆるフラッディング現象を生じ
る。この水膜のため電極内の酸素ガスの拡散が困難とな
り、出力密度が減少し電池性能が不安定化する。このフ
ラッディング現象は特に酸素極と電解質膜との界面で生
じやすい。そこでこの生成水を系外に除去する必要があ
る。
The protons that have passed through the electrolyte membrane undergo the electrochemical reaction of the formula (2) at the interface between the electrolyte membrane and the oxygen electrode, so that water is generated at the oxygen electrode interface. Formed, causing a so-called flooding phenomenon. Due to this water film, diffusion of oxygen gas in the electrode becomes difficult, the power density decreases, and the battery performance becomes unstable. This flooding phenomenon is particularly likely to occur at the interface between the oxygen electrode and the electrolyte membrane. Therefore, it is necessary to remove this generated water outside the system.

【0010】そのため米国特許第4,643,957号
において電極の撥水性を制御してフラッディング現象を
解消すること、さらに、特開平4−169069号公報
に開示されているように、予め電解質膜に凹凸を形成さ
せ、ガス拡散電極と接合することにより電池反応率を向
上させることが提案されている。
Therefore, in US Pat. No. 4,643,957, the water repellency of the electrodes is controlled to eliminate the flooding phenomenon. Further, as disclosed in JP-A-4-169069, an electrolyte membrane is previously formed. It has been proposed to improve the cell reaction rate by forming irregularities and joining them to the gas diffusion electrode.

【0011】以上のように、水素極には電解質膜の乾燥
防止及びプロトンの移動を促進するため水分を添加して
いるが、触媒層の撥水性が不十分な場合は、その水分に
より触媒の細孔が覆われガスの拡散が阻害され、また、
触媒層と電解質膜界面との接触が不十分な場合は、プロ
トンの移動が損なわれる。酸素極では水素極からのプロ
トンと同伴する水と電極反応で生成する水分との系外へ
の排出を促進させ、同時に電極反応に必要な酸素ガスの
拡散性を向上し、さらに、電解質膜界面からのプロトン
の移動を促進させる必要がある。
As described above, water is added to the hydrogen electrode in order to prevent the electrolyte membrane from drying and to promote the migration of protons. However, when the water repellency of the catalyst layer is insufficient, the water causes the catalyst The pores are covered to prevent gas diffusion,
If the contact between the catalyst layer and the electrolyte membrane interface is insufficient, the migration of protons is impaired. At the oxygen electrode, it promotes the discharge of water accompanied by protons from the hydrogen electrode and the water produced by the electrode reaction to the outside of the system, and at the same time improves the diffusivity of oxygen gas required for the electrode reaction. It is necessary to promote the transfer of protons from the.

【0012】[0012]

【発明が解決しようとする課題】従来の固体高分子電解
質型燃料電池にあっては、電解質膜を通過してきたプロ
トンは、電解質膜と酸素極との界面で(化2)式の電気
化学反応が進むため酸素極界面で水が生成され、この水
膜のため電極内の酸素ガスの拡散が困難となり、出力密
度が減少し電池性能が不安定化する問題点があった。
In the conventional solid polymer electrolyte fuel cell, the protons that have passed through the electrolyte membrane undergo the electrochemical reaction of the formula (2) at the interface between the electrolyte membrane and the oxygen electrode. As a result, water is generated at the oxygen electrode interface, and this water film makes it difficult to diffuse oxygen gas in the electrode, resulting in a decrease in power density and instability in battery performance.

【0013】本発明の目的は、水素極及び酸素極の電極
反応を高い効率で行うため、水素極ではプロトンの移動
を促進させ、酸素極では水のフラッデイング現象を防止
し、電極触媒層とガスとの接触効率を向上するととも
に、電極と電解質膜の界面で生じる酸化還元反応を加速
する電極構造を有する固体高分子電解質型燃料電池を提
供することにある。
The object of the present invention is to carry out the electrode reaction of the hydrogen electrode and the oxygen electrode with high efficiency, so that the migration of protons is promoted in the hydrogen electrode, the flooding phenomenon of water is prevented in the oxygen electrode, and the electrode catalyst layer is formed. It is an object of the present invention to provide a solid polymer electrolyte fuel cell having an electrode structure that improves the contact efficiency with gas and accelerates the redox reaction that occurs at the interface between the electrode and the electrolyte membrane.

【0014】[0014]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係る固体高分子電解質型燃料電池は、固体
高分子電解質膜と、固体高分子電解質膜を介して互いに
対向して設けられガス拡散層を有する水素極及び酸素極
と、水素含有ガス又は酸素含有ガスを水素極又は酸素極
に供給する手段とを備えた固体高分子電解質型燃料電池
において、水素極及び酸素極の少なくともいずれか一方
のガス拡散層の固体高分子電解質膜側に触媒層を設ける
とともに、固体高分子電解質膜の少なくともいずれか一
方の面に少なくとも活性成分を共析した共析層を設け、
固体高分子電解質膜は、ガス拡散層と接合されて電極ー
電解質膜接合体に形成されている構成とする。
In order to achieve the above-mentioned object, a solid polymer electrolyte fuel cell according to the present invention is provided with a solid polymer electrolyte membrane and a solid polymer electrolyte membrane so as to face each other. In a solid polymer electrolyte fuel cell comprising a hydrogen electrode and an oxygen electrode having a gas diffusion layer, and a means for supplying a hydrogen-containing gas or an oxygen-containing gas to the hydrogen electrode or the oxygen electrode, at least the hydrogen electrode and the oxygen electrode A catalyst layer is provided on the solid polymer electrolyte membrane side of either one of the gas diffusion layers, and at least one of the surfaces of the solid polymer electrolyte membrane is provided with a co-deposition layer of eutectoid active ingredient,
The solid polymer electrolyte membrane is bonded to the gas diffusion layer to form an electrode-electrolyte membrane assembly.

【0015】そして共析層は、少なくとも炭素坦体、炭
素坦体に坦持された活性成分、プロトン伝導体及び撥水
性結着剤よりなる構成でもよい。
The eutectoid layer may be composed of at least a carbon carrier, an active component supported on the carbon carrier, a proton conductor and a water repellent binder.

【0016】また共析層に坦持された活性成分は、触媒
層に坦持された活性成分より高い濃度を有している構成
でもよい。
The active ingredient carried on the eutectoid layer may have a higher concentration than the active ingredient carried on the catalyst layer.

【0017】さらに共析層の活性成分は、酸素極側の共
析量より水素極側の共析量を少なくして形成されている
構成でもよい。
Further, the active component of the eutectoid layer may be formed so that the eutectoid amount on the hydrogen electrode side is smaller than the eutectoid amount on the oxygen electrode side.

【0018】そして固体高分子電解質膜は、パーフルオ
ロスルホン酸樹脂又はパーフルオロカルボン酸樹脂で形
成されている構成でもよい。
The solid polymer electrolyte membrane may be made of a perfluorosulfonic acid resin or a perfluorocarboxylic acid resin.

【0019】また活性成分は、白金族金属よりなる構成
でもよい。
The active ingredient may be composed of a platinum group metal.

【0020】さらに電極ー電解質膜接合体の製造方法に
おいては、固体高分子電解質膜を、密閉容器に設置して
固体高分子電解質膜の上部に白金化合物を添加するとと
もに、炭素坦体、プロトン伝導体及び撥水性結着剤を所
定量添加して撹拌し、固体高分子電解質膜の下部に還元
剤を添加し、密閉容器を所定温度に加熱し白金化合物を
所定時間で還元させて固体高分子電解質膜に共析層を形
成し、炭素粉末又は白金を坦持した炭素粉末電極触媒
を、プロトン伝導体及び撥水性結着剤とともに混練しペ
ーストに形成してガス拡散層に塗布し、所定温度で乾燥
して水素極及び酸素極を形成し、ホットプレスにより固
体高分子電解質膜をガス拡散層に接合する構成とする。
Further, in the method for producing the electrode-electrolyte membrane assembly, the solid polymer electrolyte membrane is placed in a closed container, the platinum compound is added to the upper portion of the solid polymer electrolyte membrane, and the carbon carrier and the proton conduction are added. Add a certain amount of body and water-repellent binder and stir, add a reducing agent to the bottom of the solid polymer electrolyte membrane, heat the closed container to a predetermined temperature to reduce the platinum compound for a predetermined time, and solid polymer The eutectoid layer is formed on the electrolyte membrane, and the carbon powder electrode catalyst supporting carbon powder or platinum is kneaded together with the proton conductor and the water repellent binder to form a paste, which is applied to the gas diffusion layer at a predetermined temperature. To form a hydrogen electrode and an oxygen electrode, and the solid polymer electrolyte membrane is bonded to the gas diffusion layer by hot pressing.

【0021】そして電動体においては、前記いずれか一
つの固体高分子電解質型燃料電池を、移動用電源に備え
た構成とする。
In the electric body, any one of the solid polymer electrolyte fuel cells described above is provided in the mobile power source.

【0022】[0022]

【作用】本発明によれば、電解質膜の両側に活性成分を
共析により坦持させ、それを水素極及び酸素極で挟んで
電極ー電解質膜接合体に一体化することにより、両極と
電解質膜との密着性が向上し、電解質膜界面又はその近
傍に活性成分を配することにより、内部抵抗が低減しプ
ロトンの移動が容易になる。さらに電極反応に必要な量
の活性成分を電解質膜表面に配置するため、活性成分の
低減が図られる。さらに両極の触媒層はガスの拡散に利
用するのみでよいため薄膜化される。したがって、水素
極では電解質膜に十分な水分の補給がされるようにな
り、プロトンの移動抵抗も低減される。また、酸素極で
も、電解質膜界面と触媒層とがより密着して配してある
ので電解質膜からのプロトンの移動が容易になり、電極
反応が促進される。また、電極の触媒層が薄膜化がされ
るため、電解質膜より供給される水や生成水によるフラ
ッディング現象が防止される。その結果、有効反応面積
の拡大と安定維持が可能となり、高出力密度かつ安定な
性能の電池が実現できる。
According to the present invention, the active ingredient is carried on both sides of the electrolyte membrane by eutectoid, and the active ingredient is sandwiched between the hydrogen electrode and the oxygen electrode and integrated with the electrode-electrolyte membrane assembly, whereby both electrodes and the electrolyte are integrated. Adhesion with the membrane is improved, and by disposing the active ingredient at or near the interface of the electrolyte membrane, the internal resistance is reduced and the migration of protons is facilitated. Furthermore, since the active ingredient in an amount necessary for the electrode reaction is placed on the surface of the electrolyte membrane, the active ingredient can be reduced. Further, the catalyst layers on both electrodes need only be used for the diffusion of gas, and therefore are thinned. Therefore, in the hydrogen electrode, the electrolyte membrane is replenished with sufficient water, and the proton transfer resistance is also reduced. Further, also in the oxygen electrode, since the interface of the electrolyte membrane and the catalyst layer are arranged in close contact with each other, the movement of protons from the electrolyte membrane is facilitated and the electrode reaction is promoted. Moreover, since the catalyst layer of the electrode is thinned, the flooding phenomenon due to the water supplied from the electrolyte membrane or the generated water is prevented. As a result, it becomes possible to expand the effective reaction area and maintain stable, and it is possible to realize a battery with high output density and stable performance.

【0023】[0023]

【実施例】本発明の一実施例を図1及び図2を参照しな
がら説明する。図1及び図2に示すように、固体高分子
電解質膜1と、固体高分子電解質膜1を介して互いに対
向して設けられガス拡散層8,10を有する水素極3及
び酸素極4と、水素含有ガス又は酸素含有ガスを水素極
3又は酸素極4に供給する手段(集電体)5とを備えた
固体高分子電解質型燃料電池であって、水素極3及び酸
素極4の少なくともいずれか一方のガス拡散層8,10
の固体高分子電解質膜1側に触媒層7,9を設けるとと
もに、固体高分子電解質膜の少なくともいずれか一方の
面に少なくとも活性成分を共析した共析層2を設け、固
体高分子電解質膜1の両面は、ガス拡散層8,10と接
合されて電極ー電解質膜接合体に形成されている構成と
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. As shown in FIGS. 1 and 2, a solid polymer electrolyte membrane 1, and a hydrogen electrode 3 and an oxygen electrode 4 that are provided opposite to each other with the solid polymer electrolyte membrane 1 and have gas diffusion layers 8 and 10, A solid polymer electrolyte fuel cell comprising a means (current collector) 5 for supplying a hydrogen-containing gas or an oxygen-containing gas to the hydrogen electrode 3 or the oxygen electrode 4, wherein at least one of the hydrogen electrode 3 and the oxygen electrode 4 is provided. One of the gas diffusion layers 8 and 10
The solid polymer electrolyte membrane 1 is provided with catalyst layers 7 and 9 and at least one surface of the solid polymer electrolyte membrane is provided with a co-deposition layer 2 containing at least an active ingredient. Both surfaces of No. 1 are bonded to the gas diffusion layers 8 and 10 to form an electrode-electrolyte membrane assembly.

【0024】集電体5にはいくつかのガス供給溝が設け
られている。2つの集電体5を向い合わせ、その間に電
解質膜1と水素極3及び酸素極4とをはさみ、ガスシー
ル体6によりガスの漏れを防ぐようになっている。
The current collector 5 is provided with some gas supply grooves. Two current collectors 5 are faced to each other, the electrolyte membrane 1 and the hydrogen electrode 3 and the oxygen electrode 4 are sandwiched between them, and a gas seal member 6 prevents gas from leaking.

【0025】図2は図1に示す電解質膜と両極との拡大
図であり、本実施例の固体高分子電解質膜1と、その共
析層2と、水素極3と、酸素極4との各配置関係を示
す。固体高分子電解質膜1は両側の共析層2を備え、水
素極3は、水素極触媒層(触媒層)7と電子伝導体とし
て作用するガス拡散層8とよりなり、酸素極4は酸素極
触媒層(触媒層)9と電子伝導体として作用するガス拡
散層10とよりなる。電解質膜共析層(共析層)2と、
水素極触媒層7と、ガス拡散層8と、酸素極触媒層9
と、ガス拡散層10とを前記のように配置してホットプ
レスにより加圧一体化する。各触媒層は活性成分、炭
素、プロトン伝導体及び撥水性結着剤等を混合し成型し
て得られる。また、前記の構造は、共析により活性成分
が十分に電解質膜に担持してあれば各触媒層を省いても
よい。さらに、共析層がどちらか一方に設けてあれば電
解質膜界面と電極の密着性は向上する。重要なことは、
電解質膜に共析層を設けたことである。
FIG. 2 is an enlarged view of the electrolyte membrane and both electrodes shown in FIG. 1, showing the solid polymer electrolyte membrane 1 of this embodiment, its eutectoid layer 2, the hydrogen electrode 3 and the oxygen electrode 4. The respective layouts are shown. The solid polymer electrolyte membrane 1 has eutectoid layers 2 on both sides, the hydrogen electrode 3 is composed of a hydrogen electrode catalyst layer (catalyst layer) 7 and a gas diffusion layer 8 acting as an electron conductor, and the oxygen electrode 4 is oxygen. The electrode catalyst layer (catalyst layer) 9 and the gas diffusion layer 10 acting as an electron conductor are formed. An electrolyte membrane eutectoid layer (eutectoid layer) 2;
Hydrogen electrode catalyst layer 7, gas diffusion layer 8, oxygen electrode catalyst layer 9
And the gas diffusion layer 10 are arranged as described above and are pressed and integrated by hot pressing. Each catalyst layer is obtained by mixing active components, carbon, a proton conductor, a water-repellent binder and the like and molding. Further, in the above structure, each catalyst layer may be omitted if the active component is sufficiently supported on the electrolyte membrane by eutectoid. Furthermore, if the eutectoid layer is provided on either side, the adhesion between the electrolyte membrane interface and the electrode is improved. the important thing is,
The eutectoid layer was provided on the electrolyte membrane.

【0026】以上のように、電解質膜に共析層を設ける
ともに、共析層と電極の触媒層とが同様な成分よりなる
ことから、両者をホットプレス等で電極ー電解質膜接合
体(以下、一体化電極という。)にすることができ、電
極と電解質膜界面の密着性が向上し、水素極及び酸素極
のプロトンの移動が容易になる。また、電解質膜表面に
活性成分を還元剤等で炭素坦体、活性成分及びPTFE
(ポリテトラフルオロエチレン)を共析により分散させ
ることにより、電極反応に必要な触媒層を配することが
可能であり、触媒層の薄膜化が図られる。したがって、
水素極では電極反応をより促進させるとともに、酸素極
の方では水分の移動が容易になることから、水分の系外
排出が簡単となり、両極と電解質膜界面を改善すること
により、電池性能を向上させ、かつ安定化させることが
可能となる。さらに、共析層の活性成分濃度を各触媒層
よりも高くすることにより、水素極では電解質膜界面で
の電極反応が容易になるとともに、酸素極ではプロトン
の移動抵抗が低減できるため電池性能が向上する。ま
た、電解質膜界面に共析により電極反応に必要な触媒層
を担持できるため、電極の触媒層を省くことが可能であ
ることから一体化電極を薄膜化ができる。一方、水素の
ガス拡散は速いので水素極は酸素極よりも電極反応効率
が高い。したがって、水素極の活性成分量を少なくする
ことができ、活性成分の低減が図られる。
As described above, since the eutectoid layer is provided on the electrolyte membrane, and the eutectoid layer and the catalyst layer of the electrode are composed of the same components, both of them are hot-pressed to form an electrode-electrolyte membrane assembly (hereinafter , An integrated electrode), the adhesion between the electrode and the electrolyte membrane interface is improved, and the migration of protons at the hydrogen electrode and the oxygen electrode is facilitated. In addition, the active ingredient is added to the surface of the electrolyte membrane by a reducing agent or the like, the carbon carrier, the active ingredient and PTFE.
By dispersing (polytetrafluoroethylene) by eutectoid, the catalyst layer necessary for the electrode reaction can be arranged, and the catalyst layer can be thinned. Therefore,
At the hydrogen electrode, the electrode reaction is further promoted, and at the oxygen electrode, the movement of water is easier, so that the water can be easily discharged from the system, and the battery performance is improved by improving the interface between both electrodes and the electrolyte membrane. And can be stabilized. Furthermore, by making the active component concentration of the eutectoid layer higher than that of each catalyst layer, the electrode reaction at the electrolyte membrane interface is facilitated at the hydrogen electrode, and the proton migration resistance can be reduced at the oxygen electrode, resulting in improved battery performance. improves. Further, since the catalyst layer necessary for the electrode reaction can be carried on the interface of the electrolyte membrane by eutectoid, the catalyst layer of the electrode can be omitted, and therefore the integrated electrode can be made thin. On the other hand, since hydrogen gas diffuses quickly, the hydrogen electrode has a higher electrode reaction efficiency than the oxygen electrode. Therefore, the amount of the active ingredient in the hydrogen electrode can be reduced, and the active ingredient can be reduced.

【0027】電解質膜共析層と水素極触媒層及び酸素極
触媒層とは、炭素坦体とそれに坦持された活性成分(触
媒)、プロトン伝導体及び撥水性結着剤とよりなる。活
性成分は、白金又は白金族金属、例えば、ロジウム、ル
テニウム、パラジウム又はイリジウムが好ましく、プロ
トン伝導体の材質は電解質膜と同じであっても、異なっ
てもよい。また、撥水性結着剤はPTFE等のフッ素樹
脂が有効である。
The electrolyte membrane co-deposition layer, the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer are composed of a carbon carrier, an active component (catalyst) carried thereon, a proton conductor and a water repellent binder. The active ingredient is preferably platinum or a platinum group metal such as rhodium, ruthenium, palladium or iridium, and the material of the proton conductor may be the same as or different from that of the electrolyte membrane. A fluororesin such as PTFE is effective as the water-repellent binder.

【0028】本発明で使用する電解質膜は一般的に膜の
形態であり、その材質は一般的に使用される、パ−フル
オロスルホン酸樹脂又はパ−フルオロカルボン酸樹脂の
ような固体高分子電解質樹脂類が好ましい。
The electrolyte membrane used in the present invention is generally in the form of a membrane, and its material is generally used solid polymer electrolyte such as perfluorosulfonic acid resin or perfluorocarboxylic acid resin. Resins are preferred.

【0029】電極の撥水性の制御するためには、触媒層
に添加する撥水性結着剤の量を変化させる。撥水性結着
剤は、PTFE等のフッ素樹脂が好ましいが、電気的に
抵抗体であることから、多量に含めることができない。
例えば、撥水性結着剤がPTFEの場合、その量は水素
極触媒層及び酸素極触媒層のそれぞれの全量に対して、
酸素極については10〜40重量%、好ましくは10〜
30重量%であり、水素極については20〜50重量
%、好ましくは20〜40重量%である。
In order to control the water repellency of the electrode, the amount of water repellent binder added to the catalyst layer is changed. The water-repellent binder is preferably a fluororesin such as PTFE, but cannot be contained in a large amount because it is an electrical resistor.
For example, when the water-repellent binder is PTFE, the amount thereof is relative to the total amount of each of the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer,
The oxygen electrode is 10 to 40% by weight, preferably 10 to
It is 30% by weight, and the hydrogen electrode is 20 to 50% by weight, preferably 20 to 40% by weight.

【0030】水素極触媒層及び酸素極触媒層に添加して
有効反応表面積の拡大を図るためのイオン伝導体(プロ
トン伝導体)は、酸化及び還元雰囲気に触れるという厳
しい使用条件のため、化学的安定性の高いパーフルオロ
スルホン酸系ー陽イオン交換樹脂又はパーフルオロカル
ボン酸樹脂等が特に好ましい。
The ionic conductor (proton conductor) for increasing the effective reaction surface area by adding it to the hydrogen electrode catalyst layer and the oxygen electrode catalyst layer is chemically used because it is exposed to oxidizing and reducing atmospheres. Particularly preferred are highly stable perfluorosulfonic acid-cation exchange resins and perfluorocarboxylic acid resins.

【0031】電解質膜の活性成分の共析方法は、炭素粉
末、活性成分、プロトン伝導体及び撥水性結着剤の三者
を、電解質膜表面に化学めっき法で共析させる方法であ
る。この方法で共析させると、活性成分の濃度は、共析
溶液に添加する活性成分量により任意にその濃度を変え
ることができる。また、共析させる電解質膜の面の背面
から還元剤を拡散させることにより、電解質膜表面のみ
でなくその内部にも共析させることができる。
The co-deposition method of the active component of the electrolyte membrane is a method of co-depositing the carbon powder, the active component, the proton conductor and the water-repellent binder by chemical plating on the surface of the electrolyte membrane. When co-deposited by this method, the concentration of the active ingredient can be arbitrarily changed depending on the amount of the active ingredient added to the eutectoid solution. Further, by diffusing the reducing agent from the back surface of the surface of the electrolyte membrane to be co-deposited, it can be co-deposited not only on the surface of the electrolyte membrane but also inside thereof.

【0032】電極を調製するには、塗布方法が適してい
る。この方法は、予め活性成分を坦持したカ−ボン坦体
触媒、プロトン伝導体及び撥水性結着剤を混合し、ガス
拡散層である電子伝導体に塗布する。この方法で電極を
調製すると電極のガスの拡散性を撥水性結着剤により調
節して任意に選定できる。
A coating method is suitable for preparing the electrode. In this method, a carbon carrier catalyst supporting an active ingredient in advance, a proton conductor and a water-repellent binder are mixed and applied to an electron conductor which is a gas diffusion layer. When the electrode is prepared by this method, the gas diffusivity of the electrode can be adjusted by the water-repellent binder and can be arbitrarily selected.

【0033】本発明の他の実施例として電気自動車及び
潜水艦等の電動体は、前記いずれか一つの固体高分子電
解質型燃料電池を、移動用電源に備えた構成とする。
As another embodiment of the present invention, an electric body of an electric vehicle, a submarine or the like has a structure in which any one of the solid polymer electrolyte fuel cells is provided for a mobile power source.

【0034】以下、各実施例について詳細に説明する。 (実施例1)電解質膜に活性成分を共析させる実施例1
を説明する。密閉容器内の中央部に電解質膜をセットし
その上部に白金として0.5mg/cm2となるように白金化
合物を添加し、グラファイトを0.5mg/cm2と、PT
FEとして0.5mg/cm2と、プロトン伝導体及び水と
を適量添加し撹拌する。電解質膜の下部には還元剤であ
るヒドラジン水溶液を入れる。その密閉容器を60℃に
加熱し還元をする。白金の還元時間は2時間とした。還
元後に水洗し、共析層を保持した電解質膜を得た。電解
質膜には、Du Pont 社製 Nafion 117 を用いた。こ
の時の共析層の厚さは3μmである。
Each embodiment will be described in detail below. (Example 1) Example 1 in which an active ingredient is co-deposited on an electrolyte membrane
Will be explained. Set the electrolyte membrane in the center of the sealed container was added platinum compound such that 0.5 mg / cm 2 of platinum thereon, graphite and 0.5 mg / cm 2, PT
0.5 mg / cm 2 of FE, a suitable amount of a proton conductor and water are added and stirred. An aqueous solution of hydrazine, which is a reducing agent, is placed below the electrolyte membrane. The closed container is heated to 60 ° C. for reduction. The reduction time of platinum was 2 hours. After the reduction, the product was washed with water to obtain an electrolyte membrane holding the eutectoid layer. As the electrolyte membrane, Nafion 117 manufactured by Du Pont was used. The thickness of the eutectoid layer at this time is 3 μm.

【0035】水素極及び酸素極は、以下のように作製し
た。白金を担持した炭素粉末電極触媒を、プロトン伝導
体であるパ−フルオロスルホン酸系陽イオン交換樹脂
(Aldrich Chemical 社製、Nafion液)、及びPTFE
の水系懸濁液とともに十分に混練してペーストを調製
し、電子伝導体(ガス拡散層)である厚み100μmの
カ−ボンペ−パに塗布した。それを80℃で乾燥し電極
を得た。なお、電子伝導体は、カ−ボンペ−パにPTF
Eの水系懸濁液を、PTFEの塗布量12mg/cm2の割
合で塗布し、空気中350℃で焼成して得た。水素極の
組成は、白金量;0.3mg/cm2、プロトン伝導体;3
0重量%、PTFE;30重量%とした。酸素極の組成
は白金量;0.3mg/cm2、前記と同じプロトン伝導
体;20重量%、PTFE;20重量%とした。
The hydrogen electrode and the oxygen electrode were prepared as follows. Platinum-supported carbon powder electrode catalyst is used as a proton conductor perfluorosulfonic acid cation exchange resin
(Nafion liquid manufactured by Aldrich Chemical Co.), and PTFE
The mixture was thoroughly kneaded with the water-based suspension of 1 to prepare a paste, which was applied to a carbon paper having a thickness of 100 μm, which is an electron conductor (gas diffusion layer). It was dried at 80 ° C. to obtain an electrode. The electron conductor is PTF on the carbon paper.
An aqueous suspension of E was applied at a rate of a coated amount of PTFE of 12 mg / cm 2 and baked at 350 ° C. in the air to obtain. The composition of the hydrogen electrode was platinum amount: 0.3 mg / cm 2 , proton conductor: 3
0% by weight, PTFE; 30% by weight. The composition of the oxygen electrode was 0.3 mg / cm 2 of platinum, the same proton conductor as above 20% by weight, and PTFE: 20% by weight.

【0036】電解質膜と電極との接合はホットプレス法
により行った。その方法は、水素極及び酸素極を電解質
膜の両側に配したものを100Kg/cm2の圧力で温度1
20℃で15分プレスし、一体化電極を得た。
The electrolyte membrane and the electrode were joined by the hot pressing method. The method is such that a hydrogen electrode and an oxygen electrode are arranged on both sides of an electrolyte membrane and the temperature is 1 at a pressure of 100 kg / cm 2.
It pressed at 20 degreeC for 15 minutes, and obtained the integrated electrode.

【0037】本実施例と比較のため、無処理の電解質膜
(Du Pont 社製 Nafion 117)を前記の水素極及び酸素
極を用いて同一条件で一体化電極を作成した。
For comparison with this example, an untreated electrolyte membrane
(Dafont Nafion 117) was used to prepare an integrated electrode under the same conditions using the hydrogen electrode and the oxygen electrode.

【0038】以上のように作製した電極を用いて電池を
組立て、水素と空気とを反応ガスとして供給し、電流密
度ー電圧特性を80℃、1気圧の条件で測定した。その
結果を図3に示す。比較例の電池12は限界電流密度が
約600mA/cm2を示しているのに対して、実施例1の
電池11の限界電流密度は750mA/cm2を越えた。こ
のように電解質膜に活性成分を共析させた共析層を設け
ることにより大幅に電池性能を向上することができた。
A battery was assembled using the electrodes produced as described above, hydrogen and air were supplied as reaction gases, and the current density-voltage characteristics were measured under the conditions of 80 ° C. and 1 atm. The result is shown in FIG. The battery 12 of the comparative example showed a limiting current density of about 600 mA / cm 2 , while the battery 11 of Example 1 had a limiting current density of more than 750 mA / cm 2 . Thus, by providing the eutectoid layer in which the active component was eutectoid on the electrolyte membrane, the battery performance could be significantly improved.

【0039】(実施例2)以下の手順に従い、電解質膜
へ活性成分を共析させた。密閉容器の中央部に電解質膜
をセットし、その上部に適量の水と炭素坦体(カ−ボン
ブラックBPー2000Cabot社製)とを混合し、その
混合溶液の中に白金10wt%を坦持するよう塩化白金酸
溶液を添加し、それにPTFE、水酸化ナトリウム及び
ホルマリンを混合させた。電解質膜背面にあたる下部に
は混合溶液のホルマリンが不足した場合の補給のために
ホルマリンを充填した。この密閉容器を60℃に加熱
し、2時間還元して得た電解質膜に、実施例1と同一の
水素極及び酸素極を用いてホットプレスで一体化電極を
得た。以下、実施例1と同一条件で比較し得られた結果
を図4に示す。本実施例の電池性能は、実施例2の電池
13の性能を示す曲線より、限界電流密度は約700mA
/cm2であった。
Example 2 The active ingredient was co-deposited on the electrolyte membrane according to the following procedure. An electrolyte membrane was set in the center of the closed container, and an appropriate amount of water and carbon carrier (Carbon Black BP-2000Cabot) were mixed on the upper part, and 10 wt% platinum was carried in the mixed solution. Chloroplatinic acid solution was added as described above, and PTFE, sodium hydroxide and formalin were mixed therein. The lower part corresponding to the back surface of the electrolyte membrane was filled with formalin for supplementation when the formalin of the mixed solution was insufficient. The sealed container was heated to 60 ° C. and reduced for 2 hours, and the electrolyte membrane obtained was subjected to hot pressing using the same hydrogen electrode and oxygen electrode as in Example 1 to obtain an integrated electrode. Hereinafter, the results obtained by comparison with Example 1 under the same conditions are shown in FIG. From the curve showing the performance of the battery 13 of Example 2, the limiting current density was about 700 mA.
It was / cm 2 .

【0040】(実施例3)電解質膜の共析層の活性成分
を0.7mg/cm2にした以外は、実施例1と同一条件で
調製した電解質膜を用いた。水素極及び酸素極は以下の
ように作製した。水素極の組成は、白金量;0.1mg/
cm2、プロトン伝導体;20重量%、PTFE;20重
量%とした。酸素極の組成は白金量;0.1mg/cm2
前記と同じプロトン伝導体;10重量%、PTFE;1
0重量%とした。両極の触媒層の厚さが約20μmにな
るように作成した。
Example 3 An electrolyte membrane prepared under the same conditions as in Example 1 was used except that the active ingredient in the eutectoid layer of the electrolyte membrane was 0.7 mg / cm 2 . The hydrogen electrode and the oxygen electrode were prepared as follows. The composition of the hydrogen electrode is platinum amount; 0.1 mg /
cm 2 , proton conductor; 20% by weight, PTFE: 20% by weight. The composition of the oxygen electrode is platinum amount; 0.1 mg / cm 2 ,
The same proton conductor as above; 10% by weight, PTFE; 1
It was set to 0% by weight. It was formed so that the thickness of the catalyst layers on both electrodes was about 20 μm.

【0041】前記の電解質膜と電極との接合はホットプ
レス法により行い一体化電極とした。以下、実施例1と
同じ条件で比較を行い得られた結果を図5に示す。実施
例3の電池14の性能を示す曲線により、限界電流密度
は約750mA/cm2であった。このように電解質膜の共
析層の活性成分量を多くするとともに両極の触媒層を薄
膜化することができる。
The above-mentioned electrolyte membrane and the electrode were joined by a hot pressing method to form an integrated electrode. The results obtained by performing the comparison under the same conditions as in Example 1 are shown in FIG. From the curve showing the performance of the battery 14 of Example 3, the limiting current density was about 750 mA / cm 2 . Thus, the amount of active components in the eutectoid layer of the electrolyte membrane can be increased and the catalyst layers of both electrodes can be thinned.

【0042】以上の結果から明らかなように、本発明に
よれば、固体高分子電解質型燃料電池の酸素極及び水素
極の活性を従来のものより大幅に向上でき、約1.5倍
の出力密度を得ることが可能となる。
As is clear from the above results, according to the present invention, the activity of the oxygen electrode and the hydrogen electrode of the solid polymer electrolyte fuel cell can be greatly improved as compared with the conventional one, and the output power is about 1.5 times. It is possible to obtain the density.

【0043】[0043]

【発明の効果】本発明によれば、電解質膜の両極側に活
性成分を坦持させた共析層を設けたため、電極ー電解質
膜接合体を形成できて電極の活性を向上できるととも
に、活性成分が低減して電池性能が向上する効果があ
る。
EFFECTS OF THE INVENTION According to the present invention, since the eutectoid layer supporting the active component is provided on both sides of the electrolyte membrane, the electrode-electrolyte membrane assembly can be formed and the activity of the electrode can be improved. It has the effect of reducing the components and improving the battery performance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】図1の電極ー電解質膜接合体を示す断面図であ
る。
FIG. 2 is a sectional view showing the electrode-electrolyte membrane assembly of FIG.

【図3】実施例1による燃料電池の電流密度と電圧特性
との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the current density and voltage characteristics of the fuel cell according to Example 1.

【図4】実施例2による燃料電池の電流密度と電圧特性
との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the current density and voltage characteristics of the fuel cell according to Example 2.

【図5】実施例3による燃料電池の電流密度と電圧特性
との関係を示すグラフである。
5 is a graph showing the relationship between the current density and voltage characteristics of the fuel cell according to Example 3. FIG.

【符号の説明】[Explanation of symbols]

1 固体高分子電解質膜 2 共析層 3 水素極 4 酸素極 5 集電体 6 ガスシール体 7 触媒層 8 ガス拡散層 9 触媒層 10 ガス拡散層 1 Solid Polymer Electrolyte Membrane 2 Eutectoid Layer 3 Hydrogen Electrode 4 Oxygen Electrode 5 Current Collector 6 Gas Seal 7 Catalyst Layer 8 Gas Diffusion Layer 9 Catalyst Layer 10 Gas Diffusion Layer

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 固体高分子電解質膜と、該固体高分子電
解質膜を介して互いに対向して設けられガス拡散層を有
する水素極及び酸素極と、水素含有ガス又は酸素含有ガ
スを前記水素極又は前記酸素極に供給する手段とを備え
た固体高分子電解質型燃料電池において、前記水素極及
び前記酸素極の少なくともいずれか一方の前記ガス拡散
層の前記固体高分子電解質膜側に触媒層を設けるととも
に、前記固体高分子電解質膜の少なくともいずれか一方
の面に少なくとも活性成分を共析した共析層を設け、前
記固体高分子電解質膜は、前記ガス拡散層と接合されて
電極ー電解質膜接合体に形成されていることを特徴とす
る固体高分子電解質型燃料電池。
1. A solid polymer electrolyte membrane, a hydrogen electrode and an oxygen electrode having a gas diffusion layer which are provided so as to face each other with the solid polymer electrolyte membrane interposed therebetween, and a hydrogen-containing gas or an oxygen-containing gas is supplied to the hydrogen electrode. Alternatively, in a solid polymer electrolyte fuel cell having a means for supplying to the oxygen electrode, a catalyst layer on the solid polymer electrolyte membrane side of the gas diffusion layer of at least one of the hydrogen electrode and the oxygen electrode Along with the provision, a co-deposition layer in which at least an active ingredient is co-deposited is provided on at least one surface of the solid polymer electrolyte membrane, and the solid polymer electrolyte membrane is bonded to the gas diffusion layer to form an electrode-electrolyte membrane. A solid polymer electrolyte fuel cell, which is formed in a joined body.
【請求項2】 共析層は、少なくとも炭素坦体、該炭素
坦体に坦持された活性成分、プロトン伝導体及び撥水性
結着剤よりなることを特徴とする請求項1記載の固体高
分子電解質型燃料電池。
2. The eutectoid layer comprises at least a carbon carrier, an active component supported on the carbon carrier, a proton conductor and a water-repellent binder, and the solid height according to claim 1. Molecular electrolyte fuel cell.
【請求項3】 共析層に坦持された活性成分は、触媒層
に坦持された活性成分より高い濃度を有していることを
特徴とする請求項1又は2記載の固体高分子電解質型燃
料電池。
3. The solid polymer electrolyte according to claim 1, wherein the active ingredient carried on the eutectoid layer has a higher concentration than the active ingredient carried on the catalyst layer. Type fuel cell.
【請求項4】 共析層の活性成分は、酸素極側の共析量
より水素極側の共析量を少なくして形成されていること
を特徴とする請求項1〜3のいずれか1項記載の固体高
分子電解質型燃料電池。
4. The active ingredient of the eutectoid layer is formed such that the eutectoid amount on the hydrogen electrode side is smaller than the eutectoid amount on the oxygen electrode side. A solid polymer electrolyte fuel cell according to the item.
【請求項5】 固体高分子電解質膜は、パーフルオロス
ルホン酸樹脂又はパーフルオロカルボン酸樹脂で形成さ
れていることを特徴とする請求項1〜4のいずれか1項
記載の固体高分子電解質型燃料電池。
5. The solid polymer electrolyte type according to claim 1, wherein the solid polymer electrolyte membrane is formed of a perfluorosulfonic acid resin or a perfluorocarboxylic acid resin. Fuel cell.
【請求項6】 活性成分は、白金族金属よりなることを
特徴とする請求項1〜5のいずれか1項記載の固体高分
子電解質型燃料電池。
6. The solid polymer electrolyte fuel cell according to claim 1, wherein the active component is a platinum group metal.
【請求項7】 固体高分子電解質膜を、密閉容器に設置
して該固体高分子電解質膜の上部に白金化合物を添加す
るとともに、炭素坦体、プロトン伝導体及び撥水性結着
剤を所定量添加して撹拌し、前記固体高分子電解質膜の
下部に還元剤を添加し、前記密閉容器を所定温度に加熱
し前記白金化合物を所定時間で還元させて前記固体高分
子電解質膜に共析層を形成し、炭素粉末又は白金を坦持
した炭素粉末電極触媒を、プロトン伝導体及び撥水性結
着剤とともに混練しペーストに形成してガス拡散層に塗
布し、所定温度で乾燥して水素極及び酸素極を形成し、
ホットプレスにより前記固体高分子電解質膜をガス拡散
層に接合することを特徴とする電極ー電解質膜接合体の
製造方法。
7. A solid polymer electrolyte membrane is placed in a closed container, a platinum compound is added to the upper part of the solid polymer electrolyte membrane, and a predetermined amount of carbon carrier, proton conductor and water-repellent binder is added. Add and stir, add a reducing agent to the lower part of the solid polymer electrolyte membrane, heat the closed container to a predetermined temperature to reduce the platinum compound for a predetermined time, and eutectoid layer on the solid polymer electrolyte membrane The carbon powder electrode catalyst supporting the carbon powder or platinum is kneaded together with the proton conductor and the water-repellent binder to form a paste, which is applied to the gas diffusion layer and dried at a predetermined temperature to form a hydrogen electrode. And forming an oxygen electrode,
A method for producing an electrode-electrolyte membrane assembly, which comprises joining the solid polymer electrolyte membrane to a gas diffusion layer by hot pressing.
【請求項8】 請求項1〜6のいずれか1項記載の固体
高分子電解質型燃料電池を、移動用電源に備えたことを
特徴とする電動体。
8. An electric body comprising the solid polymer electrolyte fuel cell according to claim 1 as a mobile power source.
JP6222332A 1994-09-19 1994-09-19 Solid polymer electrolyte fuel cell Expired - Fee Related JP2741574B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6222332A JP2741574B2 (en) 1994-09-19 1994-09-19 Solid polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6222332A JP2741574B2 (en) 1994-09-19 1994-09-19 Solid polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH0888011A true JPH0888011A (en) 1996-04-02
JP2741574B2 JP2741574B2 (en) 1998-04-22

Family

ID=16780692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6222332A Expired - Fee Related JP2741574B2 (en) 1994-09-19 1994-09-19 Solid polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2741574B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
JP2004192950A (en) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp Solid polymer fuel cell and its manufacturing method
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
JP2006351320A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Manufacturing method of fuel cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295169A (en) * 1990-04-12 1991-12-26 Mitsubishi Heavy Ind Ltd Junction body of solid polymer electrolyte film and electrode
JPH0412458A (en) * 1990-04-27 1992-01-17 Fuji Electric Co Ltd Solid polymer electrolyte type fuel cell
JPH05182672A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ion-exchange membrane fuel cell and ion-exchange membrane fuel cell
JPH05258755A (en) * 1991-12-31 1993-10-08 Stonehard Assoc Inc Manufacture of solid polyelectrolyte fuel cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03295169A (en) * 1990-04-12 1991-12-26 Mitsubishi Heavy Ind Ltd Junction body of solid polymer electrolyte film and electrode
JPH0412458A (en) * 1990-04-27 1992-01-17 Fuji Electric Co Ltd Solid polymer electrolyte type fuel cell
JPH05258755A (en) * 1991-12-31 1993-10-08 Stonehard Assoc Inc Manufacture of solid polyelectrolyte fuel cell
JPH05182672A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ion-exchange membrane fuel cell and ion-exchange membrane fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345110A (en) * 2000-05-31 2001-12-14 Japan Gore Tex Inc Solid polymer electrolyte fuel cell
US6977234B2 (en) 2001-01-19 2005-12-20 Matsushita Electric Industrial Co., Ltd. Method for manufacturing fuel cell electrolyte film-electrode bond
EP2009720A2 (en) 2001-01-19 2008-12-31 Panasonic Corporation Electrolyte membrane-electrode assembly for fuel cell
USRE41651E1 (en) * 2001-01-19 2010-09-07 Panasonic Corporation Method for manufacturing fuel cell electrolyte film-electrode bond
JP2004192950A (en) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp Solid polymer fuel cell and its manufacturing method
JP2005150002A (en) * 2003-11-19 2005-06-09 Konica Minolta Holdings Inc Fuel cell
JP2006351320A (en) * 2005-06-15 2006-12-28 Toyota Motor Corp Manufacturing method of fuel cell

Also Published As

Publication number Publication date
JP2741574B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JP2842150B2 (en) Polymer electrolyte fuel cell
US5234777A (en) Membrane catalyst layer for fuel cells
US5211984A (en) Membrane catalyst layer for fuel cells
Qi et al. Quick and effective activation of proton-exchange membrane fuel cells
JP3608565B2 (en) Fuel cell and manufacturing method thereof
US8597856B2 (en) Direct methanol fuel cell
JP2000311694A (en) Laminated electrode for electrochemical battery
JP3693039B2 (en) Liquid fuel supply type fuel cell
WO2002073723A1 (en) Polymer electrolyte type fuel cell
JP3554321B2 (en) Membrane catalyst layer for fuel cell
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP2003109604A (en) Gas diffusion electrode for fuel cell and method of manufacturing the same
JPH11224679A (en) Solid high polymer fuel cell and its manufacture
US20050147868A1 (en) Fuel cell
JP2741574B2 (en) Solid polymer electrolyte fuel cell
JP2001006699A (en) Solid polymer electrolyte film and electrode joined element for solid polymer fuel cell and manufacture thereof
US7220693B1 (en) Fuel cell catalyst electrodes
JP2001076734A (en) Solid polymer fuel cell
US6805983B1 (en) Activation of electrochemical cells with catalyst electrodes
JP3608564B2 (en) Fuel cell and manufacturing method thereof
JP2002203568A (en) Film/electrode zygote, and fuel cell using it
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2002216778A (en) Fuel cell electrode and its producing method and solid polymer electrolyte fuel cell
JP3495668B2 (en) Fuel cell manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees