JP2842150B2 - Polymer electrolyte fuel cell - Google Patents
Polymer electrolyte fuel cellInfo
- Publication number
- JP2842150B2 JP2842150B2 JP5131657A JP13165793A JP2842150B2 JP 2842150 B2 JP2842150 B2 JP 2842150B2 JP 5131657 A JP5131657 A JP 5131657A JP 13165793 A JP13165793 A JP 13165793A JP 2842150 B2 JP2842150 B2 JP 2842150B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- catalyst layer
- polymer electrolyte
- oxygen
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は固体高分子型燃料電池に
係り、特に固体高分子電解質型水素−酸素燃料電池に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte hydrogen-oxygen fuel cell.
【0002】[0002]
【従来の技術】固体高分子型燃料電池は、一般に2つの
集電体と、固体高分子電解質膜(以下、単に「電解質
膜」という)と、電解質膜を挟む2つの電極と、燃料と
しての水素及び酸化剤としての酸素を供給する手段とを
具備する。両電極は触媒活性成分と、この触媒活性成分
を担持する担体と、上記電解質と同じ固体高分子のイオ
ン(プロトン)伝導体と、これらを固める結着剤とから
構成された触媒層を有する。2つの電極は水素極と酸素
極とであり、それぞれにおける電気化学反応は次の通り
である。2. Description of the Related Art A polymer electrolyte fuel cell generally comprises two current collectors, a polymer electrolyte membrane (hereinafter simply referred to as "electrolyte membrane"), two electrodes sandwiching the electrolyte membrane, and a fuel as a fuel. Means for supplying hydrogen and oxygen as an oxidizing agent. Each of the electrodes has a catalyst layer composed of a catalytically active component, a carrier for supporting the catalytically active component, an ion (proton) conductor of the same solid polymer as the electrolyte, and a binder for solidifying these. The two electrodes are a hydrogen electrode and an oxygen electrode, and the electrochemical reactions in each are as follows.
【0003】水素極においては、水素分子がイオン化さ
れてプロトンになり、電子を放出する。At the hydrogen electrode, hydrogen molecules are ionized to become protons and emit electrons.
【0004】プロトンは電極内のイオン伝導体を伝導し
て、電解質膜に到達し、さらに電解質膜内を通過して、
反対側の酸素極に移動する。一方、放出された電子は外
部回路を通って酸素極へ移動する。酸素極ではプロトン
が水素極から放出された電子と結合して水が生成され
る。[0004] Protons conduct through the ion conductor in the electrode, reach the electrolyte membrane, further pass through the electrolyte membrane,
Move to the opposite oxygen electrode. On the other hand, the emitted electrons move to the oxygen electrode through an external circuit. At the oxygen electrode, protons combine with electrons emitted from the hydrogen electrode to produce water.
【0005】上記燃料電池の反応プロセスは主に次の4
つの段階からなる。[0005] The reaction process of the above fuel cell mainly includes the following four steps.
Consists of two stages.
【0006】(A)水素及び酸素の触媒表面への拡散、
(B)水素極及び酸素極内の触媒表面での反応、(C)
プロトンの両極内部及び電解質内部における伝導、及び
(D)水の放出。(A) diffusion of hydrogen and oxygen to the catalyst surface,
(B) Reaction on catalyst surface in hydrogen electrode and oxygen electrode, (C)
Conduction of protons inside the bipolar and electrolyte, and (D) release of water.
【0007】それぞれの段階における燃料ガスの拡散の
程度及び反応速度の程度が電池出力特性に大きく影響す
る。[0007] The degree of diffusion of the fuel gas and the degree of the reaction rate at each stage greatly affect the battery output characteristics.
【0008】上記(A)の段階では、燃料の触媒表面へ
の供給及び拡散を効率的に行うことが有効であり、特開
昭60−35472 号公報の図1に示されているような波型集
電体、特開平3−102774 号公報又は特開平2−86071号公
報等に開示されているような矩形溝を有するカーボンプ
レートを使用することが提案されている。これらの波型
集電体や矩形溝を有するカーボンプレートの溝を有する
側を電極に接触させると、接触面に空間が生じ、この空
間を通して燃料が電極表面に拡散する。固体高分子型燃
料電池では通常上記のような構造が採用されており、あ
る程度の出力が発現されている。In the above step (A), it is effective to efficiently supply and diffuse the fuel to the catalyst surface, and it is effective to use a wave as shown in FIG. 1 of JP-A-60-35472. It has been proposed to use a mold current collector and a carbon plate having a rectangular groove as disclosed in JP-A-3-102774 or JP-A-2-86071. When the corrugated current collector or the side of the carbon plate having the rectangular groove having the groove is brought into contact with the electrode, a space is created in the contact surface, and the fuel diffuses to the electrode surface through this space. The polymer electrolyte fuel cell usually employs the above-described structure, and exhibits a certain level of output.
【0009】電解質膜を通過してきたプロトンは、電解
質膜と酸素極との界面で酸素との反応が進み酸素極界面
では水が生成され、特に高電流密度では水膜が形成さ
れ、いわゆるフラッデイング現象が生じる。この水膜の
ために電極内を拡散してきた酸素ガスと触媒との接触効
率が低下し、出力密度の減少が起こり易くなり電池性能
が不安定化する。このフラッデイング現象は特に酸素極
と電解質の界面で生じやすい。そこでこの生成水を系外
に除去する必要がある。[0009] Protons that have passed through the electrolyte membrane react with oxygen at the interface between the electrolyte membrane and the oxygen electrode to generate water at the oxygen electrode interface. In particular, a water film is formed at a high current density, so-called flooding. A phenomenon occurs. Due to the water film, the contact efficiency between the oxygen gas diffused in the electrode and the catalyst decreases, the output density tends to decrease, and the battery performance becomes unstable. This flooding phenomenon is particularly likely to occur at the interface between the oxygen electrode and the electrolyte. Therefore, it is necessary to remove the generated water outside the system.
【0010】そのために米国特許第4,643,957 号におい
て電極の撥水性を制御してフラッデイング現象を解消す
ることを提案している。For this purpose, US Pat. No. 4,643,957 proposes to control the water repellency of the electrode to eliminate the flooding phenomenon.
【0011】[0011]
【発明が解決しようとする課題】本発明の目的は、水素
極及び酸素極のガスの拡散を高い効率で行うため、水素
極では水素分子から生成するプロトンの移動を促進さ
せ、酸素極では水のフラッデイングを防止し、電極触媒
層とガスとの接触効率を向上するとともに、電極と電解
質膜の界面で生じる酸化還元反応を加速する電極構造を
有する、固体高分子型燃料電池を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to promote the transfer of protons generated from hydrogen molecules at the hydrogen electrode and to increase the water at the oxygen electrode in order to diffuse the gas at the hydrogen electrode and the oxygen electrode with high efficiency. To provide a polymer electrolyte fuel cell having an electrode structure that prevents flooding of the electrode, improves the contact efficiency between the electrode catalyst layer and the gas, and accelerates a redox reaction occurring at the interface between the electrode and the electrolyte membrane. It is.
【0012】[0012]
【課題を解決するための手段】本発明は、固体高分子電
解質膜とその電解質を挟むように設けたガス拡散電極で
ある水素極及び酸素極と、水素含有ガス及び酸素含有ガ
スをそれぞれ水素極及び酸素極に供給する手段とを具備
し、該ガス拡散電極は、カーボン担体と、それに担持さ
れた活性成分と、プロトン伝導体及び撥水性結着剤とか
らなる触媒層及びガス拡散層を兼ねた電子伝導体とから
構成され、該触媒層の撥水性が、酸素極側よりも水素極
側の方が高いことを特徴とする固体高分子型燃料電池で
ある。The present invention relates to a solid polymer electrolyte membrane, a hydrogen electrode and an oxygen electrode which are gas diffusion electrodes provided so as to sandwich the electrolyte, and a hydrogen electrode and a hydrogen-containing gas, respectively. And a means for supplying to the oxygen electrode, the gas diffusion electrode also serves as a catalyst layer and a gas diffusion layer comprising a carbon carrier, an active component carried thereon, a proton conductor and a water-repellent binder. A polymer electrolyte fuel cell, wherein the water repellency of the catalyst layer is higher on the hydrogen electrode side than on the oxygen electrode side.
【0013】本発明によれば、各電極の触媒層の撥水性
をある特定の条件下に制御することにより、固体高分子
型燃料電池の電池性能を向上させることができる。According to the present invention, the cell performance of the polymer electrolyte fuel cell can be improved by controlling the water repellency of the catalyst layer of each electrode under a specific condition.
【0014】本発明の一例によれば、水素極の撥水性
は、ガス拡散層よりも電解質膜の方が低く、また酸素極
の触媒層内の撥水性も同様にガス拡散層よりも電解質膜
側の方が低く、しかも水素極の触媒層の電解質膜側の撥
水性よりも酸素極の触媒層の電解質膜側の撥水性の方が
低い。なお、酸素極及び水素極の両方において、触媒層
を1層にしても良いが、2層以上の多層でも良い。According to one embodiment of the present invention, the water repellency of the hydrogen electrode is lower in the electrolyte membrane than in the gas diffusion layer, and the water repellency in the catalyst layer of the oxygen electrode is also lower in the electrolyte membrane than in the gas diffusion layer. The water repellency on the electrolyte membrane side of the oxygen electrode catalyst layer is lower than the water repellency of the hydrogen electrode catalyst layer on the electrolyte membrane side. In both the oxygen electrode and the hydrogen electrode, the catalyst layer may be a single layer, or may be a multilayer of two or more layers.
【0015】本発明によれば、水素極及び酸素極の両極
の触媒層は、カーボン担体とそれに担持された活性成分
(触媒),プロトン伝導体及び撥水性結着剤とからな
る。活性成分は、白金又は白金族金属、例えば、ロジウ
ム,ルテニウム,パラジウム及びイリジウムから選ばれ
ることが好ましく、プロトン伝導体の材質は固体高分子
電解質と同じであってもまた異なっていてもよい。ま
た、撥水性結着剤はポリテトラフルオロエチレン(PT
FE)などのフッ素樹脂又は(CF)nで表されるフッ
化黒鉛又はそれらの混合物が好適である。According to the present invention, the catalyst layers at both the hydrogen electrode and the oxygen electrode comprise a carbon support, an active component (catalyst) supported on the carbon support, a proton conductor, and a water-repellent binder. The active component is preferably selected from platinum or platinum group metals, for example, rhodium, ruthenium, palladium and iridium, and the material of the proton conductor may be the same as or different from the solid polymer electrolyte. The water-repellent binder is polytetrafluoroethylene (PT
Fluorine resin such as FE) or fluorinated graphite represented by (CF) n or a mixture thereof is preferable.
【0016】本発明で使用する電解質は一般的に膜の形
態であり、その材質は一般的に使用されるパーフルオロ
スルホン酸樹脂,パーフルオロカルボン酸樹脂のような
固体高分子樹脂類が好ましい。The electrolyte used in the present invention is generally in the form of a membrane, and its material is preferably a generally used solid polymer resin such as a perfluorosulfonic acid resin or a perfluorocarboxylic acid resin.
【0017】本発明の基本的な電池構造を図1に示す。
燃料電池は固体高分子電解質膜1と、その両側に設けた
水素極2及び酸素極3と、その外側に設けた集電体4と
からなっている。集電体4にはいくつかのガス供給溝が
設けられている。2つの集電体4を向かい合わせてその
間に電解質膜1と電極2,3とをはさみ、ガスシール5
によりガスの漏れを防ぐ。図2は図1の電解質膜と電極
の拡大図であり、本発明の水素極2と酸素極3と固体高
分子電解質膜1との配置関係を示す。水素極2は、触媒
層6とガス拡散層(電子伝導体として作用する)7とか
らなり、酸素極3は触媒層8とガス拡散層(電子伝導体
として作用する)9とからなる。ガス拡散層は、たとえ
ばカーボン繊維を成型し、焼結して得ることができる。
電解質膜1,触媒層6とガス拡散層7,触媒層8とガス
拡散層9を上記のように配置して加圧一体化する。各触
媒層は活性成分,カーボン担体,プロトン伝導体及び撥
水性結着剤を混合し、成型して得られる。重要なこと
は、酸素極の撥水性よりも水素極の撥水性の方が高いこ
とである。FIG. 1 shows a basic battery structure of the present invention.
The fuel cell comprises a solid polymer electrolyte membrane 1, hydrogen electrodes 2 and oxygen electrodes 3 provided on both sides thereof, and a current collector 4 provided outside thereof. The current collector 4 is provided with several gas supply grooves. The two current collectors 4 face each other, the electrolyte membrane 1 and the electrodes 2 and 3 are sandwiched between them, and the gas seal 5
Prevents gas leakage. FIG. 2 is an enlarged view of the electrolyte membrane and the electrodes of FIG. 1, and shows the arrangement relationship among the hydrogen electrode 2, the oxygen electrode 3, and the solid polymer electrolyte membrane 1 of the present invention. The hydrogen electrode 2 includes a catalyst layer 6 and a gas diffusion layer (acting as an electron conductor) 7, and the oxygen electrode 3 includes a catalyst layer 8 and a gas diffusion layer (acting as an electron conductor) 9. The gas diffusion layer can be obtained by molding and sintering carbon fiber, for example.
The electrolyte membrane 1, the catalyst layer 6 and the gas diffusion layer 7, and the catalyst layer 8 and the gas diffusion layer 9 are arranged and integrated under pressure as described above. Each catalyst layer is obtained by mixing an active component, a carbon carrier, a proton conductor, and a water-repellent binder and molding the mixture. What is important is that the water repellency of the hydrogen electrode is higher than that of the oxygen electrode.
【0018】上記のように、本発明は酸素極よりも水素
極の撥水性を高めることにより、水素極では触媒層の濡
れ性が制御され、電極の細孔内での電極反応を促進させ
ると共に、酸素極の方が親水性が強いため、水分の移動
が容易になることから、水分の系外排出が簡単となり、
両極のガス拡散性を改善することで、電池性能を向上さ
せ、かつ安定化させたことにある。As described above, according to the present invention, the water repellency of the hydrogen electrode is higher than that of the oxygen electrode, whereby the wettability of the catalyst layer is controlled at the hydrogen electrode, and the electrode reaction in the pores of the electrode is promoted. Since the oxygen electrode has a higher hydrophilicity, the movement of water becomes easier, so the discharge of water out of the system becomes easier,
This is to improve and stabilize the battery performance by improving the gas diffusivity of both electrodes.
【0019】撥水性の制御には、撥水性結着剤の量を変
化させて触媒層に添加して行う場合と、撥水性の程度が
異なる結着剤をそれぞれの触媒層中に添加して行う場合
とがある。前者は触媒層の細孔構造を変化させることな
く撥水性を制御できることが特徴である。後者は触媒層
の細孔構造を多少変化させるものの簡便で実用的な方法
である。撥水性結着剤には、上記したように、ポリテト
ラフルオロエチレン(PTFE)などのフッ素樹脂、(C
F)nで代表されるフッ化黒鉛又はそれらの混合物等が使
用可能であるが、電気的に抵抗体であることから、多量
に含めることができない。たとえば、撥水性結着剤がポ
リテトラフルオロエチレンの場合、その量は水素極及び
酸素極のそれぞれの触媒層の全量に対して、酸素極につ
いては10〜40重量%、好ましくは10〜30重量%
であり、水素極について20〜50重量%、好ましくは
20〜40重量%であり、水素極のその量は酸素極のそ
の量よりもその差において10重量%以上多い。他の撥
水性結着剤でも同様の量の範囲である。プロトン伝導体
のイオン交換基は親水的であるがその他の部分は必ずし
も親水的ではない。材料によって異なる。そのため、プ
ロトン伝導体の添加効果は撥水剤の場合ほど顕著でない
が、添加量が増加すれば親水基は増加し、確実に親水性
が高まる。このようにして、酸素極の触媒層の撥水性を
水素極の触媒層のそれよりも低く抑えることも可能であ
る。Water repellency is controlled by changing the amount of the water repellent binder and adding it to the catalyst layer, or by adding a binder having a different degree of water repellency to each catalyst layer. There are times when you do. The former is characterized in that the water repellency can be controlled without changing the pore structure of the catalyst layer. The latter is a simple and practical method although the pore structure of the catalyst layer is slightly changed. As described above, the water-repellent binder includes a fluororesin such as polytetrafluoroethylene (PTFE), (C
F) Fluorinated graphite represented by n or a mixture thereof can be used, but cannot be contained in a large amount because it is an electrical resistor. For example, when the water-repellent binder is polytetrafluoroethylene, the amount is 10 to 40% by weight, preferably 10 to 30% by weight for the oxygen electrode, based on the total amount of the respective catalyst layers of the hydrogen electrode and the oxygen electrode. %
20 to 50% by weight, preferably 20 to 40% by weight of the hydrogen electrode, and the amount of the hydrogen electrode is at least 10% by weight greater than that of the oxygen electrode. The other water-repellent binders have the same range. The ion exchange groups of the proton conductor are hydrophilic, but other parts are not necessarily hydrophilic. Depends on the material. Therefore, the effect of adding the proton conductor is not so remarkable as in the case of the water repellent, but as the amount of addition increases, the hydrophilic groups increase, and the hydrophilicity is surely enhanced. In this way, the water repellency of the catalyst layer of the oxygen electrode can be suppressed to be lower than that of the catalyst layer of the hydrogen electrode.
【0020】触媒層に添加して有効反応表面積の拡大を
図るためのイオン伝導体は、酸化および還元雰囲気に触
れるという厳しい使用条件のため、化学的安定性の高い
パーフルオロスルホン酸樹脂あるいはパーフルオロカル
ボン酸樹脂などが特に好ましい。The ionic conductor which is added to the catalyst layer to increase the effective reaction surface area is made of a perfluorosulfonic acid resin or a perfluorosulfonic acid resin having a high chemical stability due to severe use conditions of being exposed to an oxidizing and reducing atmosphere. Carboxylic acid resins and the like are particularly preferred.
【0021】電極を調製するには、塗布方法が適してい
る。この方法は、予め活性成分を担持したカーボン担体
触媒,プロトン伝導体,撥水性結着剤を混合し、ガス拡
散層である電子伝導体に塗布することからなる。この方
法で電極を調製すると電極の撥水性は、上述のように、
撥水性結着剤の添加量を調製して任意に選定できる。ま
た、撥水性の濃度勾配を形成するには、触媒及びプロト
ン伝導体を混合し、電子伝導体上に塗布し触媒層を形成
しておく。その触媒層の表面に撥水性結着剤を分散した
溶液を含浸する方法、あるいは撥水性の異なる二層電極
を積層して一体化する方法などがある。気孔率の調製
は、異なる粒子径の触媒担体,撥水剤およびそれらの量
を変化させることにより可能である。A coating method is suitable for preparing an electrode. In this method, a carbon carrier catalyst, a proton conductor, and a water-repellent binder, each of which contains an active component, are mixed in advance and applied to an electron conductor as a gas diffusion layer. When an electrode is prepared by this method, the water repellency of the electrode, as described above,
The amount of the water-repellent binder added can be adjusted and arbitrarily selected. In order to form a concentration gradient of water repellency, a catalyst and a proton conductor are mixed and applied on an electron conductor to form a catalyst layer. There is a method of impregnating the surface of the catalyst layer with a solution in which a water-repellent binder is dispersed, or a method of laminating and integrating two-layer electrodes having different water-repellency. The porosity can be adjusted by changing the catalyst carriers having different particle diameters, the water repellent, and the amounts thereof.
【0022】触媒成分の調製には貴金属を予め担持した
触媒層を電子伝導体状に薄膜として形成する。さらに、
その表面から新たに貴金属成分を付加する方法も良い。
その方法として、貴金属化合物溶液の含浸,めっき,蒸
着,イオン打ち込み等で堆積させることができる。For the preparation of the catalyst component, a catalyst layer pre-loaded with a noble metal is formed as a thin film in the form of an electron conductor. further,
A method of newly adding a noble metal component from the surface is also good.
As the method, deposition can be performed by impregnation of a noble metal compound solution, plating, vapor deposition, ion implantation, or the like.
【0023】[0023]
【作用】燃料電池においては、水素極には電解質膜の乾
燥防止及びプロトンの移動を促進するために水分を添加
している。触媒層の撥水性が十分でない場合は、その水
分により触媒細孔がおおわれガスの拡散が阻害される。
また、酸素極の撥水性が水素極よりも高い場合には電解
質膜中へ移動する水分の移動量が不十分になり、電解質
膜が乾燥状態になるのでプロトンの移動が阻害され、電
極反応が進行せずに、電池性能が低下する。一方、酸素
極ではプロトンと同伴する水和水と電極反応で生成する
水分の系外への排出を促進させ、同時に電極反応に必要
な酸素ガスの拡散性を向上させる必要がある。In a fuel cell, water is added to the hydrogen electrode in order to prevent the electrolyte membrane from drying and to promote the transfer of protons. When the water repellency of the catalyst layer is not sufficient, the water impedes the pores of the catalyst and inhibits gas diffusion.
When the water repellency of the oxygen electrode is higher than that of the hydrogen electrode, the amount of water moving into the electrolyte membrane is insufficient, and the electrolyte membrane is in a dry state. Without progressing, battery performance is reduced. On the other hand, in the oxygen electrode, it is necessary to promote discharge of hydration water accompanying the protons and water generated by the electrode reaction to the outside of the system, and at the same time, to improve the diffusibility of oxygen gas required for the electrode reaction.
【0024】本発明では、水素極の撥水性を酸素極より
も高くすることにより、水素極触媒層の濡れ性を制御
し、余剰の水分は水素極触媒層外に排出するようにし
た。そのため、電解質膜には十分な水分の補給がされる
ようになり、プロトンの移動抵抗を低減し、また酸素極
からの水の排出を促進し、電解質膜から供給される水や
生成水によるフラッデイングを防止している。その結
果、有効反応面積の拡大と安定維持が可能となり、高出
力密度かつ安定な性能の電池が実現できる。しかし、水
素極の撥水性を酸素極よりも高くすることは、通常の水
素−酸素燃料電池とは異なる。すなわち、水素の方が酸
素よりも電気化学的反応活性と拡散性のいずれにおいて
も優れている。そのため、酸素極のガス拡散性と反応表
面積の確保が性能維持のために重要な課題となり、酸素
極の撥水性を高くするように工夫されている。しかし、
固体高分子型水素−酸素燃料電池では、従来の常識に反
するような、本発明の作用効果が認められた。しかしな
がら、固体高分子型燃料電池という特殊性はあっても、
酸素の拡散性の低さは変わらないので、酸素極の撥水性
を極端に低くすることは出来ない。おのずから限界はあ
る。撥水剤がPTFEのときにはその下限は10重量%
である。In the present invention, by making the water repellency of the hydrogen electrode higher than that of the oxygen electrode, the wettability of the hydrogen electrode catalyst layer is controlled, and excess water is discharged outside the hydrogen electrode catalyst layer. As a result, sufficient water is supplied to the electrolyte membrane, which reduces the proton transfer resistance, promotes the discharge of water from the oxygen electrode, and reduces the flow of water and water supplied from the electrolyte membrane. Ding is prevented. As a result, the effective reaction area can be enlarged and maintained stably, and a battery with high output density and stable performance can be realized. However, making the water repellency of the hydrogen electrode higher than that of the oxygen electrode is different from a normal hydrogen-oxygen fuel cell. That is, hydrogen is superior to oxygen in both electrochemical reaction activity and diffusivity. Therefore, securing gas diffusibility and a reaction surface area of the oxygen electrode is an important issue for maintaining performance, and measures are taken to increase the water repellency of the oxygen electrode. But,
In the polymer electrolyte hydrogen-oxygen fuel cell, the operation and effect of the present invention, which is contrary to conventional common knowledge, was recognized. However, despite the special features of polymer electrolyte fuel cells,
Since the low oxygen diffusivity does not change, the water repellency of the oxygen electrode cannot be extremely reduced. There is naturally a limit. When the water repellent is PTFE, the lower limit is 10% by weight.
It is.
【0025】水素極触媒層の撥水性をガス拡散層側より
も固体高分子電解質膜側の方が低くなるようにし、酸素
極触媒層の撥水性を水素極触媒層の固体高分子電解質側
よりもさらに低くし、さらに、酸素極側のガス拡散層の
撥水性が電極触媒層よりも高撥水性になるようにしたこ
とにより、水素極から空気極への水の流れを促進すると
ともに、ガス拡散層への水の浸入を阻止し、ガスの移動
を容易にすることができる。また、電極触媒層に添加す
るプロトン伝導体の濃度、あるいは電極触媒層の気孔率
等によっても同様に電極の撥水性ないしは親水性を調整
できる。電極触媒の気孔率を説明すると、水素極に供給
される水素は、分子サイズが小さく拡散が良いので、酸
素極よりも気孔率が低くともガスの拡散は容易であり、
ガスの供給が不良になることはない。酸素極では酸素の
拡散性が低く、反応性も低いので気孔率を高めて、充分
な量を供給することが重要である。しかし、電極の気孔
率には適正範囲があり、気孔率が低過ぎるとガスの拡散
性が低下し、電極反応が進行しなくなる。また、気孔率
が高過ぎると電極触媒層の電気抵抗が高くなり、さらに
は、供給ガスにより触媒層が乾燥しやすく、反応場の有
効面積の維持が困難になり電極性能が発現しなくなる。
従って、気孔率には適正範囲があり、検討の結果によれ
ば、水素極では35〜60%が、酸素極では40〜65
%程度が良好であり、水素極よりも酸素極の気孔率を5
%以上高くした方が、両極間の水バランスの上で効果が
あるが、電極性能を向上させるためには10%以上が適
している。The water repellency of the hydrogen electrode catalyst layer is made lower on the solid polymer electrolyte membrane side than on the gas diffusion layer side, and the water repellency of the oxygen electrode catalyst layer is made lower on the solid polymer electrolyte side of the hydrogen electrode catalyst layer. Further, by making the water repellency of the gas diffusion layer on the oxygen electrode side higher than that of the electrode catalyst layer, the flow of water from the hydrogen electrode to the air electrode is promoted, Water permeation into the diffusion layer can be prevented, and gas movement can be facilitated. In addition, the water repellency or hydrophilicity of the electrode can be similarly adjusted by the concentration of the proton conductor added to the electrode catalyst layer or the porosity of the electrode catalyst layer. Explaining the porosity of the electrode catalyst, hydrogen supplied to the hydrogen electrode has a small molecular size and good diffusion, so gas diffusion is easy even if the porosity is lower than the oxygen electrode,
The gas supply does not become defective. Since the oxygen electrode has low oxygen diffusivity and low reactivity, it is important to increase the porosity and supply a sufficient amount. However, the porosity of the electrode has an appropriate range. If the porosity is too low, gas diffusivity is reduced, and the electrode reaction does not proceed. On the other hand, if the porosity is too high, the electric resistance of the electrode catalyst layer increases, and further, the catalyst layer is easily dried by the supplied gas, and it becomes difficult to maintain an effective area of the reaction field, and the electrode performance is not exhibited.
Therefore, the porosity has an appropriate range. According to the results of the examination, the porosity is 35 to 60% for the hydrogen electrode and 40 to 65% for the oxygen electrode.
% Is good, and the porosity of the oxygen electrode is higher than that of the hydrogen electrode by 5%.
The higher the percentage, the more effective the water balance between the two electrodes, but the higher the percentage, the better the electrode performance.
【0026】以下、本発明を実施例により説明するが、
これに限定されることはない。Hereinafter, the present invention will be described with reference to Examples.
It is not limited to this.
【0027】[0027]
実施例1 カーボン粉末に白金を担持した電極触媒をプロトン伝導
体であるパーフルオロスルホン酸系陽イオン交換樹脂
(Aldrich Chemical 社製,Nafion液)、およびPTF
Eの水系懸濁液とともに十分に混練してペーストを調製
し、電子伝導体(ガス拡散層)である細孔径約100μ
m,厚み100μmのカーボンペーパに塗布した。それ
を80℃で乾燥して電極を得た。上記電子伝導体は、カ
ーボンペーパにPTFEの水系懸濁液を、PTFE塗布
量12mg/cm2 の割合で塗布し、350℃で焼成して得
た。水素極の組成は、白金量0.3mg/cm2,プロトン伝
導体30重量%,PTFE30重量%とした。酸素極の
組成は白金量0.3mg/cm2、上記と同じプロトン伝導体
20重量%,PTFE20重量%とした。Example 1 An electrode catalyst in which platinum was supported on carbon powder was used as a perfluorosulfonic acid-based cation exchange resin as a proton conductor.
(Alfrich Chemical's Nafion solution), and PTF
A paste is prepared by sufficiently kneading the mixture with the aqueous suspension of E, and the pore diameter of the electron conductor (gas diffusion layer) is about 100 μm.
m, 100 μm thick carbon paper. It was dried at 80 ° C. to obtain an electrode. The above-mentioned electron conductor was obtained by applying an aqueous suspension of PTFE to carbon paper at a PTFE coating amount of 12 mg / cm 2 and firing at 350 ° C. The composition of the hydrogen electrode was such that the platinum amount was 0.3 mg / cm 2 , the proton conductor was 30% by weight, and the PTFE was 30% by weight. The composition of the oxygen electrode was 0.3 mg / cm 2 of platinum, 20% by weight of the same proton conductor as above, and 20% by weight of PTFE.
【0028】本発明と比較のために、水素極及び酸素極
とも白金量0.3mg/cm2,プロトン伝導体20重量%,
PTFE20重量%と同一組成にした電極を、比較対象
の従来品として作成した。For comparison with the present invention, both the hydrogen electrode and the oxygen electrode had a platinum content of 0.3 mg / cm 2 , a proton conductor of 20% by weight,
An electrode having the same composition as 20% by weight of PTFE was prepared as a conventional product for comparison.
【0029】以上の電極の固体高分子電解質膜への接着
はホットプレス法により行った。電解質膜には、Du P
ont 社製 Nafion 117 を用いた。水素極および酸素
極を電解質膜の両側に配したものを100kg/cm2 の圧
力で温度120℃で15分プレスした。以上のように作
製した電極を測定セルに組込み、電流密度−電圧特性を
80℃,1気圧の条件で測定した。その結果を図3に示
す。The above electrodes were bonded to the solid polymer electrolyte membrane by a hot press method. DuP is used for the electrolyte membrane.
Onf Nafion 117 was used. A hydrogen electrode and an oxygen electrode disposed on both sides of the electrolyte membrane were pressed at a pressure of 100 kg / cm 2 at a temperature of 120 ° C. for 15 minutes. The electrode manufactured as described above was assembled in a measurement cell, and current density-voltage characteristics were measured at 80 ° C. and 1 atm. The result is shown in FIG.
【0030】従来型の電極11は限界電流密度が200
mA/cm2 であることを示しているのに対して、本発明
の電極10の限界電流密度は450mA/cm2 を越え
た。このように酸素極よりも水素極の撥水性を高くする
ことにより、大幅に電池性能を向上することができた。The conventional electrode 11 has a limiting current density of 200
In contrast, the critical current density of the electrode 10 of the present invention exceeded 450 mA / cm 2 , whereas the critical current density of the electrode 10 was 450 mA / cm 2 . As described above, by making the water repellency of the hydrogen electrode higher than that of the oxygen electrode, the battery performance could be greatly improved.
【0031】実施例2 電極の調製方法は次の通りであった。カーボン担体に白
金を担持した触媒とプロトン伝導体であるパーフルオロ
カルボン酸樹脂とを充分に混練して触媒ペーストを得
た。このペーストを、ロールプレスで圧延して複数のシ
ートを得た。これらのシートにPTFE濃度が20重量
%のPTFE水系懸濁液を含浸させ、80℃で乾燥し
て、シート状触媒層を得た。次に、シート状触媒層にP
TFE濃度を変えたPTFE水系懸濁液を含浸させ、8
0℃で乾燥した。更に、もう一つのPTFE濃度を変え
たPTFE水系懸濁液を含浸させ、80℃で乾燥した。
このようにして、水素極及び酸素極ともに触媒層の厚さ
方向に撥水剤の濃度勾配がある電極を作成した。水素極
の触媒層の撥水剤濃度は電解質側で20重量%,ガス拡
散層側で40重量%となるように濃度勾配を有してい
る。酸素極の触媒層の撥水剤濃度は、電解質膜側で10
重量%,ガス拡散側で30重量%となるように濃度勾配
を有した。水素極と酸素極の撥水剤濃度の差は少なくと
も10重量%あった。Example 2 A method for preparing an electrode was as follows. A catalyst in which platinum was supported on a carbon carrier and a perfluorocarboxylic acid resin as a proton conductor were sufficiently kneaded to obtain a catalyst paste. This paste was rolled by a roll press to obtain a plurality of sheets. These sheets were impregnated with a PTFE aqueous suspension having a PTFE concentration of 20% by weight, and dried at 80 ° C. to obtain a sheet-like catalyst layer. Next, P is added to the sheet-like catalyst layer.
Impregnated with an aqueous PTFE suspension with a different TFE concentration, 8
Dried at 0 ° C. Further, another PTFE aqueous suspension having a different PTFE concentration was impregnated and dried at 80 ° C.
Thus, an electrode having a concentration gradient of the water repellent in the thickness direction of the catalyst layer for both the hydrogen electrode and the oxygen electrode was prepared. The concentration gradient of the water repellent in the catalyst layer of the hydrogen electrode is 20% by weight on the electrolyte side and 40% by weight on the gas diffusion layer side. The concentration of the water repellent in the catalyst layer of the oxygen electrode is 10% on the electrolyte membrane side.
The concentration gradient was so as to be 30% by weight on the gas diffusion side on the gas diffusion side. The difference in water repellent concentration between the hydrogen electrode and the oxygen electrode was at least 10% by weight.
【0032】得られたシート状触媒層をカーボンペーパ
にロールプレスで一体化し、電極を得た。以下、実施例
1と同一条件で比較した。得られた結果を図4に示す。
本発明の電池性能は、本発明の電池性能を示す曲線12
から、限界電流密度は500mA/cm2 を越えた。この
ように水素極および酸素極それぞれの触媒層内に撥水剤
濃度勾配を与えることにより、電池性能が大幅に向上す
ることが判った。The obtained sheet-like catalyst layer was integrated with carbon paper by a roll press to obtain an electrode. Hereinafter, comparison was made with Example 1 under the same conditions. FIG. 4 shows the obtained results.
The battery performance of the present invention is represented by a curve 12 showing the battery performance of the present invention.
Therefore, the limiting current density exceeded 500 mA / cm 2 . It has been found that by providing a concentration gradient of the water repellent in each of the catalyst layers of the hydrogen electrode and the oxygen electrode, the battery performance is significantly improved.
【0033】実施例3 以下のようにして、水素極及び酸素極のそれぞれの触媒
層内において電子伝導体すなわちガス拡散層側と電解質
側との間で気孔率の異なる電極を作製した。両極をそれ
ぞれ2層にした。水素極の触媒層の電子伝導体側は、、
白金を坦持した平均粒径3μmのカーボン担体の粒子、
30重量%のイオン交換樹脂(パーフルオロスルホン酸
樹脂)及び40重量%のPTFEを混練して、ペースト
を得た。このペーストをカーボンペーパに塗布し、80
℃で乾燥した。さらにその上に白金を担持した平均粒径
1μmのカーボン担体の粒子、30重量%のイオン交換
樹脂および40重量%のPTFE40重量%を混練して
得たペーストを塗布し、80℃で乾燥した。このように
して、気孔率が電子伝導体側で50%,電解質膜側で4
0%にした水素極が得られた。酸素極の触媒層は、白金
触媒を担持した平均粒径6μmのカーボン担体の粒子,
20重量%のイオン交換樹脂(パーフルオロスルホン酸
樹脂)及び30重量%のPTFEを混練して得たペース
トをカーボンペーパに塗布し、80℃で乾燥して得、さ
らにその上に、白金触媒を担持した平均粒径3μmのカ
ーボン担体の粒子、20重量%の同じイオン交換樹脂及
び30重量%のPTFEを混練して得たペーストをカー
ボンペーパに塗布し、80℃で乾燥して得た。その結
果、電解質膜側の気孔率は50%,電子伝導体側の気孔
率は60%であった。実施例1と同じ条件で比較を行っ
た。得られた結果を図5に示す。本発明の電池性能を示
す曲線13により限界電流密度は500mA/cm2 を超
えることが分かった。このように水素極より酸素極の気
孔率を高くすることにより、大幅に電池性能を向上する
ことが出来た。Example 3 Electrodes having different porosity between the electron conductor, that is, the gas diffusion layer side and the electrolyte side, in each of the catalyst layers of the hydrogen electrode and the oxygen electrode were prepared as follows. Both poles each had two layers. The electron conductor side of the catalyst layer of the hydrogen electrode is
Particles of a carbon carrier having an average particle size of 3 μm carrying platinum,
A paste was obtained by kneading 30% by weight of an ion exchange resin (perfluorosulfonic acid resin) and 40% by weight of PTFE. This paste is applied to carbon paper, and 80
Dried at ° C. Furthermore, a paste obtained by kneading particles of a carbon carrier carrying platinum and having an average particle diameter of 1 μm, 30% by weight of an ion exchange resin and 40% by weight of PTFE was applied and dried at 80 ° C. Thus, the porosity is 50% on the electron conductor side and 4% on the electrolyte membrane side.
A 0% hydrogen electrode was obtained. The catalyst layer of the oxygen electrode is composed of particles of a carbon support having an average particle diameter of 6 μm carrying a platinum catalyst,
A paste obtained by kneading 20% by weight of an ion exchange resin (perfluorosulfonic acid resin) and 30% by weight of PTFE is applied to carbon paper and dried at 80 ° C. to obtain a platinum catalyst. A paste obtained by kneading supported carbon carrier particles having an average particle diameter of 3 μm, 20% by weight of the same ion exchange resin and 30% by weight of PTFE was applied to carbon paper and dried at 80 ° C. to obtain a paste. As a result, the porosity on the electrolyte membrane side was 50%, and the porosity on the electron conductor side was 60%. A comparison was made under the same conditions as in Example 1. The results obtained are shown in FIG. According to the curve 13 showing the battery performance of the present invention, it was found that the critical current density exceeded 500 mA / cm 2 . By thus increasing the porosity of the oxygen electrode over the hydrogen electrode, the battery performance could be significantly improved.
【0034】以上の結果から明らかなように、本発明に
より固体高分子型燃料電池の酸素極及び水素極の活性を
従来のものより大幅に向上でき、約2〜3倍の出力密度
を得ることが可能である。As is evident from the above results, the activity of the oxygen electrode and the hydrogen electrode of the polymer electrolyte fuel cell according to the present invention can be greatly improved as compared with the conventional one, and an output density of about 2-3 times can be obtained. Is possible.
【0035】[0035]
【発明の効果】本発明により固体高分子電解質型水素−
空気(酸素)燃料電池の空気(酸素)極の活性を従来のもの
よりも大幅に向上でき、電池性能を飛躍的に向上でき
る。According to the present invention, the solid polymer electrolyte type hydrogen-
The activity of the air (oxygen) electrode of the air (oxygen) fuel cell can be greatly improved as compared with the conventional one, and the cell performance can be dramatically improved.
【図1】本発明の燃料電池の模式断面図。FIG. 1 is a schematic sectional view of a fuel cell according to the present invention.
【図2】本発明の燃料電池用の固体電解質膜を挟む2つ
の電極の模式断面図。FIG. 2 is a schematic cross-sectional view of two electrodes sandwiching a solid electrolyte membrane for a fuel cell of the present invention.
【図3】本発明の実施例1による燃料電池の電流密度と
電圧特性との関係を示すグラフ。FIG. 3 is a graph showing a relationship between current density and voltage characteristics of the fuel cell according to Example 1 of the present invention.
【図4】本発明の実施例2による燃料電池の電流密度と
電圧特性との関係を示すグラフ。FIG. 4 is a graph showing a relationship between current density and voltage characteristics of a fuel cell according to Embodiment 2 of the present invention.
【図5】本発明の実施例3による燃料電池の電流密度と
電圧特性との関係を示すグラフ。FIG. 5 is a graph showing a relationship between current density and voltage characteristics of a fuel cell according to Embodiment 3 of the present invention.
1…固体高分子電解質膜、2…水素極、3…酸素極、4
…集電体、5…ガスシール、6…水素極触媒層、7…ガ
ス拡散層、8…酸素極触媒層、9…ガス拡散層。1: solid polymer electrolyte membrane, 2: hydrogen electrode, 3: oxygen electrode, 4
... current collector, 5 ... gas seal, 6 ... hydrogen electrode catalyst layer, 7 ... gas diffusion layer, 8 ... oxygen electrode catalyst layer, 9 ... gas diffusion layer.
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−304574(JP,A) 特開 昭58−163173(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/02 H01M 8/08 - 8/24 H01M 4/86 - 4/98────────────────────────────────────────────────── ─── Continuation of front page (56) References JP-A-63-304574 (JP, A) JP-A-58-163173 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01M 8/00-8/02 H01M 8/08-8/24 H01M 4/86-4/98
Claims (10)
むように設けられたガス拡散電極である水素極及び酸素
極と、水素含有ガス及び酸素含有ガスを該水素極及び該
酸素極に供給する手段とを具備し、該ガス拡散電極が、
カーボン担体と、それに担持された活性成分,プロトン
伝導体及び撥水性結着剤とからなる触媒層及びガス拡散
層を兼ねた電子伝導体とから構成され、該水素極側の触
媒層の撥水性が該酸素極側の触媒層の撥水性よりも高い
ことを特徴とする固体高分子型燃料電池。1. A solid polymer electrolyte membrane, a hydrogen electrode and an oxygen electrode which are gas diffusion electrodes provided so as to sandwich the electrolyte membrane, and a hydrogen-containing gas and an oxygen-containing gas are supplied to the hydrogen electrode and the oxygen electrode. Supplying means, wherein the gas diffusion electrode comprises:
It is composed of a carbon carrier, a catalyst layer composed of an active component, a proton conductor and a water repellent binder carried on the carbon carrier, and an electron conductor also serving as a gas diffusion layer, and the water repellency of the catalyst layer on the hydrogen electrode side. Is higher than the water repellency of the catalyst layer on the oxygen electrode side.
性は、それぞれのガス拡散層側よりも固体高分子電解質
膜側の方が低く、また、酸素極の触媒層の固体高分子電
解質膜側の撥水性は、水素極の触媒層の固体高分子電解
質膜側の撥水性より低いことを特徴とする請求項1に記
載の固体高分子型燃料電池。2. The water repellency of the catalyst layer of the hydrogen electrode and the catalyst layer of the oxygen electrode is lower on the solid polymer electrolyte membrane side than on the gas diffusion layer side, and on the solid height of the catalyst layer on the oxygen electrode. The polymer electrolyte fuel cell according to claim 1, wherein the water repellency of the polymer electrolyte membrane side is lower than the water repellency of the hydrogen electrode catalyst layer on the polymer electrolyte membrane side.
それぞれの触媒層の全量に対して、酸素極については1
0〜40重量%であり、水素極については20〜50重
量%であり、水素極のその量は酸素極のその量よりもそ
の差において10重量%以上多いことを特徴とする請求
項1に記載の固体高分子型燃料電池。3. The amount of the water-repellent binder is 1% for the oxygen electrode with respect to the total amount of the respective catalyst layers of the hydrogen electrode and the oxygen electrode.
2. The hydrogen electrode according to claim 1, wherein the amount of the hydrogen electrode is greater than that of the oxygen electrode by at least 10% by weight. The polymer electrolyte fuel cell according to the above.
それぞれの触媒層の全量に対して、酸素極については、
10〜30重量%であり、水素極については20〜40
重量%であり、水素極のその量は酸素極のその量よりも
その差において10重量%以上多いことを特徴とする請
求項1に記載の固体高分子型燃料電池。4. The amount of the water-repellent binder relative to the total amount of each of the catalyst layers of the hydrogen electrode and the oxygen electrode,
10 to 30% by weight, and 20 to 40% for the hydrogen electrode.
The polymer electrolyte fuel cell according to claim 1, wherein the amount of the hydrogen electrode is greater than that of the oxygen electrode by 10% by weight or more.
撥水性結着剤の量は、酸素極の固体高分子電解質膜側の
それよりも、その差において10重量%以上多いことを
特徴とする請求項2に記載の固体高分子型燃料電池。5. The amount of the water-repellent binder in the catalyst layer on the solid polymer electrolyte membrane side of the hydrogen electrode is at least 10% by weight greater than that on the solid polymer electrolyte membrane side of the oxygen electrode. The polymer electrolyte fuel cell according to claim 2, wherein:
率よりも小さい気孔率を有することを特徴とする請求項
1に記載の固体高分子型燃料電池。6. The polymer electrolyte fuel cell according to claim 1, wherein the catalyst layer of the hydrogen electrode has a porosity smaller than that of the catalyst layer of the oxygen electrode.
0%であり、酸素極の触媒層について40〜65%であ
ることを特徴とする請求項3に記載の固体高分子型燃料
電池。7. A catalyst layer having a porosity of 35 to 6 for a catalyst layer having a hydrogen electrode.
The polymer electrolyte fuel cell according to claim 3, wherein the content of the catalyst layer is 0%, and the content of the catalyst layer of the oxygen electrode is 40 to 65%.
れぞれ2層以上の多層であり、かつ各触媒層の中でガス
拡散層側の方が撥水性が高いことを特徴とする請求項1
に記載の固体高分子型燃料電池。8. The catalyst layer for an oxygen electrode and the catalyst layer for a hydrogen electrode are each composed of two or more layers, and the gas diffusion layer side of each catalyst layer has higher water repellency. Item 1
9. The polymer electrolyte fuel cell according to item 1.
ホン酸樹脂あるいはパーフルオロカルボン酸樹脂からな
ることを特徴とする請求項1に記載の固体高分子型燃料
電池。9. The polymer electrolyte fuel cell according to claim 1, wherein the polymer electrolyte membrane is made of a perfluorosulfonic acid resin or a perfluorocarboxylic acid resin.
特徴とする請求項1に記載の固体高分子型燃料電池。10. The polymer electrolyte fuel cell according to claim 1, wherein the active component comprises a platinum group metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5131657A JP2842150B2 (en) | 1992-06-02 | 1993-06-02 | Polymer electrolyte fuel cell |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16545992 | 1992-06-02 | ||
JP4-165459 | 1992-06-02 | ||
JP5131657A JP2842150B2 (en) | 1992-06-02 | 1993-06-02 | Polymer electrolyte fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0652871A JPH0652871A (en) | 1994-02-25 |
JP2842150B2 true JP2842150B2 (en) | 1998-12-24 |
Family
ID=26466427
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5131657A Expired - Fee Related JP2842150B2 (en) | 1992-06-02 | 1993-06-02 | Polymer electrolyte fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2842150B2 (en) |
Families Citing this family (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9507012D0 (en) * | 1995-04-05 | 1995-05-31 | Johnson Matthey Plc | Improved electrode |
IT1291603B1 (en) * | 1997-04-18 | 1999-01-11 | De Nora Spa | GASEOUS DIFFUSION ELECTRODES FOR POLYMER DIAPHRAGM FUEL CELL |
JPH11339815A (en) * | 1998-05-29 | 1999-12-10 | Aisin Seiki Co Ltd | Solid polymer electrolyte for cell and its manufacture |
WO1999066578A1 (en) | 1998-06-16 | 1999-12-23 | Matsushita Electric Industrial Co., Ltd. | Polymer electrolyte fuel cell |
ATE235109T1 (en) * | 1998-09-30 | 2003-04-15 | Siemens Ag | REACTION WATER RELEASE IN PEM FUEL CELLS |
JP3500086B2 (en) * | 1999-03-01 | 2004-02-23 | 三洋電機株式会社 | Fuel cell and fuel cell using the same |
DE19909930B4 (en) * | 1999-03-06 | 2004-09-02 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Manufacture of tubular PEM fuel cells and ion exchange membranes |
KR100427166B1 (en) | 1999-08-27 | 2004-04-14 | 마쯔시다덴기산교 가부시키가이샤 | Polymer electrolyte type fuel cell |
JP2001102059A (en) * | 1999-10-01 | 2001-04-13 | Toshiba Corp | Proton-exchange membrane fuel cell system |
JP4470271B2 (en) * | 2000-03-31 | 2010-06-02 | 株式会社エクォス・リサーチ | Fuel cell and fuel cell device |
JP4876318B2 (en) * | 2001-03-08 | 2012-02-15 | パナソニック株式会社 | Polymer electrolyte fuel cell and manufacturing method thereof |
KR100448168B1 (en) * | 2001-12-27 | 2004-09-10 | 현대자동차주식회사 | A preparing method of Membrane-Electrode-Gasket Assembly for fuel cell |
KR100442843B1 (en) * | 2002-03-13 | 2004-08-02 | 삼성에스디아이 주식회사 | Membrane and electrode assembly(MEA), production method of the same and fuel cell employing the same |
JP2005150002A (en) * | 2003-11-19 | 2005-06-09 | Konica Minolta Holdings Inc | Fuel cell |
JP4506164B2 (en) * | 2003-12-11 | 2010-07-21 | 株式会社エクォス・リサーチ | Membrane electrode assembly and method of using the same |
JP4826057B2 (en) | 2003-12-11 | 2011-11-30 | トヨタ自動車株式会社 | Fuel cell |
EP1721355B1 (en) * | 2004-03-05 | 2010-07-21 | Umicore AG & Co. KG | Membrane electrode unit |
JP2006120402A (en) * | 2004-10-20 | 2006-05-11 | Toyota Motor Corp | Fuel cell |
JP4821111B2 (en) * | 2004-12-08 | 2011-11-24 | トヨタ自動車株式会社 | Fuel cell |
KR100670284B1 (en) | 2005-02-04 | 2007-01-16 | 삼성에스디아이 주식회사 | Fuel cell |
EP1865568A4 (en) | 2005-02-10 | 2009-03-04 | Toshiba Kk | Fuel cell |
JP5165205B2 (en) | 2006-03-14 | 2013-03-21 | 本田技研工業株式会社 | Membrane electrode structure for polymer electrolyte fuel cell |
JP4953724B2 (en) * | 2006-08-02 | 2012-06-13 | シャープ株式会社 | Fuel cell and fuel cell system |
JP5062725B2 (en) * | 2006-10-25 | 2012-10-31 | 独立行政法人産業技術総合研究所 | Polymer electrolyte fuel cell |
JP5056141B2 (en) * | 2007-04-23 | 2012-10-24 | トヨタ自動車株式会社 | Manufacturing method of membrane electrode assembly |
JP4930643B1 (en) * | 2011-02-18 | 2012-05-16 | 大日本印刷株式会社 | Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly |
JP4993024B1 (en) * | 2011-03-22 | 2012-08-08 | 大日本印刷株式会社 | Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly |
JP4930644B1 (en) * | 2011-03-25 | 2012-05-16 | 大日本印刷株式会社 | Gas diffusion layer for fuel cell and manufacturing method thereof |
JP5772554B2 (en) * | 2011-12-06 | 2015-09-02 | トヨタ自動車株式会社 | Fuel cell |
JP5472349B2 (en) * | 2012-03-16 | 2014-04-16 | 大日本印刷株式会社 | Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly |
DE102014213555A1 (en) * | 2014-07-11 | 2016-01-14 | Sgl Carbon Se | Membrane-electrode assembly |
EP3179545B1 (en) | 2014-08-05 | 2019-02-06 | Tanaka Kikinzoku Kogyo K.K. | Catalyst for proton exchange membrane fuel cell and production method for catalyst |
JP7403080B2 (en) * | 2018-12-17 | 2023-12-22 | パナソニックIpマネジメント株式会社 | fuel cell cell |
JP7443417B2 (en) * | 2021-05-17 | 2024-03-05 | ブルーム エネルギー コーポレイション | Catalyst ink composition and method for forming a hydrogen pumping proton exchange membrane electrochemical cell |
-
1993
- 1993-06-02 JP JP5131657A patent/JP2842150B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0652871A (en) | 1994-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2842150B2 (en) | Polymer electrolyte fuel cell | |
US5350643A (en) | Solid polymer electrolyte type fuel cell | |
JP4233208B2 (en) | Fuel cell | |
JP4334618B2 (en) | Gas diffusion electrode for polymer electrolyte membrane fuel cell | |
JP3929146B2 (en) | Polymer electrolyte fuel cell system | |
US6416898B1 (en) | Fuel cell comprising an inorganic glass layer | |
US6183898B1 (en) | Gas diffusion electrode for polymer electrolyte membrane fuel cells | |
JP3594533B2 (en) | Fuel cell | |
KR100474941B1 (en) | Gas diffusion electrode and fuel cell using this | |
JP4780814B2 (en) | Fuel cell | |
JP2009199988A (en) | Anode electrode for direct methanol fuel cell and direct methanol type fuel cell using the same | |
US20020197524A1 (en) | Manufacturing method of fuel cell electrode and fuel cell using thereof | |
JP2002536565A (en) | Non-woven web | |
KR20140065283A (en) | Electrode for fuel cell, method for preparing the same, membrane electrode assembly for fuel cell the electrode and fuel cell including the membrane electrode assembly | |
JP2003109604A (en) | Gas diffusion electrode for fuel cell and method of manufacturing the same | |
JP2004296176A (en) | Solid polymer fuel cell | |
JP3813406B2 (en) | Fuel cell | |
JPH10334922A (en) | Solid high polymer fuel cell and its manufacture | |
JP2002164057A (en) | Solid high molecular fuel cell and method of manufacturing the same | |
JP4880131B2 (en) | Gas diffusion electrode and fuel cell using the same | |
JP2001057217A (en) | Polymer electrolyte type fuel cell | |
JPH06275282A (en) | Fuel cell | |
JP2006085984A (en) | Mea for fuel cell and fuel cell using this | |
US7147957B1 (en) | Electrode for fuel cell and manufacturing method therefor | |
JP2005183263A (en) | Porous structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071023 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081023 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091023 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101023 Year of fee payment: 12 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111023 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121023 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |