JPH10334922A - Solid high polymer fuel cell and its manufacture - Google Patents

Solid high polymer fuel cell and its manufacture

Info

Publication number
JPH10334922A
JPH10334922A JP9139841A JP13984197A JPH10334922A JP H10334922 A JPH10334922 A JP H10334922A JP 9139841 A JP9139841 A JP 9139841A JP 13984197 A JP13984197 A JP 13984197A JP H10334922 A JPH10334922 A JP H10334922A
Authority
JP
Japan
Prior art keywords
catalyst layer
electrode
oxygen electrode
fuel cell
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9139841A
Other languages
Japanese (ja)
Inventor
Jinichi Imahashi
甚一 今橋
Toshiya Doi
俊哉 土井
Yuichi Kamo
友一 加茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9139841A priority Critical patent/JPH10334922A/en
Publication of JPH10334922A publication Critical patent/JPH10334922A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high-performance solid high polymer fuel cell by arranging a hydrogen electrode and an oxygen electrode made of a gas diffusion layer and a catalyst layer across an electrolyte film made of a solid high polymer material, and containing a proton shift acceleration power generation initial stage characteristic increasing agent at least in the catalyst layer on the oxygen electrode side. SOLUTION: An electrolyte film 1 made of a solid high polymer material is pinched from both faces by a hydrogen electrode 2 and an oxygen electrode 3 laminated with a gas diffusion layer and a catalyst layer on the catalyst layer side respectively, collectors 4 having gas feed grooves 4a are arranged on the outer faces, and gas seal bodies 5 are provided and sealed to obtain a solid high polymer fuel cell. At least a catalyst layer on the oxygen electrode side contains a power generation initial stage characteristic increasing agent which accelerates the proton shift in it and increasing the power generation initial stage characteristic or a water holding agent capable of holding moisture of 1-10 mg/cm<2> . Sulfuric acid, phosphoric acid, or their compounds are preferably used for increasing an agent or water-holding agent, and at least the oxygen electrode 3 can be impregnated and contained with it.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、固体高分子型燃料
電池とその製造方法に係り、特に、固体高分子電解質型
の水素−酸素系燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer electrolyte fuel cell and a method for manufacturing the same, and more particularly, to a polymer electrolyte hydrogen-oxygen fuel cell.

【0002】[0002]

【従来の技術】従来技術の固体高分子型燃料電池の代表
的なものとして、水素−酸素系燃料電池があり、この燃
料電池は、2つの集電体と、固体高分子材料からなる電
解質膜(以下、固体高分子電解質膜または電解質膜と称
する)と、電解質膜を挟む2つの電極と、燃料としての
水素及び酸素を供給する手段とから構成されている。両
電極は、触媒と、この触媒を担持する担体と、上記電解
質膜と同じ固体高分子材料からなるプロトン伝導体と、
これらを固める結着剤とを含み構成される。 そして、
水素極と酸素極の2つの電極では、次ぎの化学式のよう
に表わされる電気化学反応がそれぞれ行われる。
2. Description of the Related Art A typical example of a conventional polymer electrolyte fuel cell is a hydrogen-oxygen fuel cell. This fuel cell is composed of two current collectors and an electrolyte membrane made of a solid polymer material. (Hereinafter, referred to as a solid polymer electrolyte membrane or an electrolyte membrane), two electrodes sandwiching the electrolyte membrane, and means for supplying hydrogen and oxygen as fuel. Both electrodes are a catalyst, a carrier supporting the catalyst, a proton conductor made of the same solid polymer material as the electrolyte membrane,
And a binder for solidifying them. And
At the two electrodes, a hydrogen electrode and an oxygen electrode, an electrochemical reaction represented by the following chemical formula is performed.

【0003】即ち、水素極においては、水素極に供給さ
れた水素ガスから水素分子がイオン化されてプロトン
(水素イオンH+)になり、電子を放出する。
2 ⇒ 2H+ + 2e- (化1) プロトンは、水素極側のガス拡散層と触媒層を伝導し
て、電解質膜に到達し、更に、電解質膜内を移動して、
反対の酸素極側に移動する。一方、放出された電子は、
外部回路を通って酸素極へ移動する。
酸素極内の触媒層で、次式のように、酸
素極に供給された酸素ガスと内部移動したプロトンと外
部移動した電子とが反応して、 (1/2)O2+2H+ + 2e- ⇒ H2O (化2) 最終的には、水が生成される。
[0003] That is, in the hydrogen electrode, hydrogen molecules are ionized from hydrogen gas supplied to the hydrogen electrode to generate protons.
(Hydrogen ions H + ) and emit electrons.
H 2 ⇒ 2H + + 2e - ( Formula 1) protons is conducted through the gas diffusion layer and the catalyst layer of the hydrogen electrode side, to reach the electrolyte membrane, further, by moving the electrolyte membrane,
Move to the opposite oxygen electrode side. On the other hand, the emitted electrons are
Move to oxygen electrode through external circuit.
In the catalyst layer in the oxygen electrode, the oxygen gas supplied to the oxygen electrode, the internally transferred protons, and the externally transferred electrons react as shown in the following formula to obtain (1/2) O 2 + 2H + + 2e −. ⇒ H 2 O (Chemical formula 2) Finally, water is generated.

【0004】上記燃料電池の反応プロセスは、主に次の
4つの段階からなる。即ち、(A)水素及び酸素の触媒
表面への拡散、(B)水素極及び酸素極内の触媒層(触媒
表面)での反応、(C)プロトンの両極内部及び電解質膜
内部における伝導、及び(D)水の放出である。それぞれ
の段階における燃料ガスの拡散の程度及び反応速度の程
度が電池出力特性に大きく影響することが判明してい
る。そして、上記(A)段階において、燃料の触媒表面へ
の供給及び拡散を効率的に行うための波型集電体を採用
する技術が、特開昭60−35472号公報に開示され
ている。また、特開平3−102774号,特開平2−
86071号公報には、矩形溝を有するカーボンプレー
トを使用することが提案されている。これらの波型集電
体や矩形溝を有するカーボンプレートを電極に接触させ
て接触面に空間を生じさせ、この空間を通して燃料を電
極表面に拡散してある程度の出力が発現されている。
[0004] The reaction process of the above fuel cell mainly comprises the following four steps. That is, (A) diffusion of hydrogen and oxygen to the catalyst surface, (B) reaction in the catalyst layer (catalyst surface) in the hydrogen electrode and oxygen electrode, (C) conduction of protons inside both electrodes and inside the electrolyte membrane, and (D) Water release. It has been found that the degree of diffusion of the fuel gas and the degree of the reaction rate at each stage greatly affect the battery output characteristics. Japanese Patent Application Laid-Open No. Sho 60-35472 discloses a technique that employs a corrugated current collector for efficiently supplying and diffusing fuel to the catalyst surface in the step (A). Also, JP-A-3-102774 and JP-A-2-102.
86071 proposes to use a carbon plate having rectangular grooves. These corrugated current collectors or carbon plates having rectangular grooves are brought into contact with the electrodes to create a space on the contact surface, and fuel is diffused through the space to the electrode surface to produce a certain amount of output.

【0005】通常、固体高分子型燃料電池では上記のよ
うな構造が採用されており、電解質膜を通過してきたプ
ロトンは、電解質膜と酸素極との界面で上記(化2)式が
進むため、酸素極界面で水が生成される。この生成水に
より、酸素極触媒層内部の活性成分にプロトンを到達さ
せることを容易にしている。
Usually, the above-mentioned structure is employed in a polymer electrolyte fuel cell, and protons passing through the electrolyte membrane are subjected to the above formula (2) at the interface between the electrolyte membrane and the oxygen electrode. Then, water is generated at the oxygen electrode interface. The generated water makes it easy for the protons to reach the active components inside the oxygen electrode catalyst layer.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来技術では、触媒層内にプロトン伝導体が十分に存在し
ても酸素極(触媒層)内部における発電初期の水分保有量
が隘路になって、発電初期において電池性能が発現しな
いという点に解決課題が残っている。従って、本発明の
目的は、上記課題を解消し、高性能な固体高分子型燃料
電池及び該固体高分子型燃料電池の製造方法を提供する
ことにある。
However, in the above prior art, even if the proton conductor is sufficiently present in the catalyst layer, the water content in the initial stage of power generation in the oxygen electrode (catalyst layer) becomes a bottleneck, There is a problem to be solved in that the battery performance does not appear in the early stage of power generation. Therefore, an object of the present invention is to solve the above-mentioned problems and to provide a high-performance polymer electrolyte fuel cell and a method for manufacturing the polymer electrolyte fuel cell.

【0007】[0007]

【課題を解決するための手段】上記目的を達成する本発
明による固体高分子型燃料電池の特徴は、固体高分子材
からなる電解質膜と、ガス拡散層と触媒層との積層から
成りそれぞれの該触媒層側にて前記電解質膜を挟持する
水素極及び酸素極と、該各極集電体とを備える固体高分
子型燃料電池において、少なくとも前記酸素極側の前記
触媒層は、当該触媒層内のプロトン移動を促し発電初期
特性を上昇させる発電初期特性上昇剤を含有することに
ある。また、他の特徴は、少なくとも前記酸素極側の前
記触媒層は、1〜10(mg/cm2)の範囲の水分量を保有す
ることが可能な保水剤を含んでいるところにある。
A feature of the polymer electrolyte fuel cell according to the present invention that achieves the above object is that each of the polymer electrolyte fuel cells comprises an electrolyte membrane made of a solid polymer material, a gas diffusion layer and a catalyst layer. In a polymer electrolyte fuel cell including a hydrogen electrode and an oxygen electrode sandwiching the electrolyte membrane on the catalyst layer side, and the respective current collectors, at least the catalyst layer on the oxygen electrode side includes the catalyst layer The present invention is characterized by containing a power generation initial characteristic improving agent which promotes proton transfer in the inside and increases power generation initial characteristics. Another feature is that at least the catalyst layer on the oxygen electrode side contains a water retention agent capable of holding a water content in the range of 1 to 10 (mg / cm 2 ).

【0008】一方、目的を達成する本発明による固体高
分子型燃料電池の製造方法は、それぞれガス拡散層と触
媒層とを積層して形成した水素極及び酸素極の該各触媒
層側にて、固体高分子材からなる電解質膜を挟持して作
製する固体高分子型燃料電池の製造方法において、少な
くとも前記酸素極に、前記触媒層内のプロトン移動を促
し発電初期特性を上昇させる発電初期特性上昇剤、また
は1〜10(mg/cm2)の範囲の水分量を保有することが可
能な保水剤を含浸させるものである。
On the other hand, a method for producing a polymer electrolyte fuel cell according to the present invention, which achieves the object, comprises a hydrogen electrode and an oxygen electrode formed by laminating a gas diffusion layer and a catalyst layer on the respective catalyst layer sides. A method for manufacturing a polymer electrolyte fuel cell manufactured by sandwiching an electrolyte membrane made of a solid polymer material, wherein at least the oxygen electrode promotes proton transfer in the catalyst layer to increase initial power generation characteristics. It is impregnated with a raising agent or a water retention agent capable of holding a water content in the range of 1 to 10 (mg / cm 2 ).

【0009】本発明によれば、発電初期のプロトン移動
を促進する所定水分量が触媒層内に予め含まれているの
で、水分不足による発電初期のプロトン移動不足が回避
されて、発電初期から高性能な電池特性を得ることがで
きる。
According to the present invention, since a predetermined amount of water for promoting proton transfer in the early stage of power generation is contained in the catalyst layer in advance, shortage of proton transfer in the early stage of power generation due to shortage of water is avoided, and the amount of water is increased from the initial stage of power generation. High performance battery characteristics can be obtained.

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図面を参照しながら説明する。図1は、本発明によ
る一実施例の固体高分子型燃料電池を示す模式断面図で
ある。基本的な電池構造の断面を示している。図2は、
図1の電解質膜及び各電極部分の拡大図である。図1,
図2を同時に参照しながら説明する。図において、本実
施例の固体高分子型燃料電池は、固体高分子材料からな
る電解質膜1と、該電解質膜1を両側から挟持するよう
に設けた両電極としての水素極2及び酸素極3と、それ
ぞれの該電極の外側に配設した両集電体4と、ガスシー
ル体5との積層体から構成される。また、両集電体4は
複数個のガス供給溝4aを有し、該ガス供給溝4aに
は、各電極に応じた水素ガス及び酸素ガスが供給され
る。さらに、電解質膜1,水素極2及び酸素極3とを挟
む両集電体4同士はその端部にて当接していて、該当接
部にガスシール体5が設けられ、各ガスの漏れを防いで
いるという構成である。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic sectional view showing a polymer electrolyte fuel cell according to one embodiment of the present invention. 1 shows a cross section of a basic battery structure. FIG.
It is an enlarged view of the electrolyte membrane and each electrode part of FIG. Figure 1
This will be described with reference to FIG. In the figure, a polymer electrolyte fuel cell according to the present embodiment has an electrolyte membrane 1 made of a solid polymer material, and a hydrogen electrode 2 and an oxygen electrode 3 as two electrodes provided so as to sandwich the electrolyte membrane 1 from both sides. And a stacked body of the two current collectors 4 disposed outside the respective electrodes and the gas seal body 5. Each of the current collectors 4 has a plurality of gas supply grooves 4a, and a hydrogen gas and an oxygen gas corresponding to each electrode are supplied to the gas supply grooves 4a. Further, the current collectors 4 sandwiching the electrolyte membrane 1, the hydrogen electrode 2 and the oxygen electrode 3 are in contact with each other at their ends, and a gas seal body 5 is provided at the corresponding contact portion to prevent leakage of each gas. It is a configuration that prevents it.

【0011】図2において、本実施例の水素極2と電解
質膜1と酸素極3との積層配置関係を示いている。 水
素極2は、水素極側の触媒層6とガス拡散層7(電子伝
導体として作用する)とからなり、酸素極3は、酸素極
側の触媒層8とガス拡散層9(電子伝導体として作用す
る)とからなる。 そして、ガス拡散層7,9は、例え
ば、カーボン繊維を成型し、焼結して得ることができる
ものである。また、各触媒層6,8は、供給された水素
ガス及び酸素ガスとの反応を促す触媒として機能する活
性成分と、該活性成分を担持する担体と、プロトンを伝
導するためのプロトン伝導体と、後述する発電初期特性
上昇剤または保水剤と、これらを固める結着剤とから構
成されるものである。そして、ガス拡散層7、触媒層
6、電解質膜1、触媒層8およびガス拡散9とを重ねて
一体化構成されているものである。
FIG. 2 shows a stacked arrangement relationship of the hydrogen electrode 2, the electrolyte membrane 1, and the oxygen electrode 3 in this embodiment. The hydrogen electrode 2 includes a catalyst layer 6 on the hydrogen electrode side and a gas diffusion layer 7 (acting as an electron conductor), and the oxygen electrode 3 includes a catalyst layer 8 on the oxygen electrode side and a gas diffusion layer 9 (electron conductor). Act as). The gas diffusion layers 7 and 9 can be obtained, for example, by molding and sintering carbon fibers. Each of the catalyst layers 6 and 8 includes an active component that functions as a catalyst that promotes a reaction with the supplied hydrogen gas and oxygen gas, a carrier that supports the active component, and a proton conductor that conducts protons. , A power generation initial property improving agent or a water retention agent, which will be described later, and a binder for solidifying these. Further, the gas diffusion layer 7, the catalyst layer 6, the electrolyte membrane 1, the catalyst layer 8, and the gas diffusion 9 are laminated and integrated.

【0012】即ち、本発明による固体高分子型燃料電池
の特徴とする構成は、酸素極の触媒層または酸素極及び
水素極の両触媒層に、発電初期特性上昇剤または保水剤
が含まれていることにある。換言すれば、本実施例の水
素極2側の触媒層6と酸素極3側の触媒層8が、後述す
る発電初期特性上昇剤または保水剤を含有することによ
って、水素極2でのプロトン移動が促進されると共に、
酸素極3での電解質膜1からのプロトン移動を容易に
し、酸素極3の活性成分の触媒機能を有効に働かせるこ
とで、両極のプロトン移動を改善し、発電初期特性を向
上させ、全体としての電池性能の安定化を図るものであ
る。
That is, the polymer electrolyte fuel cell according to the present invention is characterized in that the catalyst layer of the oxygen electrode or both of the catalyst layers of the oxygen electrode and the hydrogen electrode contain an agent for increasing initial power generation properties or a water retention agent. Is to be. In other words, since the catalyst layer 6 on the hydrogen electrode 2 side and the catalyst layer 8 on the oxygen electrode 3 side of the present embodiment contain a later-described power generation initial property improving agent or a water retention agent, proton transfer at the hydrogen electrode 2 is performed. Is promoted,
By facilitating the transfer of protons from the electrolyte membrane 1 at the oxygen electrode 3 and effectively using the catalytic function of the active component of the oxygen electrode 3, the proton transfer at both electrodes is improved, and the initial power generation characteristics are improved. This aims to stabilize battery performance.

【0013】次に、本発明による発電初期特性上昇剤及
び保水剤の含有について説明する。尚、本明細書では発
電初期特性上昇剤及び保水剤を保水剤等という。まず、
保水剤等の含有方法については、保水剤等を触媒層に吸
着(含浸)させる方法が有効(即ち、現行の製作工程がそ
のまま流用可能で生産性の点で有効)である。この吸着
方法の考慮する点としては、触媒層に吸着させる時間、
保水剤等の濃度、更には、触媒層の撥水性の強弱などが
ある。この内の簡便な吸着方法は、結着剤濃度(撥水性
の強弱)と保水剤等の濃度を一定にし吸着時間のみで調
整し、吸着させるものである。さらに、生産性の点か
ら、保水剤等の材質を電解質膜と同一材質にすること、
例えば、保水剤等ならびに電解質膜の材質を、スルホン
酸基を有する硫酸または硫酸塩化合物などして、材質を
兼ねることが有効である。
Next, the content of the power generation initial property improving agent and the water retention agent according to the present invention will be described. In addition, in this specification, the power generation initial characteristic increasing agent and the water retention agent are referred to as a water retention agent and the like. First,
With respect to the method of containing the water retention agent and the like, a method of adsorbing (impregnating) the water retention agent and the like into the catalyst layer is effective (that is, the current manufacturing process can be used as it is and effective in terms of productivity). Points to consider in this adsorption method are the time for adsorption to the catalyst layer,
Examples include the concentration of the water retention agent and the like, and the strength of the water repellency of the catalyst layer. Among these, a simple adsorption method is one in which the concentration of the binder (water repellency) and the concentration of the water retention agent and the like are kept constant and adjusted only by the adsorption time to perform the adsorption. Further, from the viewpoint of productivity, the material such as a water retention agent is the same material as the electrolyte membrane,
For example, it is effective that the material of the water retention agent and the like and the electrolyte membrane also serve as the material by using sulfuric acid or a sulfate compound having a sulfonic acid group.

【0014】また、保水剤等濃度は、1M(モル)〜3M
(モル)の範囲が良く、保水剤等の水分の含有量は、1〜
10(mg/cm2)の範囲が良い。実用的な点で好ましくは3
〜6(mg/cm2)の範囲が良いことが分かった。即ち、1(m
g/cm2)以下であると発電初期特性の改善が為されず、ま
た、10(mg/cm2)を超えると触媒層の細孔が閉塞し、同
じく特性の改善が為されないからである。そして、3(m
g/cm2)以上であれば確実に発電初期特性の改善が為さ
れ、6(mg/cm2)以下であれば細孔閉塞の不安が回避され
るからである。尚、従来技術の触媒層は撥水性が強いの
で、その水分の含有量は少なく、1(mg/cm2)を超えるも
のは現時点では見られていない。
The concentration of the water retention agent is 1M (mol) to 3M.
(Mol) range is good, the content of water such as a water retention agent is 1 to
A range of 10 (mg / cm 2 ) is good. Preferably 3 for practical reasons
It was found that the range of 66 (mg / cm 2 ) was good. That is, 1 (m
g / cm 2 ) or less, the power generation initial characteristics are not improved, and if it exceeds 10 (mg / cm 2 ), the pores of the catalyst layer are closed, and the characteristics are not improved. . And 3 (m
This is because if it is at least g / cm 2 ), the initial power generation characteristics will surely be improved, and if it is at most 6 (mg / cm 2 ), anxiety of pore blockage will be avoided. Since the catalyst layer of the prior art has a high water repellency, its water content is small, and the content exceeding 1 (mg / cm 2 ) has not been observed at present.

【0015】次に、触媒層への保水剤等含有と触媒層の
撥水性との関係について説明する。撥水性の強弱制御に
は、触媒層に添加する撥水性を有する結着剤の絶対量を
変えて行う方法と、撥水性の強弱が異なる各結着剤の混
合比を変えて行う方法がある。前者は触媒層の細孔構造
を変化させることなく撥水性を制御できることに特長が
ある。後者は触媒層の細孔構造を多少変化させるものの
簡便で実用的である点に特長がある。 撥水性結着剤と
しては、ポリテトラフルオロエチレン(以下、PTFE
と略す)などのフッ素樹脂、(CF)nで代表されるフッ化
黒鉛またはそれらの混合物等が使用される。
Next, the relationship between the inclusion of a water retention agent or the like in the catalyst layer and the water repellency of the catalyst layer will be described. The method of controlling the strength of water repellency includes a method of changing the absolute amount of the binder having water repellency to be added to the catalyst layer and a method of changing the mixing ratio of each binder having different strength of water repellency. . The former is characterized in that the water repellency can be controlled without changing the pore structure of the catalyst layer. The latter is characterized in that it is simple and practical although it slightly changes the pore structure of the catalyst layer. As the water-repellent binder, polytetrafluoroethylene (hereinafter, PTFE)
), Fluorinated graphite represented by (CF) n, or a mixture thereof.

【0016】しかし、撥水性結着剤は電気的に抵抗体の
一種であることから多量に含めることができない。例え
ば、撥水性結着剤がPTFEの場合は、その量は水素極
及び酸素極のそれぞれの触媒層の全量に対して、 酸素
極については、10〜40(重量%)、好ましくは10〜
30(重量%)であり、 水素極については、20〜50
(重量%)、好ましくは20〜40(重量%)である。そし
て、水素極の撥水性結着剤の量は、酸素極の撥水性結着
剤の量よりも、その差において10(重量%)以上多くす
ることが望ましいことが判明している。また、他の撥水
性結着剤でも、上記同様の量の範囲であると推考され
る。
However, the water-repellent binder cannot be contained in a large amount because it is an electrical resistor. For example, when the water-repellent binder is PTFE, the amount is 10 to 40 (% by weight), preferably 10 to 40% by weight with respect to the total amount of the respective catalyst layers of the hydrogen electrode and the oxygen electrode.
30 (% by weight).
(% By weight), preferably 20 to 40 (% by weight). It has been found that the amount of the water-repellent binder at the hydrogen electrode is desirably greater than the amount of the water-repellent binder at the oxygen electrode by at least 10% by weight. It is also assumed that other water-repellent binders have the same range as above.

【0017】ところで、プロトン伝導体のイオン交換基
は、親水的であるが、その他の部分は必ずしも親水的で
はなく、選定材料によって異なる。そのため、プロトン
伝導体の添加効果は、結着剤を凌ぐほどではない。しか
も、添加量が増加すれば親水基は増加し確実に親水性が
高まるが、プロトン伝導体は、触媒層内部では膜として
存在するので、プロトン伝導体を多量に添加すると、触
媒細孔を閉塞する虞れがある。従って、多くは添加でき
ず、プロトン伝導体の材料を適切に選定する必要があ
り、プロトン伝導体の量で、撥水性を制御することは困
難である。そして、触媒層に添加して有効反応表面積の
拡大を図るためのプロトン伝導体は、酸化および還元雰
囲気に触れるという厳しい使用条件のため、化学的安定
性の高いパーフルオロスルホン酸樹脂あるいはパーフル
オロカルボン酸樹脂などが特に好ましいと言える。
Incidentally, the ion exchange group of the proton conductor is hydrophilic, but the other parts are not necessarily hydrophilic, and differ depending on the selected material. Therefore, the effect of adding the proton conductor is not so great as to surpass the binder. Moreover, as the amount of addition increases, the hydrophilic groups increase and the hydrophilicity surely increases. However, since the proton conductor exists as a membrane inside the catalyst layer, adding a large amount of the proton conductor closes the catalyst pores. There is a risk of doing so. Therefore, much cannot be added, and it is necessary to appropriately select the material of the proton conductor, and it is difficult to control the water repellency by the amount of the proton conductor. The proton conductor, which is added to the catalyst layer to increase the effective reaction surface area, is exposed to oxidizing and reducing atmospheres, so that it is used under severe operating conditions. It can be said that an acid resin or the like is particularly preferable.

【0018】一方、電極の作製は、塗布方法が適してい
る。すなわち、触媒としての活性成分と、該活性成分を
担持する担体としてのカーボンと、プロトン伝導体と、
撥水性結着剤とを予め混合して触媒層の塗布剤を調製
し、この触媒層をガス拡散層に塗布し、それぞれガス拡
散層と触媒層とを積層形成して、水素極及び酸素極を作
製する方法である。従って、この方法を流用して本発明
による電極を作製する場合は、電極の撥水性は、上述の
ように、撥水性結着剤の添加量を調整して任意に選定
し、その後、保水剤等の含浸量は、この撥水性結着剤の
量に依存される電極の撥水性の強弱に合わせて決めるも
のとする。
On the other hand, a coating method is suitable for producing an electrode. That is, an active component as a catalyst, carbon as a carrier supporting the active component, a proton conductor,
A water-repellent binder is mixed in advance to prepare a coating agent for the catalyst layer, and the catalyst layer is applied to the gas diffusion layer, and the gas diffusion layer and the catalyst layer are laminated to form a hydrogen electrode and an oxygen electrode, respectively. This is a method for producing Therefore, when the electrode according to the present invention is produced by diverting this method, the water repellency of the electrode is arbitrarily selected by adjusting the amount of the water-repellent binder as described above, Is determined according to the strength of the water repellency of the electrode, which depends on the amount of the water repellent binder.

【0019】すなわち、保水剤等の含有量(即ち、含浸
量)を多くしたい場合は、結着剤の添加量を少なくし触
媒層の撥水性を弱にする。一方、保水剤等の含有量を少
なくしたい場合は、結着剤の添加量を多くし触媒層の撥
水性を強にする。即ち、保水剤等の含有量の調製は、撥
水性結着剤の添加量により任意にでき、且つ、現行の製
作工程をそのまま流用できると言える。以下、発明者ら
が検討した代表的なものの2,3の実施例を示し、本発
明の詳細について説明する。しかし、実施例はこれらの
みに限定されることはない。即ち、本発明は、開示され
ている技術等の構成に対して幅広く適用されるものであ
る。
In other words, when it is desired to increase the content of the water retention agent or the like (that is, the impregnation amount), the addition amount of the binder is reduced to weaken the water repellency of the catalyst layer. On the other hand, when it is desired to reduce the content of the water retention agent or the like, the amount of the binder added is increased to increase the water repellency of the catalyst layer. That is, it can be said that the content of the water retention agent and the like can be adjusted arbitrarily by the addition amount of the water-repellent binder, and the current manufacturing process can be used as it is. Hereinafter, a few examples of typical ones studied by the inventors will be shown, and the details of the present invention will be described. However, the embodiments are not limited to only these. That is, the present invention is widely applied to configurations of the disclosed technology and the like.

【0020】[0020]

【実施例】以下、具体的な実施例について説明する。 [実施例1]実施例1の水素極及び酸素極の触媒層及び
ガス拡散層は、両電極共に、ほぼ同様な構造と材質とし
て、次ぎのようにして作製した。即ち、触媒層を、活性
成分としての白金と、該白金を担持する担体としてのカ
ーボン粉末と、プロトン伝導体としてのパーフルオロス
ルホン酸系陽イオン交換樹脂(Aldrich Chemical 社
製,Nafion液)と、撥水性結着剤としてのPTFEの水
系懸濁液とを、十分に混練調製して、 触媒層ペースト
を作製した。ガス拡散層は、細孔径約100(μm),厚み1
00(μm)のカーボンペーパに、 PTFEの水系懸濁液
を、PTFE塗布量12(mg/cm2)の割合で塗布し、350
(℃)で焼成して作製した。
Embodiments Hereinafter, specific embodiments will be described. [Example 1] The catalyst layer and gas diffusion layer of the hydrogen electrode and the oxygen electrode of Example 1 were manufactured as follows, using substantially the same structure and material for both electrodes. That is, the catalyst layer was formed of platinum as an active ingredient, carbon powder as a carrier supporting the platinum, and a perfluorosulfonic acid-based cation exchange resin (Nafion liquid, manufactured by Aldrich Chemical Co.) as a proton conductor. An aqueous suspension of PTFE as a water-repellent binder was sufficiently kneaded and prepared to prepare a catalyst layer paste. The gas diffusion layer has a pore diameter of about 100 (μm) and a thickness of 1
An aqueous suspension of PTFE was applied to 00 (μm) carbon paper at a PTFE application amount of 12 (mg / cm 2 ),
(° C.).

【0021】そして、該ガス拡散層に前述の触媒層ペー
ストを塗布して積層し、それを80(℃)で乾燥して、両
電極基体を作製した。 その後、 それらの両電極基体の
全体(電極面積9cm2)に対して、 1M(モル)の硫酸水溶
液を、5(mg/cm2)の割合で含浸させて、即ち、保水剤等
を触媒層に含有させて水素極及び酸素極を作製した。上
記のように、本実施例では、活性成分と、担体と、プロ
トン伝導体と、結着剤とを混練調製してペースト状の触
媒層を一旦作製し、その後に、ガス拡散層としてのカー
ボンペーパ等に該触媒層を塗布して固め電極基体を作製
し、このガス拡散層と触媒層との電極基体を硫酸に浸し
て、 触媒層に保水剤等(即ち、発電初期特性上昇剤また
は保水剤)を含有させるものである。換言すれば、触媒
層(の主にプロトン伝導体 )に水分を保有させる「水分の
触媒層への間接的な含有方法」であると言える。そし
て、上記方法は、現行の生産工程をそのまま流用して行
えるので、有効な方法であると言える。
Then, the above-mentioned catalyst layer paste was applied to the gas diffusion layer, laminated, and dried at 80 (° C.) to produce a two-electrode substrate. Then, with respect to the total of those two electrode substrate (electrode area 9cm 2), an aqueous solution of sulfuric acid 1M (mol), 5 impregnated at a rate of (mg / cm 2), i.e., the catalyst layer water retention agent To form a hydrogen electrode and an oxygen electrode. As described above, in this example, the active component, the carrier, the proton conductor, and the binder were kneaded and prepared to form a paste-like catalyst layer once, and then the carbon as a gas diffusion layer was formed. The catalyst layer is applied to paper or the like to form a solidified electrode substrate, and the electrode substrate of the gas diffusion layer and the catalyst layer is immersed in sulfuric acid, and a water retention agent, etc. Agent). In other words, it can be said that this is a “method of indirectly containing water in the catalyst layer” in which the catalyst layer (mainly the proton conductor) retains water. The above method can be said to be an effective method because the current production process can be used as it is.

【0022】即ち、本発明による固体高分子型燃料電池
の製造方法の特徴は、それぞれガス拡散層と触媒層とを
積層して形成した水素極及び酸素極の該各触媒層側に
て、固体高分子材からなる電解質膜を挟持して作製する
固体高分子型燃料電池の製造方法において、少なくとも
酸素極に、触媒層内のプロトン移動を促し発電初期特性
を上昇させる発電初期特性上昇剤、または1〜10(mg/
cm2)の範囲の水分量を保有することが可能な保水剤を含
浸させる点にある。
That is, the method of manufacturing a polymer electrolyte fuel cell according to the present invention is characterized in that a hydrogen diffusion layer and a catalyst layer are formed on a hydrogen electrode and an oxygen electrode, respectively. In a method for manufacturing a polymer electrolyte fuel cell manufactured by sandwiching an electrolyte membrane made of a polymer material, at least an oxygen electrode, a power generation initial property improving agent that promotes proton transfer in a catalyst layer and increases power generation initial properties, or 1 to 10 (mg /
cm 2 ) in order to impregnate a water retention agent capable of retaining a water content in the range.

【0023】具体的な水素極の組成は、 白金0.3(mg/cm
2)、カーボン粉末0.97(mg/cm2)、プロトン伝導体30
(重量%)、PTFE30(重量%)とした。また、酸素極の組成
は、白金0.3(mg/cm2)、カーボン粉末0.97(mg/cm2)、プ
ロトン伝導体20(重量%)、PTFE20(重量%)とした。
また、固体高分子材料からなる電解質膜には、Du Pon
t社製 Nafion 117 を用いた。 そして、水素極及び酸
素極の各触媒層側にて電解質膜を挟持するように配し
て、 ホットプレス法によって、即ち、100(kg/cm2)の圧
力で、温度120(℃)で15分プレスして接着し、単一セ
ルを作成した。 一方、本実施例と比較するため
に、水素極および酸素極をともに、白金0.3(mg/cm2)
と、カーボン粉末0.97(mg/cm2)と、 プロトン伝導体2
0(重量%)と、 PTFE20(重量%)との同一組成とし、 該
両電極には硫酸の含浸はないもの、即ち、保水剤等は含
有させないものを作り、従来例に相当する単一セルを作
成した。
The specific composition of the hydrogen electrode is platinum 0.3 (mg / cm
2 ), carbon powder 0.97 (mg / cm 2 ), proton conductor 30
(% By weight) and PTFE 30 (% by weight). The composition of the oxygen electrode was platinum 0.3 (mg / cm 2 ), carbon powder 0.97 (mg / cm 2 ), proton conductor 20 (% by weight), and PTFE 20 (% by weight).
In addition, an electrolyte membrane made of a solid polymer material includes Du Pon
Nafion 117 manufactured by t company was used. Then, the electrolyte membrane is disposed so as to be sandwiched between the catalyst layers of the hydrogen electrode and the oxygen electrode, and hot pressing is performed, that is, at a pressure of 100 (kg / cm 2 ), at a temperature of 120 (° C.), and at 15 ° C. A single cell was created by pressing and gluing for a minute. On the other hand, for comparison with this example, both the hydrogen electrode and the oxygen electrode were platinum 0.3 (mg / cm 2 ).
And carbon powder 0.97 (mg / cm 2 ) and proton conductor 2
0 (wt%) and the same composition of PTFE 20 (wt%), and both electrodes were made without impregnation with sulfuric acid, that is, without containing a water retention agent, etc. It was created.

【0024】以上のように作成した各単一セルを電池と
して組込み、該各電池の電流密度−電圧特性を、80
℃,1気圧の条件で測定した。その結果を図3に示す。
図3は、本発明による一実施例の燃料電池の経過時間と
電圧の関係を示す図である。図に示す従来例の電極を用
いた電池の初期性能は、 電流密度500(mA/cm2)時にて初
期電圧が電圧0.52V(平均)を示している。これに対し
て、本実施例の電極を用いた電池の初期性能では、 電
流密度500(mA/cm2)時にて初期電圧が0.62V(平均)であ
る特性を示すことが判明した。このように、酸素極及び
水素極に予め保水剤等を含有する本実施例のような構成
にすることによって、固体高分子型燃料電池の発電初期
特性を向上させることができた。
Each single cell prepared as described above is incorporated as a battery, and the current density-voltage characteristics of each
The measurement was performed under the conditions of 1 ° C. and 1 atm. The result is shown in FIG.
FIG. 3 is a diagram showing the relationship between the elapsed time and the voltage of the fuel cell according to one embodiment of the present invention. The initial performance of the battery using the electrode of the conventional example shown in the figure shows an initial voltage of 0.52 V (average) at a current density of 500 (mA / cm 2 ). On the other hand, in the initial performance of the battery using the electrode of this example, it was found that the initial voltage was 0.62 V (average) at a current density of 500 (mA / cm 2 ). As described above, the initial power generation characteristics of the polymer electrolyte fuel cell can be improved by adopting a configuration as in this embodiment in which the oxygen electrode and the hydrogen electrode contain a water retention agent or the like in advance.

【0025】[実施例2]実施例2の構成は、ほぼ実施
例1の構成と同じであるが、保水剤等の含浸量のみが異
なり、保水剤等を触媒層に含有させるために、電極基体
を3M(モル)の硫酸溶液5(mg/cm2)に含浸させたもので
ある。実施例2の電池性能を示す経過時間と電圧の関係
は、図3に示す実施例1の結果とほぼ同様であった。本
実施例2の場合の電池の初期性能は、 電流密度500(mA/
cm2)時における初期電圧が、0.60Vを超える特性を示し
た。本実施例2のように保水剤等濃度を高めても、酸素
極及び水素極に予め含浸することによって、大幅に電池
性能を向上させることができた。
[Embodiment 2] The construction of Embodiment 2 is almost the same as that of Embodiment 1, except that the amount of impregnation with a water retention agent and the like is different. The substrate was impregnated with a 3M (molar) sulfuric acid solution 5 (mg / cm 2 ). The relationship between the elapsed time indicating the battery performance of Example 2 and the voltage was almost the same as the result of Example 1 shown in FIG. In the case of the second embodiment, the initial performance of the battery is as follows.
The characteristic that the initial voltage at the time of cm 2 ) exceeded 0.60 V was exhibited. Even when the concentration of the water retention agent or the like was increased as in Example 2, the battery performance could be significantly improved by impregnating the oxygen electrode and the hydrogen electrode in advance.

【0026】[実施例3]実施例3の構成は、水素極よ
り酸素極の気孔率を高くした構成である。 即ち、水素
極及び酸素極のガス拡散層と電解質膜の間にあるそれぞ
れの触媒層内において、気孔率が異なる場合の電極を作
製した。尚、両電極の触媒層をそれぞれ2層にした。
一方の、水素極の触媒層のガス拡散層側の第1層目の
ペーストは、平均粒径3(μm)のカーボンの担体にて白
金触媒を担持し、30(重量%)のイオン交換樹脂(パー
フルオロスルホン酸樹脂)及び40(重量%)のPTFE
を混練して得た。また、水素極の触媒層の電解質膜側の
第2層目のペーストは、実施例1と同じとした。そし
て、これらのペーストをガス拡散層としてのカーボンペ
ーパに、2層に塗布し、80(℃)で乾燥し水素極を作製
した。
[Embodiment 3] The configuration of Embodiment 3 is such that the porosity of the oxygen electrode is higher than that of the hydrogen electrode. That is, electrodes having different porosity were produced in the respective catalyst layers between the gas diffusion layers of the hydrogen electrode and the oxygen electrode and the electrolyte membrane. In addition, the catalyst layer of both electrodes was made into two layers, respectively.
On the other hand, the paste of the first layer on the gas diffusion layer side of the catalyst layer of the hydrogen electrode supports a platinum catalyst on a carbon carrier having an average particle size of 3 (μm), and has a 30 (wt%) ion exchange resin. (Perfluorosulfonic acid resin) and 40% by weight of PTFE
Was obtained by kneading. The paste of the second layer on the electrolyte membrane side of the catalyst layer of the hydrogen electrode was the same as in Example 1. Then, these pastes were applied to two layers of carbon paper as a gas diffusion layer, and dried at 80 (° C.) to produce a hydrogen electrode.

【0027】他方の、酸素極の触媒層のガス拡散層側の
第1層目のペーストは、平均粒径6(μm)のカーボンの
担体にて、白金触媒を担持し、20(重量%)のイオン交
換樹脂(パーフルオロスルホン酸樹脂)及び30(重量%)
のPTFEを混練して得た。また、酸素極の触媒層の電
解質膜側の第2層目のペーストは、実施例1と同じとし
た。そして、これらのぺーストを、カーボンペーパに2
層に塗布し、80(℃)で乾燥し酸素極を作製した。上記
構成以外ならびにその後の作製工程は、実施例1と同じ
である。
On the other hand, the paste of the first layer on the side of the gas diffusion layer of the catalyst layer of the oxygen electrode supports a platinum catalyst on a carbon carrier having an average particle diameter of 6 (μm), and comprises 20% by weight. Ion exchange resin (perfluorosulfonic acid resin) and 30 (% by weight)
Of PTFE was kneaded. The paste of the second layer on the electrolyte membrane side of the catalyst layer of the oxygen electrode was the same as in Example 1. Then, paste these pastes onto carbon paper for 2 hours.
It was applied to the layer and dried at 80 (° C.) to produce an oxygen electrode. Other than the above configuration and the subsequent manufacturing steps are the same as those in the first embodiment.

【0028】図4は、本発明による実施例3の燃料電池
の電流密度と電圧の関係を示す図である。図において、
電流密度500(mA/cm2)の点において比べれば、従来例の
電池電圧が0.60V位であるのに対し、本実施例の電池性
能は、電池電圧が0.65V位であることが分かった。ま
た、従来例に比べて、本実施例の電池性能は、幅広い範
囲に亘って電流密度の点において優れていることも分か
った。換言すれば、同一電圧であれば、高い電流密度の
出力が得られると言える。このように水素極より酸素極
の気孔率を高くする構成によって、電池性能を向上する
ことができた。以上のように、本発明による固体高分子
型燃料電池は、従来のものより酸素極及び水素極の活性
化を図ることができ、その結果、大幅に電池出力を向上
することが可能である。
FIG. 4 is a diagram showing the relationship between current density and voltage of a fuel cell according to Embodiment 3 of the present invention. In the figure,
Compared with the current density of 500 (mA / cm 2 ), the battery voltage of the conventional example was about 0.60 V, whereas the battery performance of the present example was about 0.65 V. . In addition, it was also found that the battery performance of this example was superior to the conventional example in terms of current density over a wide range. In other words, it can be said that an output with a high current density can be obtained at the same voltage. With the configuration in which the porosity of the oxygen electrode is higher than that of the hydrogen electrode, battery performance can be improved. As described above, the polymer electrolyte fuel cell according to the present invention can activate the oxygen electrode and the hydrogen electrode more than the conventional one, and as a result, it is possible to greatly improve the cell output.

【0029】以上を纏めれば、次の通りである。即ち、
本発明による固体高分子型燃料電池は、固体高分子電解
質膜とその電解質膜を挟むように設けた電極である水素
極及び酸素極と、水素ガス及び酸素ガスをそれぞれ水素
極及び酸素極に供給する手段とからなり、該電極は、カ
ーボン担体と、それに担持された活性成分と、プロトン
伝導体と、撥水性結着剤とからなる触媒層と、その外側
にあってガス拡散層を兼ねる電子伝導体とからなる固体
高分子型燃料電池において、該触媒層に、予め保水剤等
を添加し湿潤状態にしたことを特徴とするものである。
The above is summarized as follows. That is,
The polymer electrolyte fuel cell according to the present invention supplies a polymer electrolyte membrane and a hydrogen electrode and an oxygen electrode which are electrodes provided so as to sandwich the electrolyte membrane, and supplies hydrogen gas and oxygen gas to the hydrogen electrode and the oxygen electrode, respectively. The electrode comprises a catalyst layer comprising a carbon support, an active component carried thereon, a proton conductor, and a water-repellent binder, and an electron outside the catalyst layer serving also as a gas diffusion layer. In a polymer electrolyte fuel cell comprising a conductor, a water retention agent or the like is previously added to the catalyst layer to make it wet.

【0030】また、本発明によれば、各電極の触媒層の
保水剤等をある特定の条件下に制御することにより、固
体高分子型燃料電池の電池性能を向上させることができ
る。更に、本発明によれば、保水剤等の含有量は電極の
撥水性により異なるので、水素極側が酸素極側よりも撥
水性が高い場合は、該水素極よりも酸素極の方を保水剤
等の含有量を多くし、また、酸素極及び水素極の両方に
おいて、保水剤等が充分にあれば当該保水剤等がプロト
ン伝導体を兼ねることができるのでプロトン伝導体は無
くても良いと言える。
According to the present invention, the cell performance of the polymer electrolyte fuel cell can be improved by controlling the water retention agent and the like of the catalyst layer of each electrode under certain specific conditions. Furthermore, according to the present invention, since the content of the water retention agent and the like differs depending on the water repellency of the electrode, when the hydrogen electrode side has a higher water repellency than the oxygen electrode side, the oxygen electrode is more water repellent than the hydrogen electrode. Increasing the content of the like, and, in both the oxygen electrode and the hydrogen electrode, if the water retention agent and the like are sufficient, the water retention agent and the like can also serve as the proton conductor, so that the proton conductor may be omitted. I can say.

【0031】またさらに、本実施例の水素極及び酸素極
の両極の触媒層は、カーボン担体とそれに担持された活
性成分(触媒)とプロトン伝導体と撥水性結着剤とからな
る。そして、活性成分は、白金又は白金族金属、例え
ば、ロジウム、ルテニウム、パラジウム及びイリジウム
が好ましく、プロトン伝導体の材質は、電解質膜と同一
の固体高分子電解質であっても良いし異なっても良い。
また、撥水性結着剤は、ポリテトラフルオロエチレンな
どのフッ素樹脂、または化学分子式(CF)nで表される
フッ化黒鉛、またはそれらの混合物が有効である。保水
剤等は、電解質膜の材料と兼ねることができるスルホン
酸基を有する硫酸および硫酸塩化合物が生産性などの点
から良いと言える。尚、本発明に適用される電解質膜
は、一般的に膜の形態であり、その材質は一般的に使用
される、パーフルオロスルホン酸樹脂、パーフルオカル
ボン酸樹脂のような固体高分子電解質樹脂類が好まし
い。
Further, the catalyst layers of both the hydrogen electrode and the oxygen electrode of the present embodiment comprise a carbon carrier, an active component (catalyst) carried on the carbon carrier, a proton conductor, and a water-repellent binder. The active component is preferably platinum or a platinum group metal, for example, rhodium, ruthenium, palladium and iridium, and the material of the proton conductor may be the same solid polymer electrolyte as the electrolyte membrane or may be different. .
As the water-repellent binder, a fluorine resin such as polytetrafluoroethylene, fluorinated graphite represented by a chemical molecular formula (CF) n, or a mixture thereof is effective. It can be said that sulfuric acid and a sulfate compound having a sulfonic acid group, which can also serve as a material for the electrolyte membrane, are good as the water retention agent from the viewpoint of productivity and the like. The electrolyte membrane applied to the present invention is generally in the form of a membrane, and its material is generally used, such as solid polymer electrolyte resin such as perfluorosulfonic acid resin and perfluorocarboxylic acid resin. Are preferred.

【0032】さらに、補足説明すれば、次の通りであ
る。従来の固体高分子型燃料電池においては、水素極に
は電解質膜の乾燥防止及びプロトンの移動を促進するた
めに水分を添加している。酸素極に関しては、触媒層は
撥水性ではあるが、加湿しているものがある。なお、加
湿した場合であっても、従来技術の触媒層は撥水性が強
いので、その水分の含有量は少なく、1(mg/cm2)を超え
るものは現時点では見られていない。即ち、水素極及び
酸素極の両触媒層中にはともに、触媒層内の電極反応に
必要なプロトンの移動を促進するため、ある程度の水分
が存在しなければならない。しかし、水素極側では水素
ガスの拡散の働きがあってプロトンと水分との結びつき
が促進されるので、酸素極側に比べれば水分依存度は小
さく、従って、どちらかと言えば酸素極側の水分の保水
量が隘路となってプロトンの移動が損なわれ、高い発電
初期特性を示す電池性能が発現できないという点があっ
た。
The supplementary explanation is as follows. In a conventional polymer electrolyte fuel cell, water is added to the hydrogen electrode in order to prevent the electrolyte membrane from drying and to promote the transfer of protons. As for the oxygen electrode, the catalyst layer is water-repellent, but is humidified. Even when humidified, the catalyst layer of the prior art has a high water repellency, and therefore has a low water content, and no water content exceeding 1 (mg / cm 2 ) has been observed at present. That is, both the hydrogen electrode and the oxygen electrode must have a certain amount of water to promote the transfer of protons necessary for the electrode reaction in the catalyst layer. However, the diffusion of hydrogen gas on the hydrogen electrode side promotes the association between protons and moisture, so that the water dependence on the oxygen electrode side is smaller than that on the oxygen electrode side. The water retention amount becomes a bottleneck, and the movement of protons is impaired, so that the battery performance exhibiting high initial power generation characteristics cannot be exhibited.

【0033】これに対して、本発明による固体高分子型
燃料電池においては、酸素極の触媒層または水素極及び
酸素極の両触媒層に、予め触媒層内のプロトン移動を促
し発電初期特性を上昇させるための所定の水分量を保有
することが可能な保水剤等を含有する( 即ち、触媒層内
のプロトン移動を促し発電初期特性を上昇させる発電初
期特性上昇剤を含有する)ことで、 運転初期の水分不足
によるプロトンの移動を容易にし、目的とする電池性能
を発現させるものである。そして、いろいろ検討したと
ころ、水分を保有させる保水剤の水分の含有量は、1〜
10(mg/cm2)の範囲であることが望ましい知見を得たも
のである。
On the other hand, in the polymer electrolyte fuel cell according to the present invention, proton transfer in the catalyst layer is promoted in advance in the catalyst layer of the oxygen electrode or both of the catalyst layers of the hydrogen electrode and the oxygen electrode to improve the initial power generation characteristics. By containing a water retention agent or the like capable of holding a predetermined amount of water for raising (that is, by containing a power generation initial property increasing agent that promotes proton transfer in the catalyst layer and raises power generation initial characteristics), This facilitates the transfer of protons due to a shortage of water in the early stage of operation, and achieves the desired battery performance. And after various investigations, the water content of the water retention agent that retains water is 1 to
It has been found that the range is preferably 10 (mg / cm 2 ).

【0034】尚、発電初期特性上昇剤として望まれる要
件は、(1)プロトン(水素イオンH+)を解離すること、
(2)活性成分(白金、ルテニウムなど)を侵さないこと、
(3)触媒層内の細孔を閉塞しないこと(固体で存在しない
こと)であり、該当するものとして、硫酸または硫酸化
合物、燐酸または燐酸化合物がある。同じ(1),(3)機能
を有する酸であっても、塩酸は活性成分を侵すので、不
適当であると言える。
The requirements for the power generation initial property enhancer are as follows: (1) Dissociation of protons (hydrogen ions H + );
(2) not to attack active ingredients (platinum, ruthenium, etc.),
(3) Do not block the pores in the catalyst layer (they do not exist as a solid), and include sulfuric acid or a sulfuric acid compound, phosphoric acid or a phosphoric acid compound. Even with acids having the same (1) and (3) functions, it can be said that hydrochloric acid is unsuitable because it attacks the active ingredient.

【0035】また、保水剤等が吸収された電極は可撓性
が向上するので、一体化電極にしたときに電解質膜と触
媒層がより密に配することで接触抵抗がより小さくなる
ことから、内部抵抗を減少させることができる。その結
果、電池性能が向上する。更には、水素極からのプロト
ンの移動が容易になり電極性能が安定化する。即ち、保
水剤等を予め含有させることにより、水素極および酸素
極とも可撓性を有することから電解質膜との親和性が向
上し、より密に触媒層と電解質膜とが一体化され、水素
極からのプロトンの移動が容易になり、酸素極では電極
反応が進行する。
Further, the flexibility of the electrode absorbed with the water retention agent and the like is improved, so that the contact resistance is further reduced by disposing the electrolyte membrane and the catalyst layer more densely when the electrode is formed as an integrated electrode. , The internal resistance can be reduced. As a result, battery performance is improved. Further, the transfer of protons from the hydrogen electrode is facilitated, and the electrode performance is stabilized. That is, by previously containing a water retention agent and the like, the hydrogen electrode and the oxygen electrode also have flexibility, so that the affinity with the electrolyte membrane is improved, and the catalyst layer and the electrolyte membrane are more densely integrated, and hydrogen The transfer of protons from the electrode is facilitated, and the electrode reaction proceeds at the oxygen electrode.

【0036】保水剤等としては、単なる保水剤等を用い
て保水するよりも、電解質膜と同様な性質を有すれば、
電極反応に有利になる上に、生産性の点でもの有利であ
るので、スルホン酸系の化合物が良い。そして、電極触
媒層内に保水剤等を含有するには最適範囲があり、多量
を含有させるとガス拡散性が阻害されるので電極反応に
寄与する気孔率を確保しなければならない。即ち、保水
剤等を含有させるにあたり、電極触媒層内の細孔に占め
る割合が多くなると、ガス拡散性が損なわれ性能低下を
招くので、自身から限界はある。保水剤等が硫酸などの
場合は、10(mg/cm2)であった。
As for the water retention agent, if it has the same properties as the electrolyte membrane, rather than using a simple water retention agent or the like,
Sulfonic acid compounds are preferred because they are advantageous not only in the electrode reaction but also in terms of productivity. There is an optimum range for containing a water retention agent and the like in the electrode catalyst layer, and when a large amount is contained, gas diffusivity is impaired, so that porosity contributing to the electrode reaction must be ensured. In other words, when a water retention agent or the like is contained, if the proportion of the pores in the electrode catalyst layer increases, gas diffusivity is impaired and performance is reduced, so there is a limit from itself. When the water retention agent or the like was sulfuric acid, the value was 10 (mg / cm 2 ).

【0037】気孔率に関しては、水素極に供給される水
素は、分子サイズが小さく拡散が良いので、酸素極より
も気孔率が低くともガスの拡散は容易であり、ガスの供
給が不良になることはない。酸素極では酸素の拡散性が
低く、反応性も低いので気孔率を高めて、充分な量を供
給することが重要である。しかし、電極の気孔率には適
正範囲があり、気孔率が低過ぎるとガスの拡散性が低下
し、電極反応が進行しなくなる。また、気孔率が高過ぎ
ると電極触媒層の電気抵抗が高くなり、さらには、供給
ガスにより触媒層が乾燥しやすく、反応場の有効面積の
維持が困難になり電極性能が発現しなくなる。従って、
気孔率には適正範囲があり、検討の結果によれば、水素
極では35〜60(%)が、酸素極では40〜65(%)程
度が良好であり、水素極よりも酸素極の気孔率を5(%)
以上高くした方が、両極間の水バランスの上で効果があ
るが、電極性能を向上させるためには10(%)以上が適
している。
Regarding the porosity, hydrogen supplied to the hydrogen electrode has a small molecular size and is well diffused. Therefore, even if the porosity is lower than that of the oxygen electrode, the gas can be easily diffused and the gas supply becomes poor. Never. Since the oxygen electrode has low oxygen diffusivity and low reactivity, it is important to increase the porosity and supply a sufficient amount. However, the porosity of the electrode has an appropriate range. If the porosity is too low, gas diffusivity is reduced, and the electrode reaction does not proceed. On the other hand, if the porosity is too high, the electric resistance of the electrode catalyst layer increases, and further, the catalyst layer is easily dried by the supplied gas, and it becomes difficult to maintain an effective area of the reaction field, and the electrode performance is not exhibited. Therefore,
The porosity has an appropriate range. According to the results of the study, the hydrogen electrode has a good porosity of 35 to 60 (%) and the oxygen electrode has a good porosity of about 40 to 65 (%). Rate 5 (%)
A higher value is more effective in water balance between the two electrodes, but a value of 10% or more is suitable for improving electrode performance.

【0038】[0038]

【発明の効果】本発明によれば、固体高分子電解質型水
素−空気(酸素)燃料電池の空気(酸素)極の活性が、従来
のものよりも大幅に向上できるので、電池性能を飛躍的
に向上する。したがって、発電初期の特性が高性能な固
体高分子型燃料電池を提供することができる効果があ
る。
According to the present invention, the activity of the air (oxygen) electrode of the solid polymer electrolyte type hydrogen-air (oxygen) fuel cell can be greatly improved as compared with the conventional one, so that the cell performance is dramatically improved. To improve. Therefore, there is an effect that a polymer electrolyte fuel cell having high performance in the early stage of power generation can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による一実施例の固体高分子型燃料電池
を示す模式断面図である。
FIG. 1 is a schematic sectional view showing a polymer electrolyte fuel cell according to one embodiment of the present invention.

【図2】図1の電解質膜及び各電極部分の拡大図であ
る。
FIG. 2 is an enlarged view of an electrolyte membrane and respective electrode portions of FIG.

【図3】本発明による一実施例の燃料電池の経過時間と
電圧の関係を示す図である。
FIG. 3 is a diagram showing a relationship between elapsed time and voltage of a fuel cell according to one embodiment of the present invention.

【図4】本発明による実施例3の燃料電池の電流密度と
電圧の関係を示す図である。
FIG. 4 is a diagram showing a relationship between current density and voltage of a fuel cell according to Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1…電解質膜、2…水素極、3…酸素極、4…集電体、
4a…ガス供給溝、5…ガスシール体、6,8…触媒
層、7,9…ガス拡散層。
DESCRIPTION OF SYMBOLS 1 ... electrolyte membrane, 2 ... hydrogen electrode, 3 ... oxygen electrode, 4 ... current collector,
4a: gas supply groove, 5: gas seal, 6, 8: catalyst layer, 7, 9: gas diffusion layer.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】固体高分子材からなる電解質膜と、ガス拡
散層と触媒層との積層から成りそれぞれの該触媒層側に
て前記電解質膜を挟持する水素極及び酸素極と、該各極
集電体とを備える固体高分子型燃料電池において、 少なくとも前記酸素極側の前記触媒層は、当該触媒層内
のプロトン移動を促し発電初期特性を上昇させる発電初
期特性上昇剤を含有することを特徴とする固体高分子型
燃料電池。
1. An electrolyte membrane made of a solid polymer material, a hydrogen electrode and an oxygen electrode which are formed by laminating a gas diffusion layer and a catalyst layer and sandwich the electrolyte membrane on each of the catalyst layer sides, And a current collector, wherein at least the catalyst layer on the oxygen electrode side contains a power generation initial property improving agent that promotes proton transfer in the catalyst layer and increases power generation initial properties. Characteristic polymer electrolyte fuel cell.
【請求項2】固体高分子材からなる電解質膜と、ガス拡
散層と触媒層との積層から成りそれぞれの該触媒層側に
て前記電解質膜を挟持する水素極及び酸素極と、該各極
集電体とを備える固体高分子型燃料電池において、 少なくとも前記酸素極側の前記触媒層は、1〜10(mg/
cm2)の範囲の水分量を保有することが可能な保水剤を含
んでいることを特徴とする固体高分子型燃料電池。
2. An electrolyte membrane made of a solid polymer material, a hydrogen electrode and an oxygen electrode which are formed by laminating a gas diffusion layer and a catalyst layer, and sandwich the electrolyte membrane on each catalyst layer side, And a current collector, wherein at least the catalyst layer on the oxygen electrode side is 1 to 10 (mg /
A polymer electrolyte fuel cell comprising a water retention agent capable of holding a water content in the range of cm 2 ).
【請求項3】請求項1または請求項2において、前記発
電初期特性上昇剤または前記保水剤は、硫酸または硫酸
化合物または燐酸または燐酸化合物であることを特徴と
する固体高分子型燃料電池。
3. The polymer electrolyte fuel cell according to claim 1, wherein the power generation initial characteristic increasing agent or the water retention agent is sulfuric acid, a sulfuric acid compound, phosphoric acid, or a phosphoric acid compound.
【請求項4】それぞれガス拡散層と触媒層とを積層して
形成した水素極及び酸素極の該各触媒層側にて、固体高
分子材からなる電解質膜を挟持して作製する固体高分子
型燃料電池の製造方法において、少なくとも前記酸素極
に、前記触媒層内のプロトン移動を促し発電初期特性を
上昇させる発電初期特性上昇剤、または1〜10(mg/cm
2)の範囲の水分量を保有することが可能な保水剤を含浸
させたことを特徴とする固体高分子型燃料電池の製造方
法。
4. A solid polymer produced by sandwiching an electrolyte membrane made of a solid polymer material on each of the catalyst layer side of a hydrogen electrode and an oxygen electrode formed by laminating a gas diffusion layer and a catalyst layer, respectively. In the method for producing a fuel cell, at least to the oxygen electrode, a power generation initial property enhancer that promotes proton transfer in the catalyst layer and increases power generation initial properties, or 1 to 10 (mg / cm
2 ) A method for producing a polymer electrolyte fuel cell, characterized by impregnating a water retention agent capable of holding a water content in the range of 2 ).
【請求項5】請求項4において、前記触媒層が有する撥
水性の強さに応じて、前記発電初期特性上昇剤または前
記保水剤の前記含浸量を調整することを特徴とする固体
高分子型燃料電池の製造方法。
5. The solid polymer type according to claim 4, wherein the impregnation amount of the power generation initial characteristic increasing agent or the water retention agent is adjusted according to the water repellency of the catalyst layer. A method for manufacturing a fuel cell.
JP9139841A 1997-05-29 1997-05-29 Solid high polymer fuel cell and its manufacture Pending JPH10334922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9139841A JPH10334922A (en) 1997-05-29 1997-05-29 Solid high polymer fuel cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9139841A JPH10334922A (en) 1997-05-29 1997-05-29 Solid high polymer fuel cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH10334922A true JPH10334922A (en) 1998-12-18

Family

ID=15254767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9139841A Pending JPH10334922A (en) 1997-05-29 1997-05-29 Solid high polymer fuel cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH10334922A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
WO2004066423A1 (en) 2003-01-22 2004-08-05 Nitto Denko Corporation Fuel cell
US6844097B2 (en) 2000-08-11 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Solid polymer type fuel cell
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP2006107756A (en) * 2004-09-30 2006-04-20 Honda Motor Co Ltd Fuel cell
JPWO2004102588A1 (en) * 2003-05-16 2006-07-13 株式会社エクォス・リサーチ Mixed conductor
US7316860B2 (en) 2001-03-07 2008-01-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method of the same
JP2008218098A (en) * 2007-03-01 2008-09-18 Sharp Corp Fuel cell and electronic device
DE112008001878T5 (en) 2007-07-19 2010-05-27 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell and the catalytic layer thereof forming electrode powder
CN103887525A (en) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 Cathode catalyst layer for high temperature fuel cells and preparation and membrane electrode thereof
JPWO2013125182A1 (en) * 2012-02-23 2015-07-30 凸版印刷株式会社 Membrane electrode assembly for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6844097B2 (en) 2000-08-11 2005-01-18 Honda Giken Kogyo Kabushiki Kaisha Solid polymer type fuel cell
JP2002203575A (en) * 2000-11-14 2002-07-19 Nuvera Fuel Cells Europ Srl Film electrode assembly for high polymer film fuel cell
US7316860B2 (en) 2001-03-07 2008-01-08 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte fuel cell and production method of the same
WO2004066423A1 (en) 2003-01-22 2004-08-05 Nitto Denko Corporation Fuel cell
JP2004247286A (en) * 2003-01-22 2004-09-02 Nitto Denko Corp Fuel cell
US8142956B2 (en) 2003-01-22 2012-03-27 Nitto Denko Corporation Fuel cell
JPWO2004102588A1 (en) * 2003-05-16 2006-07-13 株式会社エクォス・リサーチ Mixed conductor
JP4596163B2 (en) * 2003-05-16 2010-12-08 株式会社エクォス・リサーチ Mixed conductor
JP4506164B2 (en) * 2003-12-11 2010-07-21 株式会社エクォス・リサーチ Membrane electrode assembly and method of using the same
JP2005174765A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Membrane electrode assembly, its manufacturing method, and its usage
JP4627426B2 (en) * 2004-09-30 2011-02-09 本田技研工業株式会社 Fuel cell
JP2006107756A (en) * 2004-09-30 2006-04-20 Honda Motor Co Ltd Fuel cell
JP2008218098A (en) * 2007-03-01 2008-09-18 Sharp Corp Fuel cell and electronic device
DE112008001878T5 (en) 2007-07-19 2010-05-27 Toyota Jidosha Kabushiki Kaisha, Toyota-shi Fuel cell and the catalytic layer thereof forming electrode powder
US8415073B2 (en) 2007-07-19 2013-04-09 Toyota Jidosha Kabushiki Kaisha Fuel cell and electrode powder constituting the catalytic layer thereof
JPWO2013125182A1 (en) * 2012-02-23 2015-07-30 凸版印刷株式会社 Membrane electrode assembly for polymer electrolyte fuel cell, method for producing the same and polymer electrolyte fuel cell
CN103887525A (en) * 2012-12-21 2014-06-25 中国科学院大连化学物理研究所 Cathode catalyst layer for high temperature fuel cells and preparation and membrane electrode thereof

Similar Documents

Publication Publication Date Title
JP2842150B2 (en) Polymer electrolyte fuel cell
US5350643A (en) Solid polymer electrolyte type fuel cell
JP3245929B2 (en) Fuel cell and its application device
US5922488A (en) Co-tolerant fuel cell electrode
JP4233208B2 (en) Fuel cell
US6416898B1 (en) Fuel cell comprising an inorganic glass layer
JP3929146B2 (en) Polymer electrolyte fuel cell system
EP1318559A2 (en) Method for the production of membrane electrode assemblies for fuel cells
EP1721355B1 (en) Membrane electrode unit
KR101877753B1 (en) Composite electrolyte membrane for fuel cell, membrane-electrode assembly including thereof, fuel cell including thereof, and manufacturing method thereof
JPH0536418A (en) Solid polymer electrolytic fuel cell and manufacture of the same
US20030003348A1 (en) Fuel cell
JP2006260909A (en) Membrane electrode assembly and polymer electrolyte fuel cell using the same
JP3577402B2 (en) Polymer electrolyte fuel cell
JPH10334922A (en) Solid high polymer fuel cell and its manufacture
JP4780814B2 (en) Fuel cell
JP3813406B2 (en) Fuel cell
KR100645832B1 (en) Membrane electrode assembly for pemfc, method for preparing the same, and fuel cell using the same
KR101326190B1 (en) Membrane Electrode Assembly for fuel cell and fuel cell using the same
JP2004158387A (en) Electrode structure for solid polymer fuel cell
JP4880131B2 (en) Gas diffusion electrode and fuel cell using the same
JPH06275282A (en) Fuel cell
JP2001057217A (en) Polymer electrolyte type fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
KR102075180B1 (en) Membrane electrode assembly and fuel cell comprising the same