JPH11339815A - Solid polymer electrolyte for cell and its manufacture - Google Patents

Solid polymer electrolyte for cell and its manufacture

Info

Publication number
JPH11339815A
JPH11339815A JP10149261A JP14926198A JPH11339815A JP H11339815 A JPH11339815 A JP H11339815A JP 10149261 A JP10149261 A JP 10149261A JP 14926198 A JP14926198 A JP 14926198A JP H11339815 A JPH11339815 A JP H11339815A
Authority
JP
Japan
Prior art keywords
hydrogen
electrode
oxygen
polymer electrolyte
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10149261A
Other languages
Japanese (ja)
Inventor
Hideo Seko
日出男 瀬古
Takeshi Sha
剛 謝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP10149261A priority Critical patent/JPH11339815A/en
Publication of JPH11339815A publication Critical patent/JPH11339815A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a fuel cell having sufficient power performance by setting the content of the water-repellent resin material of an oxygen electrode larger than the content of the water-repellent resin material of a hydrogen electrode. SOLUTION: A hydrogen electrode side conductive porous layer 71 and a hydrogen electrode side current collector 21 are arranged on one side of a solid polymer electrode 5 as a hydrogen electrode, and an oxygen electrode side conductive porous layer 72 and an oxygen electrode side current collector 22 are arranged on the other side. Steam and hydrogen are fed to the hydrogen electrode side current collector 21 and the hydrogen electrode side conductive porous layer 71 from a first feed pipe 61. Steam and oxygen are fed to the oxygen electrode side current collector 22 and the oxygen electrode side conductive porous layer 72 from a second feed pipe 62. Polytetrafluoroethylene 20-40 wt.% is contained in a hydrogen electrode and an oxygen electrode as a water- repellent resin material, and the content quantity of the water-repellent resin material of the oxygen electrode is made larger than that of the hydrogen electrode. The hydrogen electrode side has a hydrophilic tendency, and the oxygen electrode side has a water-repellent tendency, and the balance between a gas feed capability and a catalyst capability is improved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は固体高分子電解質型
燃料電池に関する。
The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】固体高分子電解質燃料電池は、水素及び
酸素あるいは空気を燃料とする小型軽量高出力用電源と
して自動車その他への応用が有力視されている。かかる
電池はイオン交換能を有する固体高分子電解質膜とこの
両極側に熱間接合して配置される正極及び負極から構成
される。燃料としての水素ガスは負極において電気化学
的に酸化され、プロトンと電子を生成する。このプロト
ンは高分子電解質膜内を酸素が供給される正極に水とと
もに移動する。一方負極で生成した電子は電池に接続さ
れた負荷を通り、正極に流れ、正極においてプロトンと
酸素と電子が反応して水を生成する。
2. Description of the Related Art Solid polymer electrolyte fuel cells are expected to be applied to automobiles and the like as small, lightweight, high-output power supplies using hydrogen, oxygen or air as fuel. Such a battery is composed of a solid polymer electrolyte membrane having ion exchange ability, and a positive electrode and a negative electrode which are hot-joined to both electrode sides. Hydrogen gas as fuel is electrochemically oxidized at the negative electrode to generate protons and electrons. The protons move together with water in the polymer electrolyte membrane to the positive electrode to which oxygen is supplied. On the other hand, the electrons generated at the negative electrode pass through the load connected to the battery and flow to the positive electrode, where protons, oxygen, and electrons react to generate water at the positive electrode.

【0003】このように、自動車用電力源として固体高
分子電解質型燃料電池が常温作動性や小型で高出力密度
であることからこのタイプの研究が行われているが、一
般には燃料電池用高分子電解質膜としてスルホン酸基を
有するパーフルオロカーボン重合体膜(商品名;ナフィ
オン、デュポン株式会社、商品名;アシプレックス、旭
化成株式会社)等が用いられている。しかしながら、燃
料電池のより高出力化からするとまだ十分なものとはい
えない。また非常に高価であり、実用化の障害になって
いる。
As described above, a solid polymer electrolyte fuel cell has been studied as a power source for automobiles because of its operability at room temperature, small size and high power density. As a molecular electrolyte membrane, a perfluorocarbon polymer membrane having a sulfonic acid group (trade name: Nafion, DuPont, trade name: Aciplex, Asahi Kasei Corporation) or the like is used. However, it cannot be said that it is still sufficient in terms of increasing the output of the fuel cell. In addition, they are very expensive and hinder practical use.

【0004】そのため、パーフルオロカーボン重合体膜
を代替する安価で高性能な高分子イオン交換膜の研究開
発が進められている。放射線グラフト重合法により、E
TFE(エチレンーテトラフルオロエチレン共重合体)
フィルムにスチレンを導入して次いでスルホン化して製
造したイオン交換膜はパーフルオロカーボン重合体膜に
比べて電気抵抗を低くすることが原理的に可能であり、
さらに低コスト化が可能であることから、これを用いた
燃料電池の特性評価が行われている。一般に燃料電池の
性能を向上させるためには、内部抵抗を小さくすること
が、有効であるため、電解質である高分子イオン交換膜
のイオン交換容量を大きくすることが有利であると考え
られる。放射線グラフト重合法によれば、簡単に低電気
抵抗膜を製造することが可能であるが、この場合に、膜
表面が極めて親水性になり、これが、電極反応に悪影響
を及ぼし内部抵抗が低いにもかかわらず、十分な発電を
行う場合、あるいは電極の撥水性が低い場合に顕著にな
るといった問題点があった。
[0004] Therefore, research and development of an inexpensive and high-performance polymer ion exchange membrane that substitutes for a perfluorocarbon polymer membrane has been promoted. By radiation graft polymerization, E
TFE (ethylene-tetrafluoroethylene copolymer)
The ion exchange membrane produced by introducing styrene into the film and then sulfonating it is possible in principle to lower the electrical resistance compared to the perfluorocarbon polymer membrane,
Since further cost reduction is possible, the characteristics of fuel cells using the same have been evaluated. In general, it is effective to reduce the internal resistance to improve the performance of the fuel cell. Therefore, it is considered that it is advantageous to increase the ion exchange capacity of the polymer ion exchange membrane as the electrolyte. According to the radiation graft polymerization method, it is possible to easily produce a low electric resistance film, but in this case, the film surface becomes extremely hydrophilic, which adversely affects the electrode reaction and lowers the internal resistance. Nevertheless, there has been a problem that it becomes remarkable when sufficient power generation is performed or when the water repellency of the electrode is low.

【0005】触媒層とその触媒層に接するガス供給層か
らなる燃料電池のガス拡散電極の前記ガス供給層は、例
えばガーボンブラック微粒子などと撥水性樹脂材料であ
るポリテトラフルオロエチレン(以下PTFE)の微粉
体の混合物を塗布又は圧着するなどした後、使用されて
いる。あるいはカーボンペーパーにPTFEを付着、焼
結させて使用されている。
The gas supply layer of a gas diffusion electrode of a fuel cell comprising a catalyst layer and a gas supply layer in contact with the catalyst layer is made of, for example, fine particles of carbon black and polytetrafluoroethylene (hereinafter, PTFE) which is a water-repellent resin material. Is used after applying or pressing a mixture of fine powders of the above. Alternatively, PTFE is attached to carbon paper and sintered.

【0006】しかしながら、ガス供給層は長時間にわた
ってガス供給能を維持させるためには多量のPTFEの
添加を必要として、その結果カーボンブラック微粒子間
の細孔が先のPTFEにより閉塞されてガス供給能の低
下を招き、燃料電池として使用したとき性能の低下を生
じるものである。
However, the gas supply layer needs to add a large amount of PTFE in order to maintain the gas supply capability for a long time. As a result, the pores between the carbon black fine particles are blocked by the PTFE, and the gas supply capability is increased. And when used as a fuel cell, the performance is reduced.

【0007】他方、前記触媒層はガス流通路と電解質通
路とを有し、前記ガス供給層から供給された反応ガスは
前記触媒層中のガス流通路中を拡散し、これと接する電
解質成分に達し、その電解質成分に隣接する触媒上で電
気化学的な反応を行うようにしている。
On the other hand, the catalyst layer has a gas flow passage and an electrolyte passage, and the reaction gas supplied from the gas supply layer diffuses in the gas flow passage in the catalyst layer, and reacts with the electrolyte component in contact with the gas. And perform an electrochemical reaction on the catalyst adjacent to the electrolyte component.

【0008】触媒層中においても、例えばリン酸型燃料
電池などで見られるように、長時間運転により前記ガス
流通路中の電解液が浸入して、ガス供給能が低下して、
これにより電池性能の極端な低下を生じる。これを回避
するために撥水剤の量を増加させると触媒層中に電解力
が入りにくくなり、触媒が反応に関与できなくなり、燃
料電池の低下を生じせしめることになる。
[0008] Even in the catalyst layer, as seen in, for example, a phosphoric acid type fuel cell, the electrolyte in the gas flow passage invades due to long-time operation, and the gas supply capability is reduced.
This results in an extreme decrease in battery performance. If the amount of the water repellent is increased in order to avoid this, it becomes difficult for the electrolysis force to enter the catalyst layer, and the catalyst cannot participate in the reaction, resulting in a decrease in the fuel cell.

【0009】前記触媒中のガス供給能と触媒反応の能力
を両立させるための手段として、特開昭62−2456
5号公報に示すように、撥水微粒子と触媒を含まないカ
ーボンブラック微粒子の混合物などと、撥水剤を含まな
い触媒微粉末を混合することにより触媒層を形成する方
法が開示されている。
Japanese Patent Application Laid-Open No. 62-2456 discloses a means for achieving both the gas supply capability in the catalyst and the catalytic reaction capability.
As disclosed in Japanese Patent Application Publication No. 5 (1993) -5, a method of forming a catalyst layer by mixing a mixture of water-repellent fine particles and carbon black fine particles not containing a catalyst with a catalyst fine powder not containing a water-repellent agent is disclosed.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、特開昭
62−24565号公報は、長時間ガス供給能を維持す
るためには前記混合物中の撥水性微粒子の組成比を高く
することが必要であり、必然的にガス供給能の低下を生
じせしめる。
However, in Japanese Patent Application Laid-Open No. 24565/1987, it is necessary to increase the composition ratio of the water-repellent fine particles in the mixture in order to maintain the gas supply capability for a long time. Inevitably, the gas supply capacity is reduced.

【0011】また、一般的に、高分子電解質型燃料電池
の水素電極では、水素ガスが触媒に接触することによ
り、下記の反応が生じる。
In general, at the hydrogen electrode of a polymer electrolyte fuel cell, the following reaction occurs when hydrogen gas comes into contact with a catalyst.

【0012】2H→4H+4eは、下記に示すように、電解質中を移動し酸素電極
側に達し空気中の酸素と反応して水となる。
As shown below, 2H 2 → 4H + + 4e H + moves in the electrolyte, reaches the oxygen electrode side, and reacts with oxygen in the air to become water.

【0013】4H+4e+O→2HO 水素電極からのHの移動に伴い水も移動する。この水
の移動に伴う水分を補うため水素電極に供給する改質ガ
スに水分を含ませて供給する。このため、酸素電極では
反応によって生成する水の他にHの移動に伴う水分増
加があり、これらを考慮して酸素電極側に供給、排出さ
れる空気(酸素)の温度管理を行わないと空気中の水分
が露点に達し凝縮して酸素電極の空気供給通路に水滴と
なって付着し空気の流れを阻害し電圧降下をきたすとと
もに酸素電極部分を水滴が覆い、電極機能を失う虞があ
った。
4H + + 4e + O 2 → 2H 2 O Water moves with the movement of H + from the hydrogen electrode. The reformed gas supplied to the hydrogen electrode is supplied with moisture contained therein in order to compensate for the moisture accompanying the movement of the water. For this reason, in the oxygen electrode, there is an increase in water due to the movement of H + in addition to the water generated by the reaction, and the temperature of the air (oxygen) supplied to and discharged from the oxygen electrode must be controlled in consideration of these factors. The water in the air reaches the dew point and condenses, forming water droplets on the air supply passage of the oxygen electrode, obstructing the flow of air, causing a voltage drop and, at the same time, water droplets covering the oxygen electrode portion, and the electrode function may be lost. Was.

【0014】本発明は、上記課題を解決するもので、水
素極側を親水性傾向の電極とし、酸素極側を撥水性傾向
の電極とするように、撥水性効果を水素極と酸素極と変
えることにより、従来の技術では解決できなかったガス
供給能と触媒能との両者をバランスよく併せ持つ固体高
分子電解質型燃料電池及びその製造方法を提供するもの
である。
The present invention has been made to solve the above-mentioned problems, and has a water repellency effect between a hydrogen electrode and an oxygen electrode so that the hydrogen electrode side is an electrode having a hydrophilic tendency and the oxygen electrode side is an electrode having a water repellency. The present invention provides a solid polymer electrolyte fuel cell having both gas supply ability and catalytic ability, which cannot be solved by conventional techniques, in a well-balanced manner, and a method for producing the same.

【0015】[0015]

【課題を解決するための手段】上記技術的課題を解決す
るために、本発明の請求項1において講じた技術的手段
は、イオン交換能を有する固体高分子電解質膜と、前記
高分子電解質膜の一方側に配置される水素電極としての
水素極側集電体及び水素極側導電性多孔質層と、前記高
分子電解質の他方側に配置される酸素電極としての酸素
極側集電体及び酸素極側導電性多孔質層構成とから構成
される固体高分子電解質型燃料電池において、前記酸素
電極の撥水性樹脂材料の含有量は前記水素電極の含有量
より大きいことを特徴とする固体高分子電解質型燃料電
池である。
Means for Solving the Problems To solve the above technical problems, the technical measures taken in claim 1 of the present invention are a solid polymer electrolyte membrane having an ion exchange ability, and the polymer electrolyte membrane. A hydrogen electrode-side current collector and a hydrogen electrode-side conductive porous layer as a hydrogen electrode disposed on one side of, and an oxygen electrode-side current collector as an oxygen electrode disposed on the other side of the polymer electrolyte; and A solid polymer electrolyte fuel cell comprising an oxygen electrode side conductive porous layer structure, wherein the content of the water repellent resin material of the oxygen electrode is larger than the content of the hydrogen electrode. It is a molecular electrolyte fuel cell.

【0016】上記第1の技術的手段による効果は、以下
のようである。
The effects of the first technical means are as follows.

【0017】即ち、水素電極側は、親水性効果が得ら
れ、酸素電極側は撥水性効果が得られ、触媒に近接する
撥水性樹脂材料量を最小限に設定することが可能とな
り、充分なガス供給能と触媒能との両者をバランスよく
併せ持つことができ、自動車用の燃料電池として、十分
な出力性能を有することができる固体高分子電解質型燃
料電池となる。
That is, the hydrophilic effect is obtained on the hydrogen electrode side, and the water repellent effect is obtained on the oxygen electrode side, and the amount of the water-repellent resin material close to the catalyst can be set to a minimum. A solid polymer electrolyte fuel cell which can have both gas supply ability and catalytic ability in a well-balanced manner and which has sufficient output performance as an automobile fuel cell.

【0018】上記技術的課題を解決するために、本発明
の請求項2において講じた技術的手段は、前記水素電極
及び前記酸素電極には20重量%から40重量%の撥水
性樹脂材料が含有されていることを特徴とする請求項1
記載の固体高分子電解質型燃料電池である。
In order to solve the above technical problem, a technical measure taken in claim 2 of the present invention is that the hydrogen electrode and the oxygen electrode contain 20 to 40% by weight of a water-repellent resin material. 2. The method according to claim 1, wherein
20 is a solid polymer electrolyte fuel cell according to the above.

【0019】上記第2の技術的手段による効果は、以下
のようである。
The effects of the second technical means are as follows.

【0020】即ち、撥水性樹脂材料が両集電体に20重
量%から40重量%のが含有されている範囲内では、請
求項1の効果に加えてさらに、自動車用の燃料電池とし
て、十分な出力性能を有することができる固体高分子電
解質型燃料電池となる。撥水性樹脂材料が20重量%よ
り低いと、十分な撥水効果が得られないため、ガス供給
ができなくなり、一方40%重量%より大であると、電
気抵抗値が高くなり、燃料電池としての十分な出力特性
が得られない。
That is, within the range where the water-repellent resin material contains 20% by weight to 40% by weight in both current collectors, in addition to the effect of the first aspect, the present invention further provides a fuel cell for automobiles. Thus, a solid polymer electrolyte fuel cell having a high output performance can be obtained. If the water-repellent resin material is less than 20% by weight, a sufficient water-repellent effect cannot be obtained, so that gas cannot be supplied. On the other hand, if the water-repellent resin material is more than 40% by weight, the electric resistance value increases and the fuel cell becomes Output characteristics cannot be obtained.

【0021】上記技術的課題を解決するために、本発明
の請求項3において講じた技術的手段は、イオン交換能
を有する固体高分子電解質膜と、前記高分子電解質膜の
一方側に配置される水素電極としての水素極側集電体及
び水素極側導電性多孔質層と、前記高分子電解質の他方
側に配置される酸素電極としての酸素極側集電体及び酸
素極側導電性多孔質層構成とから構成される固体高分子
電解質型の製造方法において、前記水素電極は、前記水
素側集電体に撥水性樹脂材料を含有させる第1の焼結工
程と、前記第1の焼結工程と略同一の工程とする第2の
焼結工程と、前記水素極側導電性多孔質層に触媒を担持
する工程とから製造され、前記酸素電極は、前記酸素極
側集電体に撥水性樹脂材料を含有させる第1の焼結工程
と、前記酸素極側導電性多孔質層と前記水素極側集電体
全体に前記第1の焼結工程と略同一とする第2の焼結工
程と、前記酸素極側導電性多孔質層に触媒を担持する工
程から製造されることを特徴とする固体高分子電解質型
燃料電池の製造方法である。
[0021] In order to solve the above technical problems, a technical measure taken in claim 3 of the present invention is to dispose a solid polymer electrolyte membrane having an ion exchange ability and one side of the polymer electrolyte membrane. A hydrogen electrode side current collector and a hydrogen electrode side conductive porous layer as a hydrogen electrode, and an oxygen electrode side current collector and an oxygen electrode side conductive porous layer as an oxygen electrode disposed on the other side of the polymer electrolyte. The hydrogen electrode comprises a first sintering step of allowing the hydrogen-side current collector to contain a water-repellent resin material, and the first firing step. A second sintering step, which is substantially the same as a binding step, and a step of supporting a catalyst on the hydrogen electrode-side conductive porous layer, wherein the oxygen electrode is provided on the oxygen electrode-side current collector. A first sintering step in which a water-repellent resin material is contained; A second sintering step in which the entirety of the electrically conductive porous layer and the hydrogen electrode side current collector is substantially the same as the first sintering step, and a step of carrying a catalyst on the oxygen electrode side conductive porous layer And a method for producing a solid polymer electrolyte fuel cell.

【0022】上記第3の技術的手段による効果は、以下
のようである。
The effects of the third technical means are as follows.

【0023】即ち、上記製造方法は、簡単な製造方法
で、自動車用燃料電池として十分な出力性能が得られる
といった効果を有する。
That is, the above manufacturing method has an effect that sufficient output performance can be obtained as a fuel cell for an automobile by a simple manufacturing method.

【0024】上記技術的課題を解決するために、本発明
の請求項4において講じた技術的手段は、前記第1焼結
工程及び第2の焼結工程の撥水性樹脂材料の含有量は1
0重量%から20重量%であることを特徴とする請求項
3記載の固体高分子電解質型燃料電池の製造方法であ
る。
In order to solve the above technical problem, the technical means taken in claim 4 of the present invention is that the content of the water-repellent resin material in the first sintering step and the second sintering step is 1
4. The method for producing a solid polymer electrolyte fuel cell according to claim 3, wherein the amount is from 0% by weight to 20% by weight.

【0025】上記第4の技術的手段による効果は、以下
のようである。
The effects of the fourth technical means are as follows.

【0026】即ち、撥水性樹脂材料の含有量は10重量
%から20重量%の範囲内では、請求項3の効果に加え
て、自動車用燃料電池として十分な出力性能が得られる
といった効果を有する。
That is, when the content of the water-repellent resin material is in the range of 10% by weight to 20% by weight, in addition to the effect of the third aspect, there is an effect that sufficient output performance as a fuel cell for an automobile can be obtained. .

【0027】撥水性樹脂材料が10重量%より低いと、
長時間十分な撥水効果が得られず、20%重量%より大
であると、電気抵抗値が高くなり、燃料電池としての十
分な出力が得られない。
When the water-repellent resin material is lower than 10% by weight,
If the water-repellent effect is not sufficient for a long time, and if it is more than 20% by weight, the electric resistance value increases, and a sufficient output as a fuel cell cannot be obtained.

【0028】上記技術的課題を解決するために、本発明
の請求項5において講じた技術的手段は、前記撥水性樹
脂材料はポリテトラフルオロエチレンであることを特徴
とする請求項1から4記載の固体高分子電解質型燃料電
池およびその製造方法である。
According to a fifth aspect of the present invention, in order to solve the above technical problem, the water repellent resin material is polytetrafluoroethylene. And a method for manufacturing the same.

【0029】[0029]

【発明の実施の形態】以下、本発明の実施例について説
明する。
Embodiments of the present invention will be described below.

【0030】図1は燃料電池セルを表わした図である。
高分子電解質型膜5の一方側(図1の左側)を水素電極
としての水素極側導電性多孔質層71と水素極側集電体
21が配設し、他方側(図1の右側)を酸素電極として
の酸素極側導電性多孔質体72と酸素極側集電体22が
配設している。一方の第1供給管61から、上記の酸素
極側集電体21と酸素極側導電性多孔質層71に水蒸気
と水素を供給している。また他方の第2供給管62か
ら、第2集電体22と水素極側導電性多孔質層72に水
蒸気と酸素を供給している第1供給管61から供給され
る空気は、後述する製造によって得られたPt触媒21
が担持された水素極側集電体21を通り水素極側導電性
多孔質層71の細孔内で拡散する。一方、第2供給管6
2から供給される水素は、Pt/Ru触媒22が担持さ
れた酸素極側集電体22を通り、酸素極側導電性多孔質
層72の細孔内で拡散する。反応により、生成された水
は水素極側導電性多孔質層71、酸素極側導電性多孔質
層72内で細孔内拡散し、供給管61、62に循環す
る。同時に、上記部材の間で水素電子の交換が行われ
て、発電が行われる。
FIG. 1 is a diagram showing a fuel cell.
One side (left side in FIG. 1) of the polymer electrolyte membrane 5 is provided with a hydrogen electrode side conductive porous layer 71 as a hydrogen electrode and a hydrogen electrode side current collector 21, and the other side (right side in FIG. 1). Are provided with an oxygen electrode side conductive porous body 72 as an oxygen electrode and an oxygen electrode side current collector 22. Water vapor and hydrogen are supplied from one first supply pipe 61 to the oxygen electrode side current collector 21 and the oxygen electrode side conductive porous layer 71. The air supplied from the other second supply pipe 62 from the first supply pipe 61 that supplies water vapor and oxygen to the second current collector 22 and the hydrogen-electrode-side conductive porous layer 72 is produced as described later. Catalyst 21 obtained by
Are diffused in the pores of the hydrogen-electrode-side conductive porous layer 71 through the hydrogen-electrode-side current collector 21 on which hydrogen is carried. On the other hand, the second supply pipe 6
The hydrogen supplied from 2 passes through the oxygen electrode side current collector 22 carrying the Pt / Ru catalyst 22, and diffuses in the pores of the oxygen electrode side conductive porous layer 72. The water generated by the reaction is diffused in the pores in the hydrogen electrode side conductive porous layer 71 and the oxygen electrode side conductive porous layer 72 and circulates through the supply pipes 61 and 62. At the same time, hydrogen electrons are exchanged between the members, and power is generated.

【0031】以下に、触媒21、22が担持される第1
導電性多孔質層71、第2導電性多孔質層72の製造方
法について説明する。
In the following, the first catalysts 21 and 22 are supported.
A method for manufacturing the conductive porous layer 71 and the second conductive porous layer 72 will be described.

【0032】(実施例)まず、水素極側の第1導電性多
孔質層71、酸素側の第2導電性多孔質層72共通の工
程について説明する。
(Embodiment) First, steps common to the first conductive porous layer 71 on the hydrogen electrode side and the second conductive porous layer 72 on the oxygen side will be described.

【0033】ダイキン工業株式会社製の含有濃度が60
%のディスパージョン原液(商品名:ポリフロン、D1
グレード)をテトラフルオロエチレンの含有濃度が15
重量%になるように、水で希釈する。この溶液の中に東
レ株式会社製カーボンペーパー(商品名:トレカ、TG
P−060 180μm)を投入して、十分に上記のデ
ィスパージョン溶液に含浸させる。次に80°Cに温度
を保った乾燥炉で余分な水分を蒸発させた後に、焼結温
度390°Cで60分保持して、撥水性樹脂材料(以下
PTFEという)焼結をする。なお上記工程は説明をわ
かりやすくするために、第1の焼結工程(15重量%/
1回塗布工程)と表現する。
The content concentration of Daikin Industries, Ltd. is 60
% Dispersion stock solution (trade name: Polyflon, D1
Grade) with a tetrafluoroethylene content of 15
Dilute with water to give weight%. In this solution, carbon paper (trade name: Torayca, TG) manufactured by Toray Industries, Inc.
P-060 180 μm) and sufficiently impregnated with the above dispersion solution. Next, after evaporating excess water in a drying furnace maintained at a temperature of 80 ° C., the sintering temperature is maintained at 390 ° C. for 60 minutes to sinter a water-repellent resin material (hereinafter referred to as PTFE). Note that the above process is performed in the first sintering process (15% by weight /
(One application step).

【0034】次に水素極側にあたる水素極側集電体21
と水素極側導電性多孔質層71の作成工程について図2
を参考にして説明する。
Next, the hydrogen electrode side current collector 21 corresponding to the hydrogen electrode side
FIG. 2 shows a process of forming the hydrogen-electrode-side conductive porous layer 71.
This will be described with reference to FIG.

【0035】第1工程:水素極側導電性多孔質層71の
素材である東レ株式会社製カーボンペーパー(商品名:
トレカ)を上記のPTFE焼結法によって、第1の焼結
工程「15重量%/1回塗布」を行った。
First step: Carbon paper (trade name, manufactured by Toray Industries, Ltd.), which is a material of the hydrogen electrode-side conductive porous layer 71
A first sintering step “15% by weight / one application” was performed by using the above-mentioned PTFE sintering method.

【0036】第2工程:上記第1の焼結工程「15重量
%/1回塗布」で実施した作成工程と略同一な焼結工程
を一度実行した。つまりPTFE焼結処理済の水素極側
導電性多孔質層71に上記の第1の焼結工程「15重量
%/1回塗布」を2回行った。これを第2の焼結工程と
いう。
Second step: The same sintering step as the preparation step performed in the first sintering step “15% by weight / one application” was performed once. That is, the above-mentioned first sintering step “15% by weight / one application” was performed twice on the hydrogen electrode side conductive porous layer 71 having been subjected to the PTFE sintering treatment. This is called a second sintering step.

【0037】第3工程:次にこのPTFE焼成後の水素
極側導電性多孔質層71の片面にスクリーン印刷法など
の薄膜成形法を用いて、厚さ300μm程度のカーボン
ブラック微粒子(粒径約30μm)層の薄膜を成形し
た。図2(a)第4工程:その後カーボンブラック微粒
子層にエチレングリコール等の成形助剤を混入させ、8
0°Cの温度に保った真空乾燥炉中で2時間乾燥して、
蒸発させた。
Third step: Next, carbon black fine particles having a thickness of about 300 μm (having a particle size of about 300 μm) are formed on one surface of the hydrogen-electrode-side conductive porous layer 71 after the PTFE firing by using a thin film forming method such as a screen printing method. A 30 μm) layer of thin film was formed. FIG. 2 (a) Fourth step: Thereafter, a molding aid such as ethylene glycol is mixed into the carbon black fine particle layer,
Dried in a vacuum drying oven maintained at a temperature of 0 ° C. for 2 hours,
Evaporated.

【0038】第5工程:次に、白金/ルテニウム担持カ
ーボン(以下Pt/RuC)10gとイオン交換膜溶液
167g(触媒層とイオン交換膜との間をなじませるた
めの接着剤としての役割を行う溶液で、イオン交換膜を
溶かした溶液)及び成形助剤としてのイソプロピルアル
コール等の有機溶剤20〜30gとを充分に混合した後
に、未処理な状態のカーボンブラック微粒子層71の表
面に前記の混合溶液を混入し、300μmのシート厚さ
になるように、ドクターブレード法又はスクリーン印刷
法等の薄膜成形法により薄膜成形シートを成形する。こ
の薄膜成形法は撥水処理済の電極基材の上に触媒/溶剤
を載置しスキージの移動により薄膜層を形成させる。で
きた成形品が図2(b)、(c)である。
Fifth step: Next, 10 g of platinum / ruthenium-supported carbon (hereinafter referred to as Pt / RuC) and 167 g of an ion-exchange membrane solution (acting as an adhesive for blending the catalyst layer and the ion-exchange membrane) A solution obtained by dissolving an ion exchange membrane in a solution) and 20 to 30 g of an organic solvent such as isopropyl alcohol as a molding aid, and then sufficiently mixed with the surface of the carbon black fine particle layer 71 in an untreated state. The solution is mixed, and a thin film forming sheet is formed by a thin film forming method such as a doctor blade method or a screen printing method so as to have a sheet thickness of 300 μm. In this thin film forming method, a catalyst / solvent is placed on a water-repellent electrode substrate, and a squeegee is moved to form a thin film layer. The resulting molded products are shown in FIGS. 2 (b) and 2 (c).

【0039】なお図2の下図はカーボンブラック微粒子
を拡大した図である。図2の(a)は、未処理のカーボ
ン微粒子を示したもので、図2の(b)はカーボン微粒
子周辺にPTFEが焼結された図である。図2(c)は
カーボン微粒子周辺にPTFEが焼結され、さらに触媒
としてのPt/RuCが担持されている図を表してい
る。
The lower part of FIG. 2 is an enlarged view of carbon black fine particles. FIG. 2A shows untreated carbon fine particles, and FIG. 2B shows PTFE sintered around the carbon fine particles. FIG. 2 (c) shows a diagram in which PTFE is sintered around carbon fine particles and Pt / RuC as a catalyst is further supported.

【0040】次に空気極側の作成工程についてを参考に
して説明する。
Next, a description will be given of the production process on the air electrode side with reference to FIG.

【0041】第1工程:酸素極側導電性多孔質層72の
素材である東レ株式会社製カーボンペーパー(商品名:
トレカ)を上記のPTFE焼結法によって、第1の焼結
工程「15重量%/1回塗布」を行った。
First step: Carbon paper (trade name: manufactured by Toray Industries, Ltd.) as a material of the oxygen-electrode-side conductive porous layer 72
A first sintering step “15% by weight / one application” was performed by using the above-mentioned PTFE sintering method.

【0042】第2工程:次にこのPTFE焼成後の酸素
極側導電性多孔質層72の片面にスクリーン印刷法によ
る薄膜成形シート法を用いて、厚さ300μm程度のカ
ーボンブラック微粒子層の薄膜を成形した。図3(a) 第3工程:その後カーボンブラック微粒子層に混入した
エチレングリコール等の成形助剤を混入させ、80°C
の温度に保った真空乾燥炉中で2時間乾燥して、蒸発さ
せた。
Second step: Next, a thin film of a carbon black fine particle layer having a thickness of about 300 μm is formed on one surface of the oxygen-electrode-side conductive porous layer 72 after the PTFE firing by using a thin film forming sheet method by a screen printing method. Molded. FIG. 3 (a) Third step: After that, a molding aid such as ethylene glycol mixed into the carbon black fine particle layer is mixed,
Was dried in a vacuum drying oven maintained at a temperature of 2 hours and evaporated.

【0043】第4工程:上記第1の焼結工程「15重量
%/1回塗布」で実施した工程と略同一の条件でPTF
E焼結処理済の酸素極側集電体22とカーボンブラック
微粒子層からなる酸素極側導電性多孔質層72全体を第
1の焼結工程「15重量%/1回塗布」と略同一な焼結
工程で作成した。図3(b) 第5工程:次に、白金担持カーボン(以下PtC)10
gとイオン交換膜溶液150g(触媒層とイオン交換膜
との間をなじませるための接着剤としての役割を行う溶
液で、イオン交換膜を溶かした溶液)及び成形助剤とし
てのイソプロピルアルコール等の有機溶剤20〜30g
とを充分に混合した後に、PTFE焼結したカーボンブ
ラック微粒子層の表面に前記の混合溶液を設定した30
0μmのシート厚さになるように、スクリーン印刷法に
より薄膜成形シートを成形した。図3(b)、(c) なお図3の下図はカーボンブラック微粒子を拡大した図
である。図2の(a)未処理のカーボン微粒子を示した
もので、図2の(b)はカーボン微粒子周辺にPTFE
が焼結された図である。図2(c)はカーボン微粒子周
辺にPTFEが焼結され、さらに触媒としてのPtCが
担持されている図を表している。
Fourth step: PTF under substantially the same conditions as those performed in the first sintering step “15% by weight / one application”
The entirety of the oxygen-electrode-side current collector 22 and the oxygen-electrode-side conductive porous layer 72 composed of a carbon black fine particle layer subjected to the E-sintering treatment is substantially the same as that in the first sintering step “15% by weight / one application”. Created in the sintering process. FIG. 3 (b) Fifth step: Next, platinum-supported carbon (hereinafter referred to as PtC) 10
g and 150 g of an ion-exchange membrane solution (a solution that functions as an adhesive for dissolving between the catalyst layer and the ion-exchange membrane and is a solution in which the ion-exchange membrane is dissolved) and isopropyl alcohol and the like as a molding aid Organic solvent 20-30g
After sufficiently mixing the mixed solution, the mixed solution was set on the surface of the carbon black fine particle layer sintered with PTFE.
A thin film-formed sheet was formed by a screen printing method so as to have a sheet thickness of 0 μm. FIGS. 3B and 3C The lower diagram of FIG. 3 is an enlarged view of carbon black fine particles. FIG. 2A shows untreated carbon fine particles, and FIG. 2B shows PTFE around the carbon fine particles.
It is the figure which was sintered. FIG. 2C shows a diagram in which PTFE is sintered around carbon fine particles and PtC as a catalyst is further supported.

【0044】(比較例1)比較例として、従来の電極接
合体による単セル型の高分子電解質型燃料電池を製造し
た。
Comparative Example 1 As a comparative example, a single cell type polymer electrolyte fuel cell using a conventional electrode assembly was manufactured.

【0045】ダイキン工業株式会社製の含有濃度が60
%のディスパージョン原液(商品名:ポリプロピレン、
D1グレード)をテトラフルオロエチレンの含有濃度が
5重量%になるように、水で希釈する。この溶液の中に
東レ株式会社製カーボンペーパー(商品名:トレカ、T
GP−060 180μm)を投入して、十分に上記の
ディスパージョン溶液に含浸させる。次に80°Cに温
度を保った乾燥炉で余分な水分を蒸発させた後に、焼結
温度390°Cで60分保持して、撥水性樹脂材料(以
下PTFEという)焼結をする。これは、水素電極およ
び酸素電極両方の電極に使われる。つまり比較例1は、
5%のPTFEのディスパージョン濃度溶液の水素電極
および酸素電極を有する電極である。
The content concentration of Daikin Industries, Ltd. is 60
% Dispersion stock solution (trade name: polypropylene,
D1 grade) is diluted with water such that the concentration of tetrafluoroethylene becomes 5% by weight. In this solution, carbon paper (trade name: Torayca, T
GP-060 180 μm) and sufficiently impregnated with the above dispersion solution. Next, after evaporating excess water in a drying furnace maintained at a temperature of 80 ° C., the sintering temperature is maintained at 390 ° C. for 60 minutes to sinter a water-repellent resin material (hereinafter referred to as PTFE). It is used for both hydrogen and oxygen electrodes. That is, Comparative Example 1
This is an electrode having a hydrogen electrode and an oxygen electrode of a 5% PTFE dispersion concentration solution.

【0046】次に、塩化白金酸1gを200mlの蒸留
水に溶解し、この白金化合物の水溶液に、硫酸水素ナト
リウム4gを含む水溶液を攪拌した。さらに全液量を蒸
留水で700mlとした後、炭酸ソーダ0.4g水溶液
約13mlを加え、PH5に溶液を調整した。この溶液
に過酸化水素水を50ml添加し、苛性ソーダ水溶液を
加えることで、この溶液のPHを約5に保った。
Next, 1 g of chloroplatinic acid was dissolved in 200 ml of distilled water, and an aqueous solution containing 4 g of sodium hydrogen sulfate was stirred in the aqueous solution of the platinum compound. Further, after making the total amount of the solution 700 ml with distilled water, about 13 ml of 0.4 g aqueous solution of sodium carbonate was added to adjust the solution to PH5. To this solution, 50 ml of aqueous hydrogen peroxide was added, and an aqueous solution of caustic soda was added to maintain the pH of this solution at about 5.

【0047】次に、任意の白金対ルテニウム比になるよ
うに、三塩化ルテニウム水溶液50mlを加えて、白金
とルテニウム二元系クラスターのコロイド状溶液が得ら
れた。この水溶液中に水素ガスを導入した後、白金とル
テニウムの固溶合金を作成した。
Next, 50 ml of an aqueous ruthenium trichloride solution was added so as to obtain an arbitrary ratio of platinum to ruthenium to obtain a colloidal solution of platinum and ruthenium binary cluster. After introducing hydrogen gas into this aqueous solution, a solid solution alloy of platinum and ruthenium was prepared.

【0048】さらに、このコロイド溶液と2.68gの
カーボンブラック粒子を200mlに分散した溶液を超
音波ホモナイザー攪拌下で約30分間混合し、濾過、洗
浄、乾燥などの工程を経てクラスター触媒を担持した。
Further, this colloid solution and a solution obtained by dispersing 2.68 g of carbon black particles in 200 ml were mixed for about 30 minutes while being stirred by an ultrasonic homogenizer, followed by filtration, washing, drying and other steps to carry the cluster catalyst. .

【0049】表1は本実施例と比較例を表わした高分子
電解質型燃料電池の撥水性評価を示したものである。
Table 1 shows the evaluation of water repellency of the polymer electrolyte fuel cells according to the present embodiment and the comparative example.

【0050】[0050]

【表1】 [Table 1]

【0051】 この表1からわかるように、PTFEのデ
ィスパージョン濃度が15%の2回塗り(PTFEの2
回焼結)の実施例では、撥水性もよく、高分子膜と熱間
接合状態がよく、電気抵抗値が低く、車両用(特に自動
車用)の燃料電池の1A/cmの出力(H水素/O酸
素:2atm/2atm)の出力を充分に満足する結果
が得られた。なお、PTFEが2回塗りが20%より多
いと、お互いに滑ってしまい、接合状態がよくない。ま
た、電気抵抗値が高くなり、自動車用の燃料電池として
十分な出力性能が得られない。またPTFEが10%よ
り多いと、十分な撥水性の効果が得られない。
[0051] As can be seen from Table 1, the PTFE data
Two coats with a dispersion concentration of 15% (PTFE 2
In the example of (sintering), water repellency is good,
Good bonding condition, low electric resistance, suitable for vehicles (especially automatic
1A / cm of fuel cell2Output (H hydrogen / O acid
(Element: 2 atm / 2 atm)
was gotten. PTFE is applied twice more than 20%.
If they do, they will slide on each other and the joint will not be good. Ma
In addition, the electric resistance value increases,
Sufficient output performance cannot be obtained. Also, PTFE is 10%
If the amount is too large, a sufficient water repellent effect cannot be obtained.

【0052】図4は、本実施例1の高分子電解質型燃料
電池での発電性能を評価したものである。電極にリード
線を接合して電圧計を取り付けて評価したもので、面積
220cm2の100セル積層させたスタックさせ、セ
ルの電圧と電流の関係を評価した図である。図の−○−
は、水素/空気を2.5atm/2.5atm条件下の
電圧と電流との関係を表わしたグラフである。この条件
下は、水素ボンベによって、水素だけが、供給できる条
件を示したもので、理想的には水素のみの供給が得られ
ることが望まれている。
FIG. 4 shows an evaluation of the power generation performance of the polymer electrolyte fuel cell of the first embodiment. FIG. 9 is a diagram in which a lead wire is bonded to an electrode and a voltmeter is attached to evaluate, and a stack is formed by stacking 100 cells having an area of 220 cm 2, and the relationship between the cell voltage and current is evaluated. -○-in the figure
Is a graph showing the relationship between the voltage and the current of hydrogen / air under the conditions of 2.5 atm / 2.5 atm. Under these conditions, only hydrogen can be supplied by the hydrogen cylinder, and ideally, it is desired that only hydrogen can be supplied.

【0053】自動車に実施される場合には実現上、自動
車に搭載されたメタノールを改質して水素を生成させて
いるが、その際に未反応生成物として発生するCO(一
酸化炭素)が発生している。図の−□−は、本実施例1
から得られたセル電圧と電流密度を表わした図である。
水素と一酸化炭素20PPM含有/空気:2.5atm
/2.5atmの条件下で行われた。
In the case where the present invention is applied to an automobile, in practice, methanol mounted on the automobile is reformed to generate hydrogen, and CO (carbon monoxide) generated as an unreacted product at that time is generated. It has occurred. In the figure,-□-indicates the first embodiment.
FIG. 4 is a diagram showing cell voltage and current density obtained from FIG.
Hydrogen and carbon monoxide 20PPM / air: 2.5atm
/2.5atm.

【0054】この図から本実施例1においては十分な電
圧を発生し、自動車用の高分子電解質型燃料電池として
十分な出力が得られることがわかる。なお電流が0.3
A/cm付近では、自動車の定常運転時であり、0.
0A/cm付近では自動車のアイドリング状態(無負
荷状態)である。図4の右へいくほど、アクセルの踏む
量が大きくなることを表している。
From this figure, it can be seen that in the first embodiment, a sufficient voltage is generated, and a sufficient output is obtained as a polymer electrolyte fuel cell for an automobile. The current is 0.3
In the vicinity of A / cm 2 , it is the time of steady operation of the car,
In the vicinity of 0 A / cm 2 , the vehicle is in an idling state (no-load state). 4 indicates that the amount of stepping on the accelerator increases as going to the right in FIG.

【0055】なお、本実施例では、導電性多孔質層とし
てカーボンブラック微粒子にて説明したが、カーボンブ
ラックからカーボン成形体を使用することもできる。ま
た撥水性を付与するPTFE、あるいは他のフッ素樹脂
がバインダーとされたカーボンブラック微粒子を成形し
たカーボンPTFE混合成形体を採用することもでき
る。またカーボンブラック粒子の代りとして、黒鉛等の
炭素粉末や、カーボンファイバー、貴金属粉末、チタン
粉末等の金属微粒子を使うこともできる。
In the present embodiment, carbon black fine particles are used as the conductive porous layer. However, a carbon molded body made of carbon black can also be used. It is also possible to employ PTFE that imparts water repellency, or a carbon PTFE mixed molded article obtained by molding carbon black fine particles in which another fluorine resin is used as a binder. Instead of carbon black particles, carbon powder such as graphite, or metal fine particles such as carbon fiber, noble metal powder, and titanium powder can also be used.

【0056】[0056]

【発明の効果】本発明は、以下の如く効果を有する。The present invention has the following effects.

【0057】即ち、本発明は、前記酸素電極の撥水性樹
脂材料の含有量は前記水素電極の含有量より大きいこと
を特徴とする固体高分子電解質型燃料電池であるので、
水素極側は、親水性効果が得られ、酸素極側は撥水性効
果が得られ、触媒に近接する撥水性樹脂材料量を最小限
に設定することが可能となり、充分なガス供給能と触媒
能との両者を併せ持つことができ、自動車用の燃料電池
として、十分な電力性能を有することができる固体高分
子電解質型燃料電池となる。
That is, the present invention is a solid polymer electrolyte fuel cell characterized in that the content of the water-repellent resin material of the oxygen electrode is larger than the content of the hydrogen electrode.
On the hydrogen electrode side, a hydrophilic effect is obtained, and on the oxygen electrode side, a water-repellent effect is obtained.It is possible to minimize the amount of water-repellent resin material close to the catalyst. Thus, a solid polymer electrolyte fuel cell having sufficient power performance as a fuel cell for an automobile can be obtained.

【0058】また、前記水素電極は、前記水素側集電体
に撥水性樹脂材料を含有させる第1の焼結工程と、前記
第1の焼結工程と略同一の工程とする第2の焼結工程
と、前記水素極側導電性多孔質層に触媒を担持する工程
とから製造され、前記酸素電極は、前記酸素極側集電体
に撥水性樹脂材料を含有させる第1の焼結工程と、前記
酸素極側導電性多孔質層と前記水素極側集電体全体に前
記第1の焼結工程と略同一とする第2の焼結工程と、前
記酸素極側導電性多孔質層に触媒を担持する工程から製
造されることを特徴とする固体高分子電解質型燃料電池
の製造方法であるので、簡単な製造方法で、自動車用燃
料電池として十分な出力性能が得られるといった効果を
有する。
Further, the hydrogen electrode is formed by a first sintering step in which the hydrogen-side current collector contains a water-repellent resin material, and a second sintering step which is substantially the same as the first sintering step. A first sintering step in which the oxygen electrode is made of a water-repellent resin material in the oxygen electrode-side current collector. A second sintering step for making the entirety of the oxygen-electrode-side conductive porous layer and the hydrogen-electrode-side current collector substantially the same as the first sintering step; This is a method for manufacturing a solid polymer electrolyte fuel cell, which is manufactured from a step of supporting a catalyst on a substrate. Have.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池セルの分解図FIG. 1 is an exploded view of a fuel cell unit of the present invention.

【図1】本発明の燃料電池セルの分解図FIG. 1 is an exploded view of a fuel cell unit of the present invention.

【図2】水素極側の水素極側導電性多孔質層と水素極側
集電体の製造方法を表わした図
FIG. 2 is a diagram showing a method for manufacturing a hydrogen electrode side conductive porous layer on the hydrogen electrode side and a hydrogen electrode side current collector.

【図3】酸素極側の酸素極側導電性多孔質層と酸素極側
集電体の製造方法を表わした図
FIG. 3 is a diagram showing a method for producing an oxygen electrode side conductive porous layer on the oxygen electrode side and an oxygen electrode side current collector.

【図4】本発明の実施例1のセル電圧と電流密度を表わ
したグラフ
FIG. 4 is a graph showing cell voltage and current density in Example 1 of the present invention.

【符号の説明】[Explanation of symbols]

5…固体高分子電解質 21…水素極側集電体 22…酸素極側集電体 71…水素極側導電性多孔質層 72…酸素極側導電性多孔質層 5: solid polymer electrolyte 21: hydrogen electrode side current collector 22 ... oxygen electrode side current collector 71: hydrogen electrode side conductive porous layer 72: oxygen electrode side conductive porous layer

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成10年9月1日[Submission date] September 1, 1998

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Correction target item name] Brief description of drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の燃料電池セルの分解図。FIG. 1 is an exploded view of a fuel cell unit of the present invention.

【図2】水素極側の水素極側導電性多孔質層と水素極側
集電体の製造方法を表わした図。
FIG. 2 shows a hydrogen electrode side conductive porous layer on the hydrogen electrode side and a hydrogen electrode side.
The figure showing the manufacturing method of the current collector.

【図3】酸素極側の酸素極側導電性多孔質層と酸素極側
集電体の製造方法を表わした図。
FIG. 3 is a diagram showing a method for producing an oxygen electrode side conductive porous layer on the oxygen electrode side and an oxygen electrode side current collector.

【図4】本発明の実施例1のセル電圧と電流密度を表わ
したグラフ。
FIG. 4 is a graph showing a cell voltage and a current density according to the first embodiment of the present invention.

【符号の説明】 5…固体高分子電解質 21…水素極側集電体 22…酸素極側集電体 71…水素極側導電性多孔質層 72…酸素極側導電性多孔質層[Description of Symbols] 5 ... Solid polymer electrolyte 21 ... Hydrogen electrode side current collector 22 ... Oxygen electrode side current collector 71 ... Hydrogen electrode side conductive porous layer 72 ... Oxygen electrode side conductive porous layer

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換能を有する固体高分子電解質
膜と、前記高分子電解質膜の一方側に配置される水素電
極としての水素極側集電体及び水素極側導電性多孔質層
と、前記高分子電解質の他方側に配置される酸素電極と
しての酸素極側集電体及び酸素極側導電性多孔質層構成
とから構成される固体高分子電解質型燃料電池におい
て、 前記酸素電極の撥水性樹脂材料の含有量は前記水素電極
の含有量より大きいことを特徴とする固体高分子電解質
型燃料電池。
1. A solid polymer electrolyte membrane having an ion exchange capacity, a hydrogen electrode side current collector and a hydrogen electrode side conductive porous layer as a hydrogen electrode disposed on one side of the polymer electrolyte membrane, A solid polymer electrolyte fuel cell comprising: an oxygen electrode side current collector as an oxygen electrode disposed on the other side of the polymer electrolyte; and an oxygen electrode side conductive porous layer structure. A solid polymer electrolyte fuel cell, wherein the content of the aqueous resin material is larger than the content of the hydrogen electrode.
【請求項2】 前記水素電極及び前記酸素電極には20
重量%から40重量%の撥水性樹脂材料が含有されてい
ることを特徴とする請求項1記載の固体高分子電解質型
燃料電池。
2. The hydrogen electrode and the oxygen electrode have 20 electrodes.
2. The solid polymer electrolyte fuel cell according to claim 1, wherein the water-repellent resin material is contained in an amount of from 40% by weight to 40% by weight.
【請求項3】 イオン交換能を有する固体高分子電解質
膜と、前記高分子電解質膜の一方側に配置される水素電
極としての水素極側集電体及び水素極側導電性多孔質層
と、前記高分子電解質の他方側に配置される酸素電極と
しての酸素極側集電体及び酸素極側導電性多孔質層構成
とから構成される固体高分子電解質型の製造方法におい
て、前記水素電極は、前記水素側集電体に撥水性樹脂材
料を含有させる第1の焼結工程と、前記第1の焼結工程
と略同一の工程とする第2の焼結工程と、前記水素極側
導電性多孔質層に触媒を担持する工程とから製造され、
前記酸素電極は、前記酸素極側集電体に撥水性樹脂材料
を含有させる第1の焼結工程と、前記酸素極側導電性多
孔質層と前記水素極側集電体全体に前記第1の焼結工程
と略同一とする第2の焼結工程と、前記酸素極側導電性
多孔質層に触媒を担持する工程から製造されることを特
徴とする固体高分子電解質型燃料電池の製造方法。
3. A solid polymer electrolyte membrane having an ion exchange ability, a hydrogen electrode side current collector and a hydrogen electrode side conductive porous layer as a hydrogen electrode disposed on one side of the polymer electrolyte membrane, In a method for producing a solid polymer electrolyte type comprising an oxygen electrode side current collector as an oxygen electrode disposed on the other side of the polymer electrolyte and an oxygen electrode side conductive porous layer configuration, the hydrogen electrode is A first sintering step in which the hydrogen-side current collector contains a water-repellent resin material, a second sintering step that is substantially the same as the first sintering step, And supporting the catalyst on the porous porous layer,
The oxygen electrode includes a first sintering step in which the oxygen-electrode-side current collector contains a water-repellent resin material, and a first sintering step in which the oxygen-electrode-side conductive porous layer and the hydrogen-electrode-side current collector are entirely covered with the first sintering step. A second sintering step which is substantially the same as the sintering step, and a step of supporting a catalyst on the oxygen electrode side conductive porous layer. Method.
【請求項4】 前記第1焼結工程及び第2の焼結工程
の撥水性樹脂材料の含有量は10重量%から20重量%
であることを特徴とする請求項3記載の固体高分子電解
質型燃料電池の製造方法。
4. The content of the water-repellent resin material in the first sintering step and the second sintering step is 10% by weight to 20% by weight.
4. The method for manufacturing a solid polymer electrolyte fuel cell according to claim 3, wherein:
【請求項5】 前記撥水性樹脂材料はポリテトラフルオ
ロエチレンであることを特徴とする請求項1から4記載
の固体高分子電解質型燃料電池およびその製造方法。
5. The solid polymer electrolyte fuel cell according to claim 1, wherein the water-repellent resin material is polytetrafluoroethylene.
JP10149261A 1998-05-29 1998-05-29 Solid polymer electrolyte for cell and its manufacture Pending JPH11339815A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10149261A JPH11339815A (en) 1998-05-29 1998-05-29 Solid polymer electrolyte for cell and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10149261A JPH11339815A (en) 1998-05-29 1998-05-29 Solid polymer electrolyte for cell and its manufacture

Publications (1)

Publication Number Publication Date
JPH11339815A true JPH11339815A (en) 1999-12-10

Family

ID=15471388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10149261A Pending JPH11339815A (en) 1998-05-29 1998-05-29 Solid polymer electrolyte for cell and its manufacture

Country Status (1)

Country Link
JP (1) JPH11339815A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367655A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Fuel cell
JP2004139835A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Fuel cell
JP2005174764A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Fuel cell system, its manufacturing method, and its operation
US6946214B2 (en) 2001-05-15 2005-09-20 Aisin Seiki Kabushiki Kaisha Manufacturing method of fuel cell electrode and fuel cell using thereof
KR100649088B1 (en) * 2001-08-16 2006-11-24 미쓰비시덴키 가부시키가이샤 Electrochemical element
JP2008218131A (en) * 2007-03-02 2008-09-18 Gs Yuasa Corporation:Kk Membrane-electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using it

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216457A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Fuel cell
JPS6196667A (en) * 1984-10-17 1986-05-15 Hitachi Ltd Flexible water repellent sintered carbon substrate and its manufacture and electrode for fuel cell and fuel cell
JPH02295065A (en) * 1989-05-09 1990-12-05 Matsushita Electric Ind Co Ltd Electrode for fuel cell
JPH05271975A (en) * 1992-03-25 1993-10-19 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode
JPH0652871A (en) * 1992-06-02 1994-02-25 Hitachi Ltd Solid highpolymer fuel cell
JPH08124583A (en) * 1994-10-20 1996-05-17 Toyota Motor Corp Fuel cell
JPH09245800A (en) * 1996-03-08 1997-09-19 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH10302804A (en) * 1997-04-18 1998-11-13 De Nora Spa Gas dispersion electrode for polymeric membrane fuel cell
JPH11510311A (en) * 1995-12-08 1999-09-07 カリフォルニア インスティチュート オブ テクノロジー Direct methanol fuel cell and its system
JP2000500910A (en) * 1995-11-28 2000-01-25 マグネート―モートア、ゲゼルシャフト、フュール、マグネートモートリシェ、テヒニク、ミット、ベシュレンクテル、ハフツング Gas diffusion electrodes for polymer electrolyte membrane fuel cells

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60216457A (en) * 1984-04-11 1985-10-29 Hitachi Ltd Fuel cell
JPS6196667A (en) * 1984-10-17 1986-05-15 Hitachi Ltd Flexible water repellent sintered carbon substrate and its manufacture and electrode for fuel cell and fuel cell
JPH02295065A (en) * 1989-05-09 1990-12-05 Matsushita Electric Ind Co Ltd Electrode for fuel cell
JPH05271975A (en) * 1992-03-25 1993-10-19 Tanaka Kikinzoku Kogyo Kk Gas diffusion electrode
JPH0652871A (en) * 1992-06-02 1994-02-25 Hitachi Ltd Solid highpolymer fuel cell
JPH08124583A (en) * 1994-10-20 1996-05-17 Toyota Motor Corp Fuel cell
JP2000500910A (en) * 1995-11-28 2000-01-25 マグネート―モートア、ゲゼルシャフト、フュール、マグネートモートリシェ、テヒニク、ミット、ベシュレンクテル、ハフツング Gas diffusion electrodes for polymer electrolyte membrane fuel cells
JPH11510311A (en) * 1995-12-08 1999-09-07 カリフォルニア インスティチュート オブ テクノロジー Direct methanol fuel cell and its system
JPH09245800A (en) * 1996-03-08 1997-09-19 Toyota Motor Corp Fuel cell and electrode for fuel cell
JPH10302804A (en) * 1997-04-18 1998-11-13 De Nora Spa Gas dispersion electrode for polymeric membrane fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6946214B2 (en) 2001-05-15 2005-09-20 Aisin Seiki Kabushiki Kaisha Manufacturing method of fuel cell electrode and fuel cell using thereof
JP2002367655A (en) * 2001-06-11 2002-12-20 Toyota Motor Corp Fuel cell
KR100649088B1 (en) * 2001-08-16 2006-11-24 미쓰비시덴키 가부시키가이샤 Electrochemical element
JP2004139835A (en) * 2002-10-17 2004-05-13 Matsushita Electric Ind Co Ltd Fuel cell
JP2005174764A (en) * 2003-12-11 2005-06-30 Equos Research Co Ltd Fuel cell system, its manufacturing method, and its operation
JP4586358B2 (en) * 2003-12-11 2010-11-24 株式会社エクォス・リサーチ Fuel cell system
JP2008218131A (en) * 2007-03-02 2008-09-18 Gs Yuasa Corporation:Kk Membrane-electrode assembly for polymer electrolyte fuel cell, and polymer electrolyte fuel cell using it

Similar Documents

Publication Publication Date Title
KR100696621B1 (en) Electrode substrate for fuel cell, method for preparating the same, and membrane-electrode assembly
JP3564975B2 (en) Fuel cell electrode and method of manufacturing fuel cell electrode
US5716437A (en) Materials for use in electrode manufacture
CA2136133C (en) Improved manufacture of electrodes
US9346673B2 (en) Electrode for fuel cell, membrane-electrode assembly for fuel cell comprising the same, fuel cell system comprising the same, and method for preparing the electrode
US8512915B2 (en) Catalyst composite material fuel cell, method for preparing the same, membrane-electrode assembly comprising the same, and fuel cell system comprising the same
US8394555B2 (en) Membrane-electrode assembly for fuel cell and fuel cell system comprising same
EP1914825B1 (en) Membrane-electrode assembly for fuel cell, method of preparing same, and fuel cell system comprising same
US7771860B2 (en) Catalyst of a fuel cell, and membrane-electrode assembly and fuel cell system including catalyst
JP3778506B2 (en) Electrode for polymer electrolyte fuel cell
EP1916728B1 (en) Electrode for fuel cell, and membrane-electrode assembly and fuel cell system including the same
EP2360760A1 (en) Anode catalyst layer for solid polymer fuel cell
JP5153130B2 (en) Membrane electrode assembly
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
JPH11339815A (en) Solid polymer electrolyte for cell and its manufacture
JPH09265996A (en) Electrode structure for fuel cell and its manufacture
JP2005150002A (en) Fuel cell
JP2006085984A (en) Mea for fuel cell and fuel cell using this
KR20190136252A (en) Catalyst ink for forming electrode catalyst layer of fuel cell and manufacturing method thereof
JP2741574B2 (en) Solid polymer electrolyte fuel cell
JP2002050367A (en) Polymer electrolyte fuel cell and its manufacturing method
JP3608564B2 (en) Fuel cell and manufacturing method thereof
KR100578977B1 (en) Electrode for fuel cell, fuel cell comprising the same, and method for preparing the electrode
JP2006079840A (en) Electrode catalyst for fuel cell, and mea for fuel cell using this
JP5458774B2 (en) Electrolyte membrane-electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090407