JP4993024B1 - Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly - Google Patents

Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly Download PDF

Info

Publication number
JP4993024B1
JP4993024B1 JP2011061988A JP2011061988A JP4993024B1 JP 4993024 B1 JP4993024 B1 JP 4993024B1 JP 2011061988 A JP2011061988 A JP 2011061988A JP 2011061988 A JP2011061988 A JP 2011061988A JP 4993024 B1 JP4993024 B1 JP 4993024B1
Authority
JP
Japan
Prior art keywords
membrane
layer
polymer
conductive
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011061988A
Other languages
Japanese (ja)
Other versions
JP2012199049A (en
Inventor
直也 竹内
比呂志 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2011061988A priority Critical patent/JP4993024B1/en
Priority to EP12747136.5A priority patent/EP2677579A4/en
Priority to KR1020137024239A priority patent/KR101582018B1/en
Priority to PCT/JP2012/053870 priority patent/WO2012111823A1/en
Priority to US14/000,076 priority patent/US20140038077A1/en
Priority to CN201280018063.9A priority patent/CN103477486B/en
Application granted granted Critical
Publication of JP4993024B1 publication Critical patent/JP4993024B1/en
Publication of JP2012199049A publication Critical patent/JP2012199049A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】触媒層と導電性多孔質層との密着性が高い膜−電極接合体を提供することを目的とする。
【解決手段】本発明の膜−電極接合体は、触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含み、前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在するものである。
【選択図】なし
An object of the present invention is to provide a membrane-electrode assembly having high adhesion between a catalyst layer and a conductive porous layer.
In the membrane-electrode assembly of the present invention, a gas diffusion layer for a fuel cell is laminated on one side or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated. A fuel cell membrane-electrode assembly, wherein the fuel cell gas diffusion layer has a conductive porous layer, and the catalyst layer and the conductive porous layer are in contact with each other. The conductive porous layer includes at least conductive carbon particles, and a glass transition temperature equal to or lower than the glass transition temperature of the electrolyte contained in the catalyst layer, and the electrolyte membrane. A polymer that satisfies at least one of the glass transition temperature of the hydrogen ion conductive resin that constitutes the polymer, and the polymer in the conductive porous layer has a catalyst layer rather than a surface that is not in contact with the catalyst layer. Densely on the surface in contact with A.
[Selection figure] None

Description

本発明は、燃料電池用膜−電極接合体及びその製造方法、並びに該膜−電極接合体を用いた固体高分子形燃料電池に関する。   The present invention relates to a membrane-electrode assembly for a fuel cell, a method for producing the same, and a polymer electrolyte fuel cell using the membrane-electrode assembly.

固体高分子形燃料電池を構成する膜−電極接合体(MEA)は、ガス拡散層、触媒層、イオン伝導性固体高分子電解質膜、触媒層及びガス拡散層が順次積層された構造を有している。   The membrane-electrode assembly (MEA) constituting the polymer electrolyte fuel cell has a structure in which a gas diffusion layer, a catalyst layer, an ion conductive solid polymer electrolyte membrane, a catalyst layer, and a gas diffusion layer are sequentially laminated. ing.

この固体高分子形燃料電池の反応は、触媒層内の、触媒粒子、電解質及び燃料ガスが接触する三相界面において進行する。高い発電性能を得るためには、この三相界面において電極反応により生じた水分を電極系外へ効率的に排出させ、燃料ガスが滞りなく供給される様にすると共に、供給された燃料ガスを電極触媒層面へ均一に拡散させることが重要である。そのため、触媒面に対して効率的に燃料ガスを供給し、電極内での排水性を高めるためのガス拡散層を触媒層近傍に配置する必要がある。   The reaction of the polymer electrolyte fuel cell proceeds at a three-phase interface in the catalyst layer where the catalyst particles, the electrolyte and the fuel gas are in contact. In order to obtain high power generation performance, moisture generated by the electrode reaction at this three-phase interface is efficiently discharged out of the electrode system so that the fuel gas can be supplied without stagnation, and the supplied fuel gas can be removed. It is important that the electrode catalyst layer is uniformly diffused. For this reason, it is necessary to dispose a gas diffusion layer in the vicinity of the catalyst layer in order to efficiently supply the fuel gas to the catalyst surface and enhance drainage in the electrode.

このガス拡散層には、一般的にカーボンペーパー、カーボンクロス等の導電性多孔質基材が使用される。更に、この導電性多孔質基材の導電性、ガス拡散性、水の排出性等を向上させる目的から、導電性炭素粒子、撥水性樹脂等を含む導電性多孔質層を導電性多孔質基材上に形成する場合がある。   In general, a conductive porous substrate such as carbon paper or carbon cloth is used for the gas diffusion layer. Furthermore, for the purpose of improving the conductivity, gas diffusibility, water discharge property, etc. of this conductive porous substrate, the conductive porous layer containing conductive carbon particles, water-repellent resin, etc. is changed to a conductive porous group. It may be formed on the material.

しかしながら、従来の導電性多孔質層は、特許文献1及び2のようにガラス転移温度の高いフッ素系樹脂のみを使用しているため、導電性多孔質層−触媒層間の密着性が悪く、電池性能が安定しないといった問題があった。また、密着性を向上させるためには260℃以上の高温で接合する必要があり、この様な工程を経た場合、触媒層中に含まれる水素イオン伝導性高分子電解質、電解質膜を構成する樹脂等が変質し、電池性能に悪影響を与えるため、実際にそのような条件下で接合することは困難であった。   However, since the conventional conductive porous layer uses only a fluororesin having a high glass transition temperature as in Patent Documents 1 and 2, the adhesion between the conductive porous layer and the catalyst layer is poor, and the battery There was a problem that performance was not stable. Moreover, in order to improve adhesiveness, it is necessary to join at a high temperature of 260 ° C. or higher. When such a process is performed, the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and the resin constituting the electrolyte membrane As a result, the battery performance is adversely affected, and it has been difficult to actually bond under such conditions.

特開2006−278037号公報JP 2006-278037 A 特開2006−339018号公報JP 2006-339018 A

本発明は、触媒層とガス拡散層との密着性が高い膜−電極接合体を提供することを課題とする。   An object of the present invention is to provide a membrane-electrode assembly having high adhesion between a catalyst layer and a gas diffusion layer.

本発明者らは、上記課題に鑑み、膜−電極接合体に所望の性能を付与すべく、鋭意研究を重ねてきた。その結果、特定の成分を含む導電性多孔質層をガス拡散層に適用することにより、一体化した膜−電極接合体を提供できることを見出した。具体的には、導電性多孔質層が触媒層と接し、且つ、導電性多孔質層中の高分子重合体(ガラス転移温度は触媒層中に含まれる電解質のガラス転移温度以下、及び電解質膜を構成する樹脂以下の少なくとも1つを満たす)が、触媒層と接しない表面よりも触媒層に接する表面に密に存在するように、ガス拡散層を触媒層−電解質膜積層体に積層させることで、触媒層−電解質膜積層体と一体化した膜−電極接合体を提供できる。本発明は、このような知見に基づき完成されたものである。   In view of the above problems, the present inventors have made extensive studies to impart desired performance to a membrane-electrode assembly. As a result, it has been found that an integrated membrane-electrode assembly can be provided by applying a conductive porous layer containing a specific component to the gas diffusion layer. Specifically, the conductive porous layer is in contact with the catalyst layer, and the polymer in the conductive porous layer (the glass transition temperature is equal to or lower than the glass transition temperature of the electrolyte contained in the catalyst layer, and the electrolyte membrane) The gas diffusion layer is laminated on the catalyst layer-electrolyte membrane laminate so that at least one of the following resins constituting the resin is present more closely on the surface in contact with the catalyst layer than on the surface not in contact with the catalyst layer Thus, a membrane-electrode assembly integrated with the catalyst layer-electrolyte membrane laminate can be provided. The present invention has been completed based on such findings.

すなわち、本発明は、下記の燃料電池用膜−電極接合体及びそれを用いた固体高分子形燃料電池に係る。
項1.触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、
前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、
前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含む導電性多孔質層形成用ペースト組成物を乾燥してなるものであって
前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在する、燃料電池用膜−電極接合体。
項2.前記導電性多孔質層中の前記高分子重合体のガラス転移温度が、前記触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下で、且つ、前記電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下である、項1に記載の燃料電池用膜−電極接合体。
項3.前記導電性多孔質層の上に、導電性多孔質基材が積層されている、項1又は2に記載の燃料電池用膜−電極接合体。
項4.前記導電性多孔質基材が、カーボンペーパー、カーボンクロス又はカーボン不織布である、項3に記載の燃料電池用膜−電極接合体。
項5.前記導電性多孔質基材が、フッ素系樹脂により撥水性が付与されている、項3又は4に記載の燃料電池用膜−電極接合体。
項6.項1〜5のいずれかに記載の燃料電池用膜−電極接合体の製造方法であって、
(I)基材上に、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含む導電性多孔質層形成用ペースト組成物を塗布及び乾燥させた後に、基材から導電性多孔質層を剥離し、片側表面に反対側表面よりも高分子重合体が密に存在する導電性多孔質層を作製する工程、及び
(II)前記触媒層−電解質膜積層体の片面又は両面に、前記導電性多孔質層の前記高分子重合体が密な表面と触媒層が対向するように前記導電性多孔質層を配置し、熱プレスして一体化する工程
を備える、燃料電池用膜−電極接合体の製造方法。
項7.工程(II)において、熱プレスの温度が触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす、項6に記載の燃料電池用膜−電極接合体の製造方法。
項8.工程(II)において、熱プレスの温度が触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下で、且つ、電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下である、項6又は7に記載の燃料電池用膜−電極接合体の製造方法。
項9.項1〜5のいずれかに記載の燃料電池用膜−電極接合体を備える固体高分子形燃料電池。
That is, the present invention relates to the following fuel cell membrane-electrode assembly and a polymer electrolyte fuel cell using the same.
Item 1. A fuel cell membrane-electrode assembly in which a fuel cell gas diffusion layer is laminated on one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated,
The fuel cell gas diffusion layer has a conductive porous layer, and is laminated on the catalyst layer-electrolyte membrane laminate so that the catalyst layer and the conductive porous layer are in contact with each other.
The conductive porous layer includes at least conductive carbon particles, and a glass transition temperature equal to or lower than a glass transition temperature of a hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and a hydrogen ion conductive resin constituting the electrolyte membrane. high molecular weight polymer satisfying at least one of the following glass transition temperature be comprised by drying the containing Mushirubeden porous layer forming paste composition,
The membrane-electrode assembly for a fuel cell, wherein the polymer in the conductive porous layer is present more closely on the surface in contact with the catalyst layer than on the surface not in contact with the catalyst layer.
Item 2. The glass transition temperature of the polymer in the conductive porous layer is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ions constituting the electrolyte membrane Item 2. The fuel cell membrane-electrode assembly according to Item 1, which is not higher than the glass transition temperature of the conductive resin.
Item 3. Item 3. The fuel cell membrane-electrode assembly according to Item 1 or 2, wherein a conductive porous substrate is laminated on the conductive porous layer.
Item 4. Item 4. The fuel cell membrane-electrode assembly according to Item 3, wherein the conductive porous substrate is carbon paper, carbon cloth, or carbon nonwoven fabric.
Item 5. Item 5. The fuel cell membrane-electrode assembly according to Item 3 or 4, wherein the conductive porous substrate is provided with water repellency by a fluororesin.
Item 6. The method for producing a membrane-electrode assembly for a fuel cell according to any one of Items 1 to 5,
(I) On the substrate, at least conductive carbon particles, and the glass transition temperature is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ion conductive resin constituting the electrolyte membrane After applying and drying a conductive porous layer-forming paste composition containing a polymer that satisfies at least one of the glass transition temperature below the conductive transition layer, the conductive porous layer is peeled off from the substrate, A step of producing a conductive porous layer in which a polymer is present more densely than the opposite surface, and (II) the conductive porous layer on one side or both sides of the catalyst layer-electrolyte membrane laminate. A method for producing a membrane-electrode assembly for a fuel cell, comprising a step of disposing the conductive porous layer so that a dense polymer polymer surface and a catalyst layer face each other, and heat-integrating them.
Item 7. In step (II), at least one of the temperature of the hot press is not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. Item 7. A method for producing a membrane-electrode assembly for a fuel cell according to Item 6, wherein
Item 8. In step (II), the temperature of the hot press is not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. Item 8. A method for producing a membrane-electrode assembly for a fuel cell according to Item 6 or 7.
Item 9. Item 6. A polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly according to any one of Items 1 to 5.

1.燃料電池用膜−電極接合体
本発明の膜−電極接合体は、導電性多孔質層を有するガス拡散層が、触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に積層されている。そして、前記ガス拡散層は、本発明の膜−電極接合体では、触媒層−電解質膜積層体の触媒層と、ガス拡散層が有する導電性多孔質層とが接するように積層されている。
1. Membrane-electrode assembly for fuel cell The membrane-electrode assembly of the present invention is a catalyst layer-electrolyte membrane laminate in which a gas diffusion layer having a conductive porous layer is sequentially laminated with a catalyst layer, an electrolyte membrane and a catalyst layer. Are laminated on one or both sides. In the membrane-electrode assembly of the present invention, the gas diffusion layer is laminated so that the catalyst layer of the catalyst layer-electrolyte membrane laminate and the conductive porous layer of the gas diffusion layer are in contact with each other.

(1)燃料電池用ガス拡散層
本発明で使用する燃料電池用ガス拡散層は、導電性多孔質層を有する。導電性多孔質層は、少なくとも導電性炭素粒子及び高分子重合体を含有する層である。
(1) Gas diffusion layer for fuel cells The gas diffusion layer for fuel cells used in the present invention has a conductive porous layer. The conductive porous layer is a layer containing at least conductive carbon particles and a polymer.

<導電性多孔質層>
導電性多孔質層は、少なくとも導電性炭素粒子及び高分子重合体を含有する。また、導電性多孔質層の厚みは限定的ではないが、通常1μm〜150μm程度、好ましくは5μm〜100μm程度とすればよい。本発明では、導電性多孔質層を設けることで、ガス拡散特性や水管理特性に優れたガス拡散層を形成することができる。
<Conductive porous layer>
The conductive porous layer contains at least conductive carbon particles and a polymer. The thickness of the conductive porous layer is not limited, but is usually about 1 μm to 150 μm, preferably about 5 μm to 100 μm. In the present invention, a gas diffusion layer having excellent gas diffusion characteristics and water management characteristics can be formed by providing a conductive porous layer.

導電性炭素粒子
導電性炭素粒子は、導電性を有する炭素材であれば特に限定されず、公知又は市販のものを使用できる。例えば、チャンネルブラック、ファーネスブラック、ケッチェンブラック、アセチレンブラック、ランプブラック等のカーボンブラック;黒鉛;活性炭等が挙げられる。これらは、1種単独又は2種以上で用いることができる。これらの導電性炭素粒子を含有することにより、ガス拡散層の導電性を向上させることができる。
Conductive carbon particles The conductive carbon particles are not particularly limited as long as they are conductive carbon materials, and known or commercially available ones can be used. Examples thereof include carbon black such as channel black, furnace black, ketjen black, acetylene black and lamp black; graphite; activated carbon and the like. These can be used alone or in combination of two or more. By containing these conductive carbon particles, the conductivity of the gas diffusion layer can be improved.

導電性炭素粒子としてカーボンブラックを使用する場合には、カーボンブラックの平均粒子径(算術平均粒子径)は限定的でなく、通常5nm〜200nm程度、好ましくは5nm〜100nm程度とすればよい。またカーボンブラックの凝集体を使用する場合は、10〜600nm程度、好ましくは50〜500nm程度とすればよい。また、黒鉛、活性炭等を使用する場合は、平均粒子径は500nm〜40μm程度、好ましくは1μm〜35μm程度とすれば良い。この導電性炭素粒子の平均粒子径は、例えば、粒子径分布測定装置LA−920:(株)堀場製作所製等により測定できる。   When carbon black is used as the conductive carbon particles, the average particle diameter (arithmetic average particle diameter) of carbon black is not limited, and is usually about 5 nm to 200 nm, preferably about 5 nm to 100 nm. When carbon black aggregates are used, the thickness may be about 10 to 600 nm, preferably about 50 to 500 nm. When graphite, activated carbon or the like is used, the average particle size may be about 500 nm to 40 μm, preferably about 1 μm to 35 μm. The average particle size of the conductive carbon particles can be measured by, for example, a particle size distribution measuring device LA-920: manufactured by Horiba, Ltd.

高分子重合体
高分子重合体としては、ガラス転移温度(Tg)が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度(Tg)以下の少なくとも1つを満たす樹脂(本発明にいう樹脂とは、エラストマー等も含む概念である)であれば限定的ではなく、公知又は市販のものを使用できる。なお、高分子重合体のガラス転移温度は、具体的には、−30〜220℃程度が好ましく、−20〜210℃程度がより好ましい。例えば、後述の電解質膜を構成する水素イオン伝導性樹脂と同一のものを使用してもよいし、触媒層中に含まれる水素イオン伝導性高分子電解質等の樹脂成分と同一のものを使用してもよい。具体的には、イオン伝導性高分子樹脂(Nafion等)、酢酸ビニル樹脂、スチレン−アクリル共重合体樹脂、スチレン−酢酸ビニル共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリエステル−アクリル共重合体樹脂、ウレタン樹脂、アクリル樹脂、ポリフッ化ビニリデン(PVDF)等が挙げられる。また、六フッ化プロピレン−フッ化ビニリデン共重合体、三フッ化塩化エチレン−フッ化ビニリデン共重合体等のフッ素ゴム、シリコーンゴム等も挙げられる。これらの高分子重合体は、単独で用いても良いし、2種類以上を組み合わせても良い。
As a high molecular polymer , the glass transition temperature (Tg) is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ion conductive resin constituting the electrolyte membrane. The resin is not limited as long as it is a resin satisfying at least one of the glass transition temperature (Tg) or less (the resin referred to in the present invention is a concept including an elastomer or the like), and a known or commercially available one can be used. The glass transition temperature of the polymer is specifically preferably about -30 to 220 ° C, more preferably about -20 to 210 ° C. For example, the same hydrogen ion conductive resin as the electrolyte membrane described later may be used, or the same resin component as the hydrogen ion conductive polymer electrolyte contained in the catalyst layer may be used. May be. Specifically, ion conductive polymer resins (Nafion, etc.), vinyl acetate resins, styrene-acrylic copolymer resins, styrene-vinyl acetate copolymer resins, ethylene-vinyl acetate copolymer resins, polyester-acrylic copolymers. Examples thereof include polymer resins, urethane resins, acrylic resins, and polyvinylidene fluoride (PVDF). Moreover, fluororubber, silicone rubber, etc., such as a hexafluoropropylene-vinylidene fluoride copolymer and a trifluoroethylene chloride-vinylidene fluoride copolymer, are also mentioned. These high molecular polymers may be used alone or in combination of two or more.

高分子重合体としてフッ素ゴム等のエラストマーを使用すれば、導電性多孔質層の柔軟性を向上させ、さらに、エラストマーのTgが低いために他層との接着性を向上させられる。他にも、弾性と強度とを発現させることもできる。なお、本明細書において、フッ素ゴムとは、Tgが−30〜100℃程度のものである。したがって、導電性多孔質層を有するガス拡散層を用いる膜−電極接合体等を作製しやすい。   If an elastomer such as fluororubber is used as the polymer, the flexibility of the conductive porous layer can be improved, and the adhesiveness with other layers can be improved because the Tg of the elastomer is low. In addition, elasticity and strength can be expressed. In addition, in this specification, fluororubber is a thing with Tg of about -30-100 degreeC. Therefore, it is easy to produce a membrane-electrode assembly using a gas diffusion layer having a conductive porous layer.

また、上記エラストマーは、エラストマーエマルジョン(エラストマー粒子を分散させた懸濁液)を使用してもよいし、分散媒に溶解させたエラストマーを用いてもよい。エラストマーエマルジョンを使用する場合には、分散媒にエラストマーを分散させて調整するか、市販のものを使用すればよい。分散媒としては、例えば、水、エタノール、プロパノール等が挙げられる。また、分散媒に溶解させたエラストマーを使用する場合の分散媒としては、N−メチルピロリドン(NMP)、メチルエチルケトン(MEK)、トルエン、酢酸ビニル、ジメチルアセトアミド(DMA)、イソプロピルアルコール(IPA)等が挙げられる。   The elastomer may be an elastomer emulsion (a suspension in which elastomer particles are dispersed) or an elastomer dissolved in a dispersion medium. When using an elastomer emulsion, the elastomer may be dispersed in a dispersion medium for adjustment, or a commercially available product may be used. Examples of the dispersion medium include water, ethanol, propanol, and the like. Examples of the dispersion medium in the case of using an elastomer dissolved in the dispersion medium include N-methylpyrrolidone (NMP), methyl ethyl ketone (MEK), toluene, vinyl acetate, dimethylacetamide (DMA), isopropyl alcohol (IPA), and the like. Can be mentioned.

また、導電性多孔質層に撥水性を付与するため、本発明の効果を妨げない程度においてフッ素系樹脂等の撥水性樹脂を使用することができる。特に、高分子重合体として、撥水性に劣る高分子重合体を使用する場合には、撥水性を向上させるために有効である。このようなフッ素系樹脂としては、例えば、ポリテトラフルオロエチレン樹脂(PTFE)、フッ化エチレンプロピレン樹脂(FEP)、パーフルオロアルコキシ樹脂(PFA)等が挙げられる。   Moreover, since water repellency is imparted to the conductive porous layer, a water repellant resin such as a fluororesin can be used to the extent that the effects of the present invention are not hindered. In particular, when a polymer having poor water repellency is used as the polymer, it is effective for improving water repellency. Examples of such a fluororesin include polytetrafluoroethylene resin (PTFE), fluorinated ethylene propylene resin (FEP), perfluoroalkoxy resin (PFA), and the like.

本発明において、導電性多孔質層形成用ペースト組成物には、上記の導電性炭素粒子及び高分子重合体以外にも、本発明の効果を損なわない範囲で、導電性炭素繊維、分散剤、アルコール等を含ませることもできる。なお、Tgの大きい高分子重合体も、本発明の効果を損なわない範囲内であれば、含ませてもよい。   In the present invention, in the conductive porous layer forming paste composition, in addition to the conductive carbon particles and the polymer, the conductive carbon fiber, the dispersant, Alcohol etc. can also be included. A polymer having a large Tg may also be included as long as the effects of the present invention are not impaired.

導電性炭素繊維
導電性炭素繊維を配合することにより、導電性多孔質層形成用ペースト組成物の塗布表面の面質を向上させることができるだけでなく、強度の高いシート状の導電性多孔質層を作製することも可能となる。導電性多孔質層で使用される導電性炭素繊維としては、特に制限されるわけではないが、例えば、気相成長法炭素繊維(VGCF(登録商標))、カーボンナノチューブ、カーボンナノウォール、カーボンナノカップ等が挙げられる。これらの導電性炭素繊維は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Conductive carbon fiber By adding conductive carbon fiber, not only can the surface quality of the coated surface of the paste composition for forming a conductive porous layer be improved, but also a highly conductive sheet-like conductive porous layer Can also be made. The conductive carbon fiber used in the conductive porous layer is not particularly limited. For example, vapor grown carbon fiber (VGCF (registered trademark)), carbon nanotube, carbon nanowall, carbon nano A cup etc. are mentioned. These conductive carbon fibers may be used alone or in combination of two or more.

導電性炭素繊維の繊維径は、特に制限されないが、平均が50〜450nm程度、好ましくは100〜250nm程度とすればよい。このような導電性炭素繊維を使用することで、ナノオーダーの細かい細孔容積を増加させることができ、ガス拡散性能、排水性向上によるフラッディング耐性等の効果が期待できる。繊維長も限定的でなく、平均が4〜50μm、好ましくは10〜20μm程度とすればよい。また、アスペクト比は、平均がおよそ5〜600程度、好ましくは10〜500程度である。なお、導電性炭素繊維の繊維径、繊維長及びアスペクト比は、走査型電子顕微鏡(SEM)等により測定した画像等により測定できる。   The fiber diameter of the conductive carbon fiber is not particularly limited, but the average may be about 50 to 450 nm, preferably about 100 to 250 nm. By using such conductive carbon fibers, it is possible to increase the fine pore volume on the order of nanometers and to expect effects such as flooding resistance by improving gas diffusion performance and drainage performance. The fiber length is not limited, and the average may be 4 to 50 μm, preferably about 10 to 20 μm. The average aspect ratio is about 5 to 600, preferably about 10 to 500. The fiber diameter, fiber length, and aspect ratio of the conductive carbon fiber can be measured by an image measured with a scanning electron microscope (SEM) or the like.

分散剤
分散剤は、導電性炭素粒子及び高分子重合体を水中で分散させることができるものである限り限定されず、公知又は市販のものが使用できる。このような分散剤としては、例えば、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシエチレンアルキレンアルキルエーテル、ポリエチレングリコールアルキルエーテル等のノニオン系分散剤;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジウムクロリド等のカチオン系分散剤;ポリオキシエチレン脂肪酸エステル、酸性基含有構造変性ポリアクリレート等のアニオン系分散剤等が挙げられる。これらの分散剤は、1種単独又は2種以上で用いることができる。
The dispersant dispersant is not limited as long as it can disperse the conductive carbon particles and the polymer in water, and a known or commercially available dispersant can be used. Examples of such a dispersant include nonionic dispersants such as polyoxyethylene distyrenated phenyl ether, polyoxyethylene alkylene alkyl ether, and polyethylene glycol alkyl ether; alkyl trimethyl ammonium salt, dialkyl dimethyl ammonium chloride, alkyl pyridium. Examples thereof include cationic dispersants such as chloride; anionic dispersants such as polyoxyethylene fatty acid esters and acidic group-containing structure-modified polyacrylates. These dispersing agents can be used alone or in combination of two or more.

アルコール
アルコールとしては、特に限定されることはなく、公知又は市販のものを使用すればよく、例えば、炭素数1〜5程度の1価又は多価のアルコールが挙げられる。具体的には、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、1−ペンタノール等が挙げられる。
It does not specifically limit as alcohol alcohol, What is necessary is just to use a well-known or commercially available thing, For example, C1-C5 monohydric or polyhydric alcohol is mentioned. Specific examples include methanol, ethanol, 1-propanol, isopropanol, 1-butanol, and 1-pentanol.

<導電性多孔質層の特徴>
本発明において、導電性多孔質層は、表裏で高分子重合体成分の存在割合が異なるものである。つまり、導電性多孔質層において、ある片側表面に存在する高分子重合体が、反対側表面よりも密に存在しているものである。なお、本発明では、上記した高分子重合体を2種以上含む場合には、そのうち少なくとも1種の高分子重合体が、ある片側表面に反対側表面よりも密に存在していればよい。導電性多孔質層の高分子重合体成分の分布状態は、例えば、エネルギー分散型蛍光X線分析等で両表面を分析することにより確認することができる。また、層断面方向でのエネルギー分散型蛍光X線分析を行うことでも高分子重合体成分の分布を分析することができる。なお、スチレン−アクリル酸系のゴムを使用する場合等、エネルギー分散型蛍光X線分析では、高分子重合体特有の元素を検出できない場合には、フーリエ変換赤外分光光度計等により当該高分子重合体に起因する官能基を観察すればよい。
<Characteristics of conductive porous layer>
In the present invention, the conductive porous layer has different polymer polymer component ratios on the front and back sides. That is, in the conductive porous layer, the polymer present on one surface is present more densely than the opposite surface. In the present invention, when two or more kinds of the above-described polymer are included, at least one of the polymers may be present on a certain one surface more densely than the opposite surface. The distribution state of the polymer component in the conductive porous layer can be confirmed by analyzing both surfaces by, for example, energy dispersive X-ray fluorescence analysis. The distribution of the polymer component can also be analyzed by performing energy dispersive X-ray fluorescence analysis in the layer cross-sectional direction. In addition, when using a styrene-acrylic acid-based rubber or the like, if the element specific to the polymer is not detected by energy dispersive X-ray fluorescence analysis, the polymer is analyzed by a Fourier transform infrared spectrophotometer or the like. What is necessary is just to observe the functional group resulting from a polymer.

<導電性多孔質層の製造方法>
本発明において、導電性多孔質層は、例えば、導電性多孔質層形成用ペースト組成物を、基材上に塗布及び乾燥し、基材を剥離することにより得ることができる。
<Method for producing conductive porous layer>
In the present invention, the conductive porous layer can be obtained, for example, by applying and drying a conductive porous layer forming paste composition on a substrate and peeling the substrate.

そして、上記のような方法で導電性多孔質層を形成する場合は、導電性多孔質層形成用ペースト組成物中に含まれる高分子重合体成分が、ペースト組成物の乾燥時に基材と接していない表面側から基材と接する表面側にかけて偏析を起こす現象を利用して、導電性多孔質層の表面に存在する高分子重合体成分の割合を調整することができる。そのため、使用する高分子重合体の量、ペースト組成物の粘度、高分子重合体としてエラストマーエマルジョンを用いる場合の粒径、乾燥時間、炭素材料(導電性炭素粒子、導電性炭素繊維等)の比重、炭素材料(導電性炭素粒子、導電性炭素繊維等)表面の官能基等を調節することで、高分子重合体成分の密度を一方の表面に高めることができる。特に、ペースト組成物の粘度が低く、乾燥時間が長い程、樹脂は偏析を起こし易くなる傾向にある(表1参照)。   When the conductive porous layer is formed by the method as described above, the polymer component contained in the conductive porous layer forming paste composition is in contact with the substrate when the paste composition is dried. By utilizing the phenomenon of segregation from the surface side that is not in contact to the surface side in contact with the substrate, the ratio of the polymer component present on the surface of the conductive porous layer can be adjusted. Therefore, the amount of the polymer used, the viscosity of the paste composition, the particle size when using an elastomer emulsion as the polymer, the drying time, the specific gravity of the carbon material (conductive carbon particles, conductive carbon fibers, etc.) The density of the polymer component can be increased on one surface by adjusting the functional group on the surface of the carbon material (conductive carbon particles, conductive carbon fiber, etc.). In particular, as the viscosity of the paste composition is lower and the drying time is longer, the resin tends to be segregated (see Table 1).

含有量
導電性多孔質層形成用ペースト組成物の配合割合は、例えば、導電性炭素粒子(導電性炭素繊維を含む場合には、導電性炭素粒子と導電性炭素繊維との合計量)100重量部に対して、高分子重合体30〜200重量部(好ましくは40〜150重量部)程度、分散剤0〜100重量部(好ましくは5〜50重量部)程度、アルコール又は水0〜1100重量部(好ましくは100〜1000重量部)程度とすればよい。なお、導電性炭素繊維を含む場合には、導電性炭素粒子と導電性炭素繊維との含有量の比は9:1(重量比)〜1:9(重量比)程度、特に8:2(重量比)〜2:8(重量比)程度が好ましい。また、撥水性向上のため、フッ素系樹脂を5〜250重量部(好ましくは10〜200重量部)程度含ませてもよい。なお、高分子重合体としてエラストマーエマルジョンを使用する場合には、固形分を上記範囲内とすればよい。なお、導電性多孔質層形成用ペースト組成物中に、フッ素系樹脂等のTgが大きい樹脂成分を含ませる場合には、高分子重合体とTgが大きい樹脂成分との含有量の比は9:1(重量比)〜4:6(重量比)程度、特に8:2(重量比)〜5:5(重量比)程度が好ましい。
Content The blending ratio of the conductive porous layer forming paste composition is, for example, conductive carbon particles (when conductive carbon fibers are included, the total amount of conductive carbon particles and conductive carbon fibers) is 100 weights. Part of the polymer, about 30 to 200 parts by weight (preferably 40 to 150 parts by weight), about 0 to 100 parts by weight (preferably 5 to 50 parts by weight) of dispersant, 0 to 1100 parts by weight of alcohol or water. Part (preferably 100 to 1000 parts by weight). When the conductive carbon fiber is included, the content ratio of the conductive carbon particles to the conductive carbon fiber is about 9: 1 (weight ratio) to 1: 9 (weight ratio), particularly 8: 2 ( Weight ratio) to about 2: 8 (weight ratio) is preferable. In order to improve water repellency, about 5 to 250 parts by weight (preferably 10 to 200 parts by weight) of a fluororesin may be included. In addition, what is necessary is just to make solid content in the said range, when using an elastomer emulsion as a high molecular polymer. When the conductive porous layer forming paste composition contains a resin component having a large Tg, such as a fluororesin, the content ratio of the high molecular polymer and the resin component having a large Tg is 9 : 1 (weight ratio) to about 4: 6 (weight ratio), especially about 8: 2 (weight ratio) to about 5: 5 (weight ratio) is preferable.

導電性多孔質層形成用ペースト組成物は、上述した成分を含有するものである。   The conductive porous layer forming paste composition contains the components described above.

基材は、ペースト組成物を塗布できるものであれば特に限定されず、公知又は市販の基材を広く使用することができる。このような基材としては、例えば、ポリイミド、ポリエチレンテレフタレート、ポリパラバン酸アラミド、ポリアミド(ナイロン)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート、ポリプロピレン等の高分子フィルム等を挙げることができる。また、エチレンテトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等も用いることができる。これらの中でも、耐熱性に優れ、入手のしやすい高分子フィルムが好ましく、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリテトラフルオロエチレン(PTFE)、ポリイミド等のフィルムが好ましい。   A base material will not be specifically limited if a paste composition can be apply | coated, A well-known or commercially available base material can be used widely. Examples of such a substrate include polyimide, polyethylene terephthalate, polyparabanic acid aramid, polyamide (nylon), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, and polyethylene naphthalate. And polymer films such as polypropylene. Also, use ethylene tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluorofluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE), etc. Can do. Among these, a polymer film excellent in heat resistance and easily available is preferable. For example, films of polyethylene terephthalate, polyethylene naphthalate, polytetrafluoroethylene (PTFE), polyimide, and the like are preferable.

基材には離型層が積層されていることが好ましい。離型層としては、例えば、公知のワックスから構成されたものが挙げられる。また、離型層が積層された基材として、SiOx、フッ素樹脂等でコーティングされたフィルム等を使用してもよい。   It is preferable that a release layer is laminated on the substrate. Examples of the release layer include those composed of known waxes. Moreover, you may use the film etc. which were coated with SiOx, a fluororesin, etc. as a base material with which the release layer was laminated | stacked.

基材の厚みは、取り扱い性及び経済性の観点から、通常6〜100μm程度、好ましくは10〜60μm程度とするのが好ましい。   The thickness of the substrate is usually about 6 to 100 μm, preferably about 10 to 60 μm, from the viewpoints of handleability and economy.

塗布方法としては、公知又は市販のドクターブレード等のブレード、ワイヤーバー、スキージ等の器具やアプリケーター、ダイコート等を用いて塗布すればよい。   As a coating method, a blade such as a known or commercially available doctor blade, a wire bar, a tool such as a squeegee, an applicator, a die coat or the like may be used.

ペースト組成物の塗布量は限定的でないが、例えば、厚みが1〜150μm程度、好ましくは5〜100μm程度となるようにすればよい。   The coating amount of the paste composition is not limited, but for example, the thickness may be about 1 to 150 μm, preferably about 5 to 100 μm.

また、乾燥条件も限定的ではなく、使用する溶剤(アルコール等)の揮発温度、高分子重合体のガラス転移温度等の条件により適宜変更すればよい。   Also, the drying conditions are not limited, and may be appropriately changed depending on conditions such as the volatilization temperature of the solvent (alcohol or the like) to be used, the glass transition temperature of the polymer, and the like.

<燃料電池用ガス拡散層の特徴>
本発明において、燃料電池用ガス拡散層は、上述の導電性多孔質層を有する。そして、導電性多孔質層は、存在する高分子重合体が、表裏で高分子重合体の存在割合が異なるものである。なお、導電性多孔質層中に、複数の高分子重合体が含まれている場合には、導電性多孔質層中に含まれる少なくとも1種の高分子重合体(Tgが触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体)が、表裏で存在割合が異なっていればよい。なお、本発明では、前記導電性多孔質層をそのままガス拡散層として使用することもできる。
<Characteristics of gas diffusion layer for fuel cells>
In the present invention, the fuel cell gas diffusion layer has the above-described conductive porous layer. In the conductive porous layer, the existing high molecular polymers are different from each other in the proportion of the high molecular polymers. In addition, in the case where a plurality of high molecular polymers are included in the conductive porous layer, at least one high molecular polymer (Tg is included in the catalyst layer) included in the conductive porous layer. The high molecular polymer satisfying at least one of the glass transition temperature of the hydrogen ion conductive polymer electrolyte and the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane is different between the front and back sides. Just do it. In the present invention, the conductive porous layer can be used as it is as a gas diffusion layer.

<導電性多孔質基材>
前記ガス拡散層は、その上に、公知又は市販のガス拡散層(カーボンペーパー、カーボンクロス、カーボンフェルト等)を導電性多孔質基材として形成させてもよい。
<Conductive porous substrate>
On the gas diffusion layer, a known or commercially available gas diffusion layer (carbon paper, carbon cloth, carbon felt, etc.) may be formed as a conductive porous substrate.

通常用いられるカーボンペーパーの特性について、東レ(株)製のTGP−H−060を例にとり言及すると、厚み:190μm、電気抵抗:厚み方向80mΩ・cm、面方向5.8mΩ・cm、気孔率:78%、嵩密度:0.44g/cm、表面粗さ:8μm等である。カーボンペーパー等の厚みは限定的ではないが、通常50〜1000μm程度、好ましくは100〜400μm程度とすればよい。 When referring to TGP-H-060 manufactured by Toray Industries, Inc. as an example, the characteristics of commonly used carbon paper are as follows: thickness: 190 μm, electric resistance: thickness direction 80 mΩ · cm, surface direction 5.8 mΩ · cm, porosity: 78%, bulk density: 0.44 g / cm 3 , surface roughness: 8 μm, and the like. The thickness of the carbon paper or the like is not limited, but is usually about 50 to 1000 μm, preferably about 100 to 400 μm.

導電性多孔質基材は、予め撥水処理が施されたものであることが好ましい。これにより、さらに一段と、導電性多孔質基材の撥水性を向上させることができる。   It is preferable that the conductive porous substrate has been subjected to a water repellent treatment in advance. Thereby, the water repellency of the conductive porous substrate can be further improved.

撥水処理としては、例えば、上記の導電性多孔質基材をフッ素系樹脂等が分散した水分散体中に浸漬する方法等が挙げられる。フッ素系樹脂としては、上述したもの等が挙げられる。なお、この際には、水中にフッ素系樹脂を分散させるために、上述した分散剤を用い、フッ素系樹脂及び水系分散剤を含む水系懸濁液として使用することが好ましい。   Examples of the water repellent treatment include a method of immersing the conductive porous substrate in an aqueous dispersion in which a fluorine resin or the like is dispersed. Examples of the fluorine-based resin include those described above. In this case, in order to disperse the fluororesin in water, the above-described dispersant is preferably used as an aqueous suspension containing the fluororesin and the aqueous dispersant.

水分散体中のフッ素系樹脂の含有量は限定的でないが、例えば、水100重量部に対して、1〜30重量部程度、好ましくは2〜20重量部程度とすればよい。   The content of the fluororesin in the aqueous dispersion is not limited, but may be, for example, about 1 to 30 parts by weight, preferably about 2 to 20 parts by weight with respect to 100 parts by weight of water.

(2)触媒層−電解質膜積層体
<電解質膜>
電解質膜は、水素イオン伝導性のものであれば限定的ではなく、公知又は市販のものを使用できる。電解質膜の具体例としては、例えば、デュポン社製の「Nafion」(登録商標)膜、旭硝子(株)製の「Flemion」(登録商標)膜、旭化成(株)製の「Aciplex」(登録商標)膜、ゴア(Gore)社製の「Gore Select」(登録商標)膜等が挙げられる。
(2) Catalyst layer-electrolyte membrane laminate <electrolyte membrane>
The electrolyte membrane is not limited as long as it is hydrogen ion conductive, and a known or commercially available membrane can be used. Specific examples of the electrolyte membrane include, for example, “Nafion” (registered trademark) membrane manufactured by DuPont, “Flemion” (registered trademark) membrane manufactured by Asahi Glass Co., Ltd., and “Aciplex” (registered trademark) manufactured by Asahi Kasei Corporation. ) Membrane, “Gore Select” (registered trademark) membrane manufactured by Gore, and the like.

電解質膜の膜厚は、通常20〜250μm程度、好ましくは20〜150μm程度とすればよい。   The thickness of the electrolyte membrane is usually about 20 to 250 μm, preferably about 20 to 150 μm.

<触媒層>
触媒層は、公知又は市販の白金含有の触媒層(カソード触媒又はアノード触媒)を使用することができる。具体的には、触媒層は、(1)触媒粒子を担持させた炭素粒子及び(2)水素イオン伝導性高分子電解質を含有する触媒層形成用ペースト組成物の乾燥物から構成されるものである。
<Catalyst layer>
As the catalyst layer, a known or commercially available platinum-containing catalyst layer (cathode catalyst or anode catalyst) can be used. Specifically, the catalyst layer is composed of (1) a dried product of a paste composition for forming a catalyst layer containing carbon particles supporting catalyst particles and (2) a hydrogen ion conductive polymer electrolyte. is there.

触媒粒子としては、酸化還元反応(アノードでの水素の酸化及びカソードでの酸素の還元)を起こし触媒活性を有するものであれば限定されるものではなく、例えば、白金、白金合金、白金化合物等が挙げられる。白金合金としては、例えば、ルテニウム、パラジウム、ニッケル、モリブデン、イリジウム、鉄、コバルトから選ばれる少なくとも1種の金属と、白金との合金等が挙げられる。   The catalyst particles are not limited as long as they have an oxidation-reduction reaction (oxidation of hydrogen at the anode and reduction of oxygen at the cathode) and have catalytic activity. For example, platinum, platinum alloys, platinum compounds, etc. Is mentioned. Examples of the platinum alloy include an alloy of platinum and at least one metal selected from ruthenium, palladium, nickel, molybdenum, iridium, iron, and cobalt.

また、水素イオン伝導性高分子電解質としては、例えば、パーフルオロスルホン酸系のフッ素イオン交換樹脂、より具体的には、炭化水素系イオン交換膜のC−H結合をフッ素で置換したパーフルオロカーボンスルホン酸系ポリマー(PFS系ポリマー)等が挙げられる。   Examples of the hydrogen ion conductive polymer electrolyte include perfluorosulfonic acid-based fluorine ion exchange resins, more specifically, perfluorocarbon sulfone in which the C—H bond of the hydrocarbon ion-exchange membrane is substituted with fluorine. Examples include acid-based polymers (PFS-based polymers).

触媒層の厚みは限定的ではないが、通常1〜100μm程度、好ましくは2〜50μm程度とすればよい。   The thickness of the catalyst layer is not limited, but is usually about 1 to 100 μm, preferably about 2 to 50 μm.

なお、触媒層には、撥水剤として、フッ素樹脂や非ポリマー系フッ素材料であるフッ化ピッチ、フッ化カーボン、フッ化黒鉛等を添加することもできる。   Note that a fluorine resin, non-polymer fluorine material such as fluorinated pitch, fluorinated carbon, and fluorinated graphite can be added to the catalyst layer as a water repellent.

<触媒層−電解質膜積層体の製造方法>
触媒層−電解質膜積層体は、例えば、触媒層と電解質膜とが対面するように触媒層転写フィルムを配置し、加温条件下で加圧して触媒層を電解質膜に転写した後、転写フィルムを剥離することにより製造することができる。なお、この操作を2回繰り返せば、電解質膜の両面に触媒層が積層された触媒層−電解質膜積層体を製造することができるが、作業性等を考慮すると、触媒層を電解質膜の両面に同時に積層するのがよい。
<Method for producing catalyst layer-electrolyte membrane laminate>
The catalyst layer-electrolyte membrane laminate is, for example, a catalyst layer transfer film disposed so that the catalyst layer and the electrolyte membrane face each other, and the catalyst layer is transferred to the electrolyte membrane by applying pressure under heating conditions. It can be manufactured by peeling off. If this operation is repeated twice, a catalyst layer-electrolyte membrane laminate in which a catalyst layer is laminated on both sides of the electrolyte membrane can be produced. However, considering workability and the like, the catalyst layer is placed on both sides of the electrolyte membrane. It is good to laminate at the same time.

転写する際には、触媒層転写フィルムの基材フィルム側から、公知のプレス機等を用いて加圧すればよい。その際の加圧レベルは、転写不良を避けるために、通常0.5〜10MPa程度、好ましくは1〜8MPa程度がよい。また、この加圧操作の際に、転写不良を避けるために、加圧面を加熱するのが好ましい。加熱温度は、使用する電解質膜の種類により適宜変更すればよい。   When transferring, it may be pressurized from the base film side of the catalyst layer transfer film using a known press machine or the like. The pressure level at that time is usually about 0.5 to 10 MPa, preferably about 1 to 8 MPa in order to avoid transfer failure. Further, it is preferable to heat the pressure surface during this pressure operation in order to avoid transfer failure. What is necessary is just to change a heating temperature suitably with the kind of electrolyte membrane to be used.

なお、基材フィルムとしては、特に制限されることはなく、上述の基材と同様のものを使用できる。例えば、ポリイミド、ポリエチレンテレフタレート(PET)、ポリサルホン、ポリエーテルサルホン、ポリフェニレンサルファイド、ポリエーテル・エーテルケトン、ポリエーテルイミド、ポリアリレート、ポリエチレンナフタレート(PEN)、ポリエチレン、ポリプロピレン、ポリオレフィン等の高分子フィルムを挙げることができる。また、エチレン−テトラフルオロエチレン共重合体(ETFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン−パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)等の耐熱性フッ素樹脂を用いることもできる。これらのなかでも、安価で入手が容易な高分子フィルムが好ましく、ポリエチレンテレフタレート等がより好ましい。   In addition, it does not restrict | limit especially as a base film, The thing similar to the above-mentioned base material can be used. For example, polymer films such as polyimide, polyethylene terephthalate (PET), polysulfone, polyethersulfone, polyphenylene sulfide, polyether ether ketone, polyetherimide, polyarylate, polyethylene naphthalate (PEN), polyethylene, polypropylene, polyolefin, etc. Can be mentioned. Also, ethylene-tetrafluoroethylene copolymer (ETFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), polytetrafluoroethylene (PTFE) It is also possible to use a heat-resistant fluororesin such as Among these, a polymer film that is inexpensive and easily available is preferable, and polyethylene terephthalate or the like is more preferable.

基材フィルムの厚さは、基材フィルム上に触媒層を形成させる作業性、経済性等の観点から、通常6〜150μm程度、好ましくは12〜75μm程度とするのがよい。   The thickness of the base film is usually about 6 to 150 μm, preferably about 12 to 75 μm, from the viewpoints of workability and economical efficiency for forming a catalyst layer on the base film.

また、基材フィルムは、離型層が積層されたものであってもよい。離型層としては、例えば、公知のワックスから構成されたもの、公知のSiOx、フッ素系樹脂でコーティングされたプラスチックフィルム等が挙げられる。また、基材フィルム上に離型性の高いフィルムを積層して構成されたもの、例えば、PET基材と耐熱フッ素樹脂基材との積層体等の構造を有しているものでもよい。   Moreover, the base film may be one in which a release layer is laminated. Examples of the release layer include those composed of known waxes, known SiOx, plastic films coated with a fluorine-based resin, and the like. Moreover, what was comprised by laminating | stacking a film with high mold release property on a base film, for example, what has structures, such as a laminated body of a PET base material and a heat resistant fluororesin base material, may be used.

(3)燃料電池用膜−電極接合体の製造方法
本発明では、まず、
(I)基材上に、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含む導電性多孔質層形成用ペースト組成物を塗布及び乾燥させた後に、基材から導電性多孔質層を剥離し、片側表面に反対側表面よりも高分子重合体が密に存在する導電性多孔質層を作製する工程
により導電性多孔質層を形成する。
(3) Manufacturing method of fuel cell membrane-electrode assembly In the present invention, first,
(I) On the substrate, at least conductive carbon particles, and the glass transition temperature is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ion conductive resin constituting the electrolyte membrane After applying and drying a conductive porous layer-forming paste composition containing a polymer that satisfies at least one of the glass transition temperature below the conductive transition layer, the conductive porous layer is peeled off from the substrate, The conductive porous layer is formed by a step of producing a conductive porous layer in which the polymer is present more densely than the opposite surface.

さらに、
(II)前記触媒層−電解質膜積層体の片面又は両面に、前記導電性多孔質層の前記高分子重合体が密な表面と触媒層が対向するように前記導電性多孔質層を配置し、熱プレスして一体化する工程
により、本発明の膜−電極接合体が得られる。
further,
(II) The conductive porous layer is arranged on one side or both sides of the catalyst layer-electrolyte membrane laminate so that the dense polymer polymer surface of the conductive porous layer faces the catalyst layer. The membrane-electrode assembly of the present invention is obtained by the process of hot pressing and integration.

上記工程(II)において、熱プレスの温度は、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たせばよいが、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下で、且つ、電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下であることが好ましい。具体的には、触媒層中に含まれる電解質及び電解質膜を構成する水素イオン伝導性樹脂がナフィオンである場合には、30〜130℃程度が好ましく、50〜120℃程度がより好ましい。また、リン酸形燃料電池で使用される電解質樹脂の場合では、130〜220℃程度が好ましく、140〜210℃程度がより好ましい。熱プレス温度を上記範囲内とすることで、触媒層中に含まれる水素イオン伝導性高分子電解質、電解質膜を構成する樹脂等を変質させることなく、一体化した膜−電極接合体を作製することができる。   In the step (II), the temperature of the hot press is at least not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. One may be satisfied, but it is preferably not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. . Specifically, when the hydrogen ion conductive resin constituting the electrolyte and the electrolyte membrane contained in the catalyst layer is Nafion, the temperature is preferably about 30 to 130 ° C, more preferably about 50 to 120 ° C. Moreover, in the case of the electrolyte resin used with a phosphoric acid fuel cell, about 130-220 degreeC is preferable and about 140-210 degreeC is more preferable. By setting the hot press temperature within the above range, an integrated membrane-electrode assembly is produced without altering the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and the resin constituting the electrolyte membrane. be able to.

2.固体高分子形燃料電池
本発明の膜−電極接合体に公知又は市販のセパレータを設けることにより、本発明の膜−電極接合体を具備する、固体高分子形燃料電池を得ることができる。
2. Solid polymer fuel cell By providing a known or commercially available separator to the membrane-electrode assembly of the present invention, a solid polymer fuel cell comprising the membrane-electrode assembly of the present invention can be obtained.

本発明によれば、導電性多孔質層を有するガス拡散層を用いて触媒層−電解質膜積層体と一体化させ、触媒層とガス拡散層との密着性が高い膜−電極接合体を提供することができる。   According to the present invention, a gas diffusion layer having a conductive porous layer is used to integrate with a catalyst layer-electrolyte membrane laminate to provide a membrane-electrode assembly having high adhesion between the catalyst layer and the gas diffusion layer. can do.

以下に実施例及び比較例を挙げて、本発明をより詳細に説明する。なお、本発明は、以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.

<材料>
導電性多孔質層形成用ペースト組成物の調製には、特に断る場合を除き、以下に示す材料を使用した。
導電性炭素粒子:ファーネスブラック(バルカンxc72R:キャボット社製)、平均分子量1000〜3000
フッ素系樹脂:ポリテトラフルオロエチレン(PTFE)(AD911L:旭硝子(株)製)
高分子重合体(1):Nafion(デュポン社製の5wt%Nafion溶液「DE−520」を使用した)、Tg:130℃
高分子重合体(2):AP−2675(昭和電工(株)製;スチレン−アクリル酸系共重合体樹脂を使用したエマルジョン;固形分50wt%)、Tg:0℃
導電性炭素繊維:VGCF(VGCF(登録商標)(標準品):昭和電工(株)製;平均繊維径150nm、平均繊維長10〜20μm、平均アスペクト比10〜500)
分散剤:エマルゲンA60(花王(株)製)
<Material>
For the preparation of the conductive porous layer forming paste composition, the following materials were used unless otherwise specified.
Conductive carbon particles: Furnace black (Vulcan xc72R: manufactured by Cabot Corporation), average molecular weight 1000 to 3000
Fluorine resin: Polytetrafluoroethylene (PTFE) (AD911L: Asahi Glass Co., Ltd.)
Polymer (1): Nafion (using 5 wt% Nafion solution “DE-520” manufactured by DuPont), Tg: 130 ° C.
Polymer (2): AP-2675 (manufactured by Showa Denko KK; emulsion using styrene-acrylic acid copolymer resin; solid content 50 wt%), Tg: 0 ° C.
Conductive carbon fiber: VGCF (VGCF (registered trademark) (standard product): manufactured by Showa Denko KK; average fiber diameter 150 nm, average fiber length 10-20 μm, average aspect ratio 10-500)
Dispersant: Emulgen A60 (manufactured by Kao Corporation)

<触媒層−電解質膜積層体の製造>
公知の材料を用いて、公知の方法により、触媒層−電解質膜積層体を作製した。具体的には、以下のとおりである。
<Manufacture of catalyst layer-electrolyte membrane laminate>
Using a known material, a catalyst layer-electrolyte membrane laminate was produced by a known method. Specifically, it is as follows.

白金触媒担持炭素粒子4g(田中貴金属工業(株)製、「TEC10E50E」)、イオン伝導性高分子電解質溶液40g(Nafion5wt%溶液:「DE−520」デュポン社製)、蒸留水12g、n−ブタノール20g及びt−ブタノール20gを配合し、分散機にて攪拌混合することにより、アノード触媒層形成用ペースト組成物及びカソード触媒層形成用ペースト組成物を得た。   4 g of platinum catalyst-supporting carbon particles (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd., “TEC10E50E”), 40 g of an ion conductive polymer electrolyte solution (Nafion 5 wt% solution: “DE-520” manufactured by DuPont), 12 g of distilled water, n-butanol 20 g of t-butanol and 20 g of t-butanol were mixed and stirred and mixed in a disperser to obtain a paste composition for forming an anode catalyst layer and a paste composition for forming a cathode catalyst layer.

アノード触媒層形成用ペースト組成物及びカソード触媒層形成用ペースト組成物を、それぞれアプリケーターを用いて転写基材(材質:ポリエチレンテレフタレートフィルム)上に塗工し、95℃で30分程度乾燥させることにより触媒層を形成させて、アノード触媒層形成用転写シート及びカソード触媒層形成用転写シートを作製した。なお、触媒層の塗工量は、アノード触媒層、カソード触媒層共に白金担持量が0.45mg/cm程度となるようにした。 By applying the paste composition for forming an anode catalyst layer and the paste composition for forming a cathode catalyst layer on a transfer substrate (material: polyethylene terephthalate film) using an applicator, and drying at 95 ° C. for about 30 minutes. A catalyst layer was formed to prepare an anode catalyst layer forming transfer sheet and a cathode catalyst layer forming transfer sheet. The coating amount of the catalyst layer was such that the platinum loading amount was about 0.45 mg / cm 2 for both the anode catalyst layer and the cathode catalyst layer.

上記で作製したアノード触媒層形成用転写シート及びカソード触媒層形成用転写シートを用いて、電解質膜(デュポン社製の「NR−212」;膜厚50μm)各面に、135℃、5MPaで2分間熱プレスを行った後、転写基材のみを剥がすことにより、電解質膜−触媒層積層体を作製した。   Using the anode catalyst layer-forming transfer sheet and the cathode catalyst layer-forming transfer sheet prepared as described above, the electrolyte membrane (“NR-212” manufactured by DuPont; film thickness of 50 μm) is formed on each surface at 135 ° C. and 5 MPa. After performing the heat press for a minute, only the transfer base material was peeled off to prepare an electrolyte membrane-catalyst layer laminate.

実施例1〜6及び比較例1〜6
<実施例1>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、分散剤25重量部及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたポリエチレンテレフタレート(PET)フィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約150mPa・sの値であった。ペースト組成物の粘度の測定方法は、Anton Paar社製のhysica MCR301を使用して測定した(冶具には、直径50mm、角度1°の円錐型冶具を使用)。なお、他の実施例及び比較例のペースト組成物についても同様の測定を実施した。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
Examples 1-6 and Comparative Examples 1-6
<Example 1>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), dispersant 25 parts by weight and water A conductive porous layer forming paste composition was prepared by dispersing 350 parts by weight by media dispersion. This conductive porous layer forming paste composition was applied on a polyethylene terephthalate (PET) film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The viscosity of the paste composition was a value of about 150 mPa · s at a shear rate of 1000 (1 / s). The viscosity of the paste composition was measured using hysica MCR301 manufactured by Anton Paar (a jig having a diameter of 50 mm and an angle of 1 ° was used). In addition, the same measurement was implemented also about the paste composition of the other Example and the comparative example. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に、導電性多孔質層の高分子重合体(高分子重合体(1))が密に存在する表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例1の膜−電極接合体を作製した。   The conductive porous layer is peeled from the PET film on which the release layer is formed, and a polymer polymer (polymer polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte membrane laminate. (1)) is brought into contact with the surface, and the membrane-electrode assembly of Example 1 is obtained by hot pressing under conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. Produced.

<実施例2>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、高分子重合体(2)200重量部(固形分100重量部)、分散剤25重量部及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約130mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Example 2>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), polymer (2) A conductive porous layer forming paste composition was prepared by dispersing 200 parts by weight (solid content: 100 parts by weight), dispersing agent 25 parts by weight and water 350 parts by weight by media dispersion. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The paste composition had a shear rate of 1000 (1 / s) and a shear viscosity of about 130 mPa · s. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に、導電性多孔質層の高分子重合体(高分子重合体(1)及び(2))が密に存在する表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例2の膜−電極接合体を作製した。   The conductive porous layer is peeled from the PET film on which the release layer is formed, and a polymer polymer (polymer polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte membrane laminate. The film of Example 2 was obtained by bringing the surface on which (1) and (2)) are densely in contact with each other and performing hot pressing under conditions of a pressing temperature of 100 ° C., a pressing pressure of 7.5 kN, and a pressing time of 2 minutes. An electrode assembly was produced.

<実施例3>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、高分子重合体(2)200重量部(固形分100重量部)、及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約130mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Example 3>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), polymer (2) A conductive porous layer forming paste composition was prepared by dispersing 200 parts by weight (solid content: 100 parts by weight) and 350 parts by weight of water by media dispersion. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The paste composition had a shear rate of 1000 (1 / s) and a shear viscosity of about 130 mPa · s. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1)及び(2))が密に存在する表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例3の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. The membrane-electrode of Example 3 is brought into contact with the surface on which 1) and (2)) are densely contacted and hot pressed under conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. A joined body was produced.

<実施例4>
導電性炭素粒子50重量部、フッ素系樹脂50重量部及び高分子重合体(1)2000重量部(固形分100重量部)をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約250mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Example 4>
Conductive porous layer forming paste composition by dispersing 50 parts by weight of conductive carbon particles, 50 parts by weight of fluorine-based resin and 2000 parts by weight of polymer (1) (solid content of 100 parts by weight) by media dispersion. Was formulated. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The viscosity of the paste composition was a value of about 250 mPa · s at a shear rate of 1000 (1 / s). Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1))が密に存在する表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例4の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. 1)) is brought into contact with the surface, and the membrane-electrode assembly of Example 4 is produced by hot pressing under conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. did.

<実施例5>
導電性炭素粒子50重量部、フッ素系樹脂50重量部、高分子重合体(1)2000重量部(固形分100重量部)及び分散剤25重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約250mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Example 5>
Conductive porous material is obtained by dispersing 50 parts by weight of conductive carbon particles, 50 parts by weight of a fluororesin, 2000 parts by weight of a polymer (1) (solid content of 100 parts by weight) and 25 parts by weight of a dispersant by media dispersion. A paste composition for layer formation was prepared. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The viscosity of the paste composition was a value of about 250 mPa · s at a shear rate of 1000 (1 / s). Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1))が密に存在する表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例5の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. 1)) is brought into contact with the surface, and the membrane-electrode assembly of Example 5 is produced by hot pressing under conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. did.

<実施例6>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部、分散剤25重量部及び水1050重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約60mPa・sの値であった。その後、95℃に設定した乾燥炉中で約30分乾燥させて、導電性多孔質層を作製した。
<Example 6>
100 parts by weight of conductive carbon particles, 50 parts by weight of fluorocarbon resin, 75 parts by weight of conductive carbon fiber, 1250 parts by weight of the polymer (1), 25 parts by weight of dispersant and 1050 parts by weight of water are dispersed by media dispersion. Thus, a conductive porous layer forming paste composition was prepared. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The paste composition had a shear rate of 1000 (1 / s) and a shear viscosity of about 60 mPa · s. Then, it was made to dry for about 30 minutes in the drying furnace set to 95 degreeC, and the electroconductive porous layer was produced.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に、導電性多孔質層の高分子重合体(高分子重合体(1))が密に存在する表面を接触させて配置し、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、実施例6の膜−電極接合体を作製した。   The conductive porous layer is peeled from the PET film on which the release layer is formed, and a polymer polymer (polymer polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte membrane laminate. (1)) is placed in close contact with the surface, and heat-pressed under the conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes, whereby the membrane-electrode bonding of Example 6 The body was made.

<比較例1>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、分散剤25重量部及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約150mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Comparative Example 1>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), dispersant 25 parts by weight and water A conductive porous layer forming paste composition was prepared by dispersing 350 parts by weight by media dispersion. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The viscosity of the paste composition was a value of about 150 mPa · s at a shear rate of 1000 (1 / s). Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1))が疎な表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例1の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and the polymer polymer (polymer polymer ( The membrane-electrode assembly of Comparative Example 1 was produced by bringing the surface having a low density of 1)) into contact and performing hot pressing under conditions of a pressing temperature of 100 ° C., a pressing pressure of 7.5 kN, and a pressing time of 2 minutes.

<比較例2>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、高分子重合体(2)200重量部(固形分100重量部)、分散剤25重量部及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約130mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Comparative example 2>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), polymer (2) A conductive porous layer forming paste composition was prepared by dispersing 200 parts by weight (solid content: 100 parts by weight), dispersing agent 25 parts by weight and water 350 parts by weight by media dispersion. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The paste composition had a shear rate of 1000 (1 / s) and a shear viscosity of about 130 mPa · s. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1)及び(2))が疎な表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例2の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. The membrane-electrode assembly of Comparative Example 2 was brought into contact with the sparse surface of 1) and (2)) and subjected to hot pressing under conditions of a pressing temperature of 100 ° C., a pressing pressure of 7.5 kN, and a pressing time of 2 minutes. Was made.

<比較例3>
導電性炭素粒子100重量部、フッ素系樹脂50重量部、導電性炭素繊維75重量部、高分子重合体(1)1250重量部(固形分62.5重量部)、高分子重合体(2)200重量部(固形分100重量部)、及び水350重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約130mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Comparative Example 3>
Conductive carbon particles 100 parts by weight, fluororesin 50 parts by weight, conductive carbon fiber 75 parts by weight, polymer (1) 1250 parts by weight (solid content 62.5 parts by weight), polymer (2) A conductive porous layer forming paste composition was prepared by dispersing 200 parts by weight (solid content: 100 parts by weight) and 350 parts by weight of water by media dispersion. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The paste composition had a shear rate of 1000 (1 / s) and a shear viscosity of about 130 mPa · s. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1)及び(2))が疎な表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例3の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. The membrane-electrode assembly of Comparative Example 3 was brought into contact with the sparse surface of 1) and (2)) and hot-pressed under conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. Was made.

<比較例4>
導電性炭素粒子50重量部、フッ素系樹脂50重量部及び高分子重合体(1)2000重量部(固形分100重量部)をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。該ペースト組成物の粘度は、せん断速度1000(1/s)でせん断粘度が約250mPa・sの値であった。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Comparative example 4>
Conductive porous layer forming paste composition by dispersing 50 parts by weight of conductive carbon particles, 50 parts by weight of fluorine-based resin and 2000 parts by weight of polymer (1) (solid content of 100 parts by weight) by media dispersion. Was formulated. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. The viscosity of the paste composition was a value of about 250 mPa · s at a shear rate of 1000 (1 / s). Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1))が疎な表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例4の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. The membrane-electrode assembly of Comparative Example 4 was produced by contacting the surface with the sparse 1)) and performing hot pressing under conditions of a pressing temperature of 100 ° C., a pressing pressure of 7.5 kN, and a pressing time of 2 minutes.

<比較例5>
導電性炭素粒子50重量部、フッ素系樹脂50重量部、高分子重合体(1)2000重量部(固形分100重量部)及び分散剤25重量部をメディア分散により分散させることにより導電性多孔質層形成用ペースト組成物を調合した。この導電性多孔質層形成用ペースト組成物を離型層が形成されたPETフィルム上にアプリケーターを用いて約50μmの厚みとなるように塗布した。その後、95℃に設定した乾燥炉中で約15分乾燥させて、導電性多孔質層を作製した。
<Comparative Example 5>
Conductive porous material is obtained by dispersing 50 parts by weight of conductive carbon particles, 50 parts by weight of a fluororesin, 2000 parts by weight of a polymer (1) (solid content of 100 parts by weight) and 25 parts by weight of a dispersant by media dispersion. A paste composition for layer formation was prepared. This conductive porous layer-forming paste composition was applied on a PET film on which a release layer was formed using an applicator so as to have a thickness of about 50 μm. Then, it was dried for about 15 minutes in a drying oven set at 95 ° C. to produce a conductive porous layer.

この導電性多孔質層を離型層が形成されたPETフィルムから剥離させ、触媒層−電解質膜積層体のカソード側触媒層表面に導電性多孔質層の高分子重合体(高分子重合体(1))が疎な表面を接触させて、プレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例5の膜−電極接合体を作製した。   The conductive porous layer is peeled off from the PET film on which the release layer is formed, and a polymer (conductive polymer (polymer) of the conductive porous layer is formed on the surface of the catalyst layer on the cathode side of the catalyst layer-electrolyte laminate. The membrane-electrode assembly of Comparative Example 5 was produced by bringing the surface having the sparse 1)) into contact and performing hot pressing under conditions of a pressing temperature of 100 ° C., a pressing pressure of 7.5 kN, and a pressing time of 2 minutes.

<比較例6>
導電性炭素粒子100重量部、PTFE250重量部(ダイキン工業(株)製のルブロンLDW−41:175重量部、デュポン社製のPTFE31−JR:75重量部)、導電性炭素繊維25重量部、分散剤25重量部及び水850重量部をメディア分散により分散させることにより、導電性多孔質形成用ペースト組成物を調合した(導電性炭素粒子及び導電性炭素繊維の合計量に対して、導電性炭素繊維20重量%)。
<Comparative Example 6>
Conductive carbon particles 100 parts by weight, PTFE 250 parts by weight (Daikin Industries, Ltd. Lubron LDW-41: 175 parts by weight, DuPont PTFE 31-JR: 75 parts by weight), conductive carbon fiber 25 parts by weight, dispersion 25 parts by weight of the agent and 850 parts by weight of water were dispersed by media dispersion to prepare a conductive porous forming paste composition (conducting carbon with respect to the total amount of conductive carbon particles and conductive carbon fibers). Fiber 20% by weight).

また、撥水層の塗工量は約35g/m、塗工厚は約35μmに調節して導電性多孔質基材に撥水処理を施した。導電性多孔質基材にはカーボンペーパーを用い、水100重量部に対して、PTFE懸濁液(PTFE懸濁液100重量部は、PTFE60重量部、分散剤(ポリオキシエチレンアルキレンアルキルエーテル)2重量部、水38重量から構成)5重量部を混合させたPTFE水分散液に2分間含浸させた後、大気雰囲気中95℃で15分程度乾燥させ、次いで大気雰囲気中約300℃で2時間程度焼成を行うことにより、撥水処理を施した。 Further, the water-repellent layer was subjected to water-repellent treatment by adjusting the coating amount of the water-repellent layer to about 35 g / m 2 and the coating thickness to about 35 μm. Carbon paper is used for the conductive porous substrate, and PTFE suspension (100 parts by weight of PTFE suspension is 60 parts by weight of PTFE and 2 parts of dispersing agent (polyoxyethylene alkylene alkyl ether) with respect to 100 parts by weight of water. 2 parts impregnated with 5 parts by weight of PTFE water dispersion, dried in air at 95 ° C. for about 15 minutes, and then in air at about 300 ° C. for 2 hours A water-repellent treatment was performed by firing to a certain extent.

上記で調製した導電性多孔質層形成用ペースト組成物を、アプリケーター(Sheen Instruments Ltd製、「Micrometer Adjustable Film Applicator、1117/200」)を用いて塗工量が固形分換算で、35g/m程度になるように、上記撥水処理済み導電性多孔質基材の一方の面に均一に塗工した。次いで、大気雰囲気中95℃で約20分乾燥した後、大気雰囲気中300℃で2時間程度焼成することにより、撥水処理済み導電性多孔質基材表面に導電性多孔質層が形成された、ガス拡散層を製造した。この導電性多孔質層を塗布した撥水処理済み導電性多孔質基材の導電性多孔質層面を触媒層に隣接させてプレス温度100℃、プレス圧7.5kN、プレス時間2分の条件で熱プレスをすることにより、比較例6の膜−電極接合体を作製した。 Using the applicator (manufactured by Sheen Instruments Ltd, “Micrometer Adjustable Film Applicator, 1117/200”), the coating amount of the conductive porous layer forming paste composition prepared above was 35 g / m 2 in terms of solid content. The water-repellent-treated conductive porous substrate was uniformly coated on one surface so as to reach a degree. Next, after drying at 95 ° C. for about 20 minutes in the air atmosphere, the conductive porous layer was formed on the surface of the water-repellent conductive porous substrate by firing at 300 ° C. for about 2 hours in the air atmosphere. A gas diffusion layer was manufactured. The conductive porous layer surface of the water-repellent treated porous substrate coated with the conductive porous layer is adjacent to the catalyst layer under the conditions of a press temperature of 100 ° C., a press pressure of 7.5 kN, and a press time of 2 minutes. A membrane-electrode assembly of Comparative Example 6 was produced by hot pressing.

<導電性多孔質層の評価試験>
実施例を代表して、実施例1と実施例6の導電性多孔質層の表裏面を、エネルギー分散型蛍光X線分析により観察した結果を表1に示す。その結果、Nafion樹脂とPTFE樹脂が保有するF元素とS元素の存在割合が、導電性多孔質層の表裏で差異があり、導電性多孔質層の表裏でPTFE樹脂とNafion樹脂が共に偏析していることが確認できた。また、実施例1の結果に比べ、実施例6の結果はその差が顕著であり、導電性多孔質層形成用ペースト組成物を低粘度にすることにより、樹脂がより偏析しやすくなることが確認できた。なお、実施例2〜5についても同様の結果となる。なお、表1において、「PETフィルム接触面」とは、導電性多孔質層からPETフィルムを剥離する前にPETフィルムと接触していた面を示し、「PETフィルム非接触面」とは、PETフィルム接触面と反対側の面を示す。
<Evaluation test of conductive porous layer>
As a representative example, Table 1 shows the results of observation of the front and back surfaces of the conductive porous layers of Example 1 and Example 6 by energy dispersive X-ray fluorescence analysis. As a result, the presence ratio of F element and S element possessed by Nafion resin and PTFE resin is different between the front and back of the conductive porous layer, and both PTFE resin and Nafion resin are segregated on the front and back of the conductive porous layer. It was confirmed that Moreover, the difference of the result of Example 6 is remarkable compared with the result of Example 1, and it becomes easy to segregate resin more by making the paste composition for conductive porous layer formation low viscosity. It could be confirmed. Similar results are obtained for Examples 2 to 5. In Table 1, “PET film contact surface” refers to the surface that was in contact with the PET film before peeling the PET film from the conductive porous layer, and “PET film non-contact surface” refers to PET The surface opposite to the film contact surface is shown.

Figure 0004993024
Figure 0004993024

<膜−電極接合体の評価試験>
中温プレス装置(テスター産業(株)製)を使用して、実施例1〜6及び比較例1〜6の膜−電極接合体における導電性多孔質層−触媒層間での接着性を測定した。
<Evaluation test of membrane-electrode assembly>
Using an intermediate temperature press device (manufactured by Tester Sangyo Co., Ltd.), the adhesion between the conductive porous layer and the catalyst layer in the membrane-electrode assemblies of Examples 1 to 6 and Comparative Examples 1 to 6 was measured.

なお、接着性の評価は、層同士が剥れない状態で密着したかどうかを主観的に判断した。具体的には、
○:強固に密着しており、手で容易に剥離させることができない状態
×:手により容易に剥離させることができる、又は全く密着していない状態
と判断した。結果を表2に示す。
In addition, evaluation of adhesiveness judged subjectively whether it adhered, without the layers peeling. In particular,
◯: It is firmly attached and cannot be easily peeled by hand. ×: It is judged that it can be easily peeled by hand or is not in close contact at all. The results are shown in Table 2.

Figure 0004993024
Figure 0004993024

導電性多孔質層−触媒層間で高い密着性を示すためには、実施例1〜6に示すように、導電性多孔質層の高分子重合体が密に存在する表面と触媒層とが隣接するように重ねる必要性が確認できた。   In order to show high adhesion between the conductive porous layer and the catalyst layer, as shown in Examples 1 to 6, the surface of the conductive porous layer on which the polymer is densely present and the catalyst layer are adjacent to each other. We confirmed the necessity of layering.

以上の結果から、導電性多孔質層の高分子重合体が密に存在する表面と触媒層とが隣接するように重ねることにより、一体化した膜−電極接合体を作製することが可能であり、電極全体の薄層化も行えることが確認できた。   From the above results, it is possible to produce an integrated membrane-electrode assembly by superimposing the surface of the conductive porous layer on which the polymer polymer is densely present and the catalyst layer adjacent to each other. It was confirmed that the entire electrode could be thinned.

Claims (9)

触媒層、電解質膜及び触媒層が順次積層された触媒層−電解質膜積層体の片面又は両面に、燃料電池用ガス拡散層が積層されている燃料電池用膜−電極接合体であって、
前記燃料電池用ガス拡散層は、導電性多孔質層を有し、且つ、前記触媒層と前記導電性多孔質層とが接するように前記触媒層−電解質膜積層体上に積層されており、
前記導電性多孔質層は、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含む導電性多孔質層形成用ペースト組成物を乾燥してなるものであって
前記導電性多孔質層中の前記高分子重合体は、触媒層と接しない表面よりも触媒層と接する表面に密に存在する、燃料電池用膜−電極接合体。
A fuel cell membrane-electrode assembly in which a fuel cell gas diffusion layer is laminated on one or both sides of a catalyst layer-electrolyte membrane laminate in which a catalyst layer, an electrolyte membrane, and a catalyst layer are sequentially laminated,
The fuel cell gas diffusion layer has a conductive porous layer, and is laminated on the catalyst layer-electrolyte membrane laminate so that the catalyst layer and the conductive porous layer are in contact with each other.
The conductive porous layer includes at least conductive carbon particles, and a glass transition temperature equal to or lower than a glass transition temperature of a hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and a hydrogen ion conductive resin constituting the electrolyte membrane. high molecular weight polymer satisfying at least one of the following glass transition temperature be comprised by drying the containing Mushirubeden porous layer forming paste composition,
The membrane-electrode assembly for a fuel cell, wherein the polymer in the conductive porous layer is present more closely on the surface in contact with the catalyst layer than on the surface not in contact with the catalyst layer.
前記導電性多孔質層中の前記高分子重合体のガラス転移温度が、前記触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下で、且つ、前記電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下である、請求項1に記載の燃料電池用膜−電極接合体。 The glass transition temperature of the polymer in the conductive porous layer is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ions constituting the electrolyte membrane The membrane-electrode assembly for a fuel cell according to claim 1, which is not higher than the glass transition temperature of the conductive resin. 前記導電性多孔質層の上に、導電性多孔質基材が積層されている、請求項1又は2に記載の燃料電池用膜−電極接合体。 The membrane-electrode assembly for a fuel cell according to claim 1 or 2, wherein a conductive porous substrate is laminated on the conductive porous layer. 前記導電性多孔質基材が、カーボンペーパー、カーボンクロス又はカーボン不織布である、請求項3に記載の燃料電池用膜−電極接合体。 The membrane-electrode assembly for a fuel cell according to claim 3, wherein the conductive porous substrate is carbon paper, carbon cloth, or carbon non-woven fabric. 前記導電性多孔質基材が、フッ素系樹脂により撥水性が付与されている、請求項3又は4に記載の燃料電池用膜−電極接合体。 The membrane-electrode assembly for a fuel cell according to claim 3 or 4, wherein the conductive porous substrate is provided with water repellency by a fluororesin. 請求項1〜5のいずれかに記載の燃料電池用膜−電極接合体の製造方法であって、
(I)基材上に、少なくとも導電性炭素粒子、並びにガラス転移温度が、触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす高分子重合体を含む導電性多孔質層形成用ペースト組成物を塗布及び乾燥させた後に、基材から導電性多孔質層を剥離し、片側表面に反対側表面よりも高分子重合体が密に存在する導電性多孔質層を作製する工程、及び
(II)前記触媒層−電解質膜積層体の片面又は両面に、前記導電性多孔質層の前記高分子重合体が密な表面と触媒層が対向するように前記導電性多孔質層を配置し、熱プレスして一体化する工程
を備える、燃料電池用膜−電極接合体の製造方法。
A method for producing a membrane-electrode assembly for a fuel cell according to any one of claims 1 to 5,
(I) On the substrate, at least conductive carbon particles, and the glass transition temperature is equal to or lower than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer, and the hydrogen ion conductive resin constituting the electrolyte membrane After applying and drying a conductive porous layer-forming paste composition containing a polymer that satisfies at least one of the glass transition temperature below the conductive transition layer, the conductive porous layer is peeled off from the substrate, A step of producing a conductive porous layer in which a polymer is present more densely than the opposite surface, and (II) the conductive porous layer on one side or both sides of the catalyst layer-electrolyte membrane laminate. A method for producing a membrane-electrode assembly for a fuel cell, comprising a step of disposing the conductive porous layer so that a dense polymer polymer surface and a catalyst layer face each other, and heat-integrating them.
工程(II)において、熱プレスの温度が触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下、及び電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下の少なくとも1つを満たす、請求項6に記載の燃料電池用膜−電極接合体の製造方法。 In step (II), at least one of the temperature of the hot press is not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. The manufacturing method of the membrane-electrode assembly for fuel cells of Claim 6 which satisfy | fills. 工程(II)において、熱プレスの温度が触媒層中に含まれる水素イオン伝導性高分子電解質のガラス転移温度以下で、且つ、電解質膜を構成する水素イオン伝導性樹脂のガラス転移温度以下である、請求項6又は7に記載の燃料電池用膜−電極接合体の製造方法。 In step (II), the temperature of the hot press is not higher than the glass transition temperature of the hydrogen ion conductive polymer electrolyte contained in the catalyst layer and not higher than the glass transition temperature of the hydrogen ion conductive resin constituting the electrolyte membrane. The manufacturing method of the membrane-electrode assembly for fuel cells of Claim 6 or 7. 請求項1〜5のいずれかに記載の燃料電池用膜−電極接合体を備える固体高分子形燃料電池。 A polymer electrolyte fuel cell comprising the fuel cell membrane-electrode assembly according to any one of claims 1 to 5.
JP2011061988A 2011-02-18 2011-03-22 Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly Expired - Fee Related JP4993024B1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011061988A JP4993024B1 (en) 2011-03-22 2011-03-22 Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
EP12747136.5A EP2677579A4 (en) 2011-02-18 2012-02-17 Membrane-electrode assembly for fuel cell, manufacturing method thereof, and solid polymer fuel cell using membrane-electrode assembly
KR1020137024239A KR101582018B1 (en) 2011-02-18 2012-02-17 Membrane-electrode assembly for fuel cell, manufacturing method thereof, and polymer electrolyte fuel cell using membrane-electrode assembly
PCT/JP2012/053870 WO2012111823A1 (en) 2011-02-18 2012-02-17 Membrane-electrode assembly for fuel cell, manufacturing method thereof, and solid polymer fuel cell using membrane-electrode assembly
US14/000,076 US20140038077A1 (en) 2011-02-18 2012-02-17 Membrane-electrode assembly for fuel cell, manufacturing method thereof, and solid polymer fuel cell using membrane-electrode assembly
CN201280018063.9A CN103477486B (en) 2011-02-18 2012-02-17 Fuel cell film-electrode bond and manufacture method thereof and use the polymer electrolyte fuel cells of this film-electrode bond

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011061988A JP4993024B1 (en) 2011-03-22 2011-03-22 Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012059967A Division JP5472349B2 (en) 2012-03-16 2012-03-16 Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly

Publications (2)

Publication Number Publication Date
JP4993024B1 true JP4993024B1 (en) 2012-08-08
JP2012199049A JP2012199049A (en) 2012-10-18

Family

ID=46793863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011061988A Expired - Fee Related JP4993024B1 (en) 2011-02-18 2011-03-22 Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly

Country Status (1)

Country Link
JP (1) JP4993024B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6231823B2 (en) * 2013-09-02 2017-11-15 本田技研工業株式会社 Fuel cell and manufacturing method thereof
JP6142963B2 (en) * 2014-03-24 2017-06-14 日産自動車株式会社 GAS DIFFUSION LAYER, PROCESS FOR PRODUCING THE SAME, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
JP6531507B2 (en) * 2015-06-15 2019-06-19 日産自動車株式会社 Method of manufacturing membrane electrode assembly

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652871A (en) * 1992-06-02 1994-02-25 Hitachi Ltd Solid highpolymer fuel cell
JP2003282079A (en) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd Manufacturing method of fuel cell, and fuel cell
JP2003331852A (en) * 2002-05-15 2003-11-21 Matsushita Electric Ind Co Ltd Membrane-electrode assembly for fuel cell and its manufacturing method
JP2005310660A (en) * 2004-04-23 2005-11-04 Asahi Glass Co Ltd Electrolyte membrane electrode assembly and its manufacturing method
JP2006228514A (en) * 2005-02-16 2006-08-31 Univ Of Yamanashi Manufacturing method of gaseous diffusion layer for fuel cell
WO2009104701A1 (en) * 2008-02-22 2009-08-27 旭硝子株式会社 Method for manufacturing membrane electrode assembly for solid polymer fuel cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652871A (en) * 1992-06-02 1994-02-25 Hitachi Ltd Solid highpolymer fuel cell
JP2003282079A (en) * 2002-03-25 2003-10-03 Matsushita Electric Ind Co Ltd Manufacturing method of fuel cell, and fuel cell
JP2003331852A (en) * 2002-05-15 2003-11-21 Matsushita Electric Ind Co Ltd Membrane-electrode assembly for fuel cell and its manufacturing method
JP2005310660A (en) * 2004-04-23 2005-11-04 Asahi Glass Co Ltd Electrolyte membrane electrode assembly and its manufacturing method
JP2006228514A (en) * 2005-02-16 2006-08-31 Univ Of Yamanashi Manufacturing method of gaseous diffusion layer for fuel cell
WO2009104701A1 (en) * 2008-02-22 2009-08-27 旭硝子株式会社 Method for manufacturing membrane electrode assembly for solid polymer fuel cell

Also Published As

Publication number Publication date
JP2012199049A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4930644B1 (en) Gas diffusion layer for fuel cell and manufacturing method thereof
KR101582018B1 (en) Membrane-electrode assembly for fuel cell, manufacturing method thereof, and polymer electrolyte fuel cell using membrane-electrode assembly
JP5293859B1 (en) Conductive porous layer for battery and method for producing the same
JP5482066B2 (en) Microporous layer for fuel cell, gas diffusion electrode with microporous layer, catalyst layer with microporous layer, gas diffusion electrode with catalyst layer and membrane-electrode assembly, and polymer electrolyte fuel cell
JPWO2013161971A1 (en) Laminated body and method for producing the same
JP6094386B2 (en) Conductive porous layer for battery and method for producing the same
JP2012074280A (en) Gas diffusion layer for fuel cell
JP4993024B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP5794404B1 (en) Battery gas diffusion layer, battery membrane-electrode assembly using the battery gas diffusion layer, battery member, battery, and production method thereof
JP5674703B2 (en) Conductive porous layer for battery and method for producing the same
JP4930643B1 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP5472349B2 (en) Membrane-electrode assembly for fuel cell, method for producing the same, and polymer electrolyte fuel cell using the membrane-electrode assembly
JP2017037716A (en) Membrane electrode assembly for battery and battery using the same
JP2010129451A (en) Paste composition for water repellent layer formation, and manufacturing method of gas diffusion layer
JP6160177B2 (en) Conductive porous layer for battery and battery using the same
JP5401860B2 (en) Water repellent layer forming paste composition and gas diffusion layer manufacturing method
JP2017037715A (en) Gas diffusion layer for battery, membrane electrode assembly for battery using the same, and battery
JP2012204339A (en) Gas diffusion layer for fuel cell and manufacturing method of the same
JP6160178B2 (en) Conductive porous layer for battery and battery using the same
JP4978578B2 (en) Paste composition for imparting water repellency and method for producing gas diffusion layer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees