JPH03206926A - Infrared-ray detector - Google Patents

Infrared-ray detector

Info

Publication number
JPH03206926A
JPH03206926A JP2001682A JP168290A JPH03206926A JP H03206926 A JPH03206926 A JP H03206926A JP 2001682 A JP2001682 A JP 2001682A JP 168290 A JP168290 A JP 168290A JP H03206926 A JPH03206926 A JP H03206926A
Authority
JP
Japan
Prior art keywords
cold finger
infrared
inner shell
tip
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001682A
Other languages
Japanese (ja)
Inventor
Takeshi Miyazawa
宮澤 武
Hiroyuki Kiyota
清田 浩之
Nobuo Fujii
信生 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001682A priority Critical patent/JPH03206926A/en
Publication of JPH03206926A publication Critical patent/JPH03206926A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • F25D19/006Thermal coupling structure or interface

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To make the temperature difference between an infrared-ray detecting element and a cold finger small by filling a gap between the bottom surface of an inner shell and the tip of the cold finger with one or a plurality of plate- shaped spacers. CONSTITUTION:An infrared-ray detecting element 1 is cooled through a plate- shaped spacer 13 having the large heat conductivity. Therefore, the area of heat conduction can be made large up to the area of the inner diameter of an inner shell 9, and the distance for conduction can be made short. Thus, the thermal resistance between the infrared-ray element 1 and a cold finger 7 is decreased, and the temperature difference between the infrared-ray element 1 and the cold finger 7 can be made small. Therefore, it is not necessary to generate a very low temperature at the tip of the cold finger 7, and a refrigerator having only a small capacity can be used.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は,極低温(例えば80K前後)に冷却して使
用する赤外線検知素子を用い,例えば赤外線撮像装置や
赤外線画像温度計に搭載される赤外線検知器に関する。
[Detailed Description of the Invention] [Industrial Application Field] This invention uses an infrared detection element that is cooled to an extremely low temperature (for example, around 80K) and is used in an infrared imaging device or an infrared imaging thermometer. Regarding infrared detectors.

[従来の技術] 第2図は従来の赤外線検知器を示す図で,赤外線検知器
は一般に大きくわけて,赤外線検知素子(1)を内蔵し
たデュワ(2)と,前記赤外線検知素子(1)を極低温
例えば80K前後に冷却するための冷凍機(3)とで構
成される。前記冷凍機(3)としてはスターリングサイ
クルやギフオードマクマホンサイクルなどの冷凍サイク
ルを利用したものが良く用いられ,第2図ではその一例
としてスターリングサイクルを利用した冷凍機を例とし
て示した。
[Prior Art] Figure 2 is a diagram showing a conventional infrared detector, and an infrared detector is generally divided into two parts: a dewar (2) with a built-in infrared detecting element (1), and a dewar (2) containing an infrared detecting element (1). It is composed of a refrigerator (3) for cooling the water to an extremely low temperature, for example, around 80K. As the refrigerator (3), a refrigerator using a refrigeration cycle such as a Stirling cycle or a Gifford-McMahon cycle is often used, and FIG. 2 shows an example of a refrigerator using a Stirling cycle.

前記冷凍機(3)は(4)の圧縮機と(5)の膨張器と
(6)の連結管で構成され,前記膨張器(5)にはコー
ルドフィンガ(7)と呼ばれる細長い円筒状の突起が設
けられており,前記コールドフインガ(7)先端にて冷
凍を発生する構造となっている。
The refrigerator (3) is composed of a compressor (4), an expander (5), and a connecting pipe (6). A protrusion is provided, and the structure is such that freezing occurs at the tip of the cold finger (7).

前記デュワ(2)は, (8)のアウタシエルと(9)
のインナシェルで構成される二重構造を有しており前記
インナシェル(9)によって形成された円筒穴状のコー
ルドフィンガ挿入室(l2)に前記コールドフィンガ(
7)が挿入されている。前記インナシェル(9)の先端
には前記赤外線検知素子(1)が取付けられ,前記アウ
タシェル(8)には赤外線を透過する窓(10)が設け
られている。前記赤外線検知素子(1)及び前記コール
ドフィンガ(7)の先端部に外部から熱が侵入しないよ
うに,前記アウタシエル(8)と前記インナシェル(9
)の間の空間は真空に保たれ,前記アウタシェル(8)
及び前記インナシェル(9)前記真空の空間に面した表
面には例えばアルミニューム,銀などのふく射率の小さ
い物質の蒸着膜またはめっき膜が形成され,前記インナ
シェル(8)は例えばガラスなどの熱伝導率の小さい材
料で作られている。(l1)はサーマルインターフェー
スで,前記サーマルインターフエース(11)は,前記
コールドフィンガ(7)の先端に取付けられ一般金属で
作られている前記コールドフインガ(7)と一般にガラ
スで作られている前記インナシェル(9)の熱膨張率の
差異による寸法変化と,前記コールドフィンガ(7)の
長さと前記インナシェル(8)の深さの製造上発生する
寸法のばらつきを吸収するためのもので,例えば積層さ
れた銅箔などの弾性があり,かつ熱伝導の大きい物体が
使われ,その先端が常に前記インナシェル(9)の底面
と密着するようになっている。
The dewar (2) has the outer shell of (8) and the outer shell of (9).
It has a double structure consisting of an inner shell (9), and the cold finger (12) is inserted into a cylindrical cold finger insertion chamber (12) formed by the inner shell (9).
7) has been inserted. The infrared detecting element (1) is attached to the tip of the inner shell (9), and the outer shell (8) is provided with a window (10) that transmits infrared rays. The outer shell (8) and the inner shell (9) are designed to prevent heat from entering the tips of the infrared sensing element (1) and the cold finger (7) from the outside.
) is kept in a vacuum, and the outer shell (8)
On the surface of the inner shell (9) facing the vacuum space, a vapor-deposited or plated film of a material with a low radiation rate, such as aluminum or silver, is formed, and the inner shell (8) is made of a material such as glass. Made of material with low thermal conductivity. (l1) is a thermal interface, and the thermal interface (11) is attached to the tip of the cold finger (7) and is made of general metal, and the cold finger (7) is generally made of glass. This is to absorb dimensional changes due to differences in the coefficient of thermal expansion of the inner shell (9) and dimensional variations in the length of the cold finger (7) and the depth of the inner shell (8) that occur during manufacturing. For example, a material having elasticity and high thermal conductivity, such as a laminated copper foil, is used, and its tip is always in close contact with the bottom surface of the inner shell (9).

次に第2図に示す従来装置の動作について説明する。冷
凍機(3)が運転を開始し,コールドフィンガ(7)の
先端部で冷凍を発生し始めると,赤外線検知素子(1)
は,サーマルインターフェース(1l)を介して冷凍機
(2)に熱をうばわれ,温度降下1,,IIIOK付近
まで温度降下すると,窓(10)より透過してくる赤外
線を電気信号に変換する。デュワ(2)は前述したよう
に,アウタシエル(8)とインナシェル(9)との間に
設けられた真空層と.アウタシエル(8)及びインナシ
ェル(9)の互いに面する表面に設けられたふく射率の
小さい蒸着膜またはめつき膜と,熱伝導率の小さい材料
で作られたインナシェル(9)とで,対流,ふく射,伝
導による外部からの熱侵入を小とし,冷凍機(3)の負
荷を低減している。
Next, the operation of the conventional device shown in FIG. 2 will be explained. When the refrigerator (3) starts operating and begins to generate refrigeration at the tip of the cold finger (7), the infrared detection element (1)
heat is transferred to the refrigerator (2) via the thermal interface (1l), and when the temperature drops to around 1.3 OK, the infrared rays transmitted through the window (10) are converted into electrical signals. As mentioned above, the dewar (2) is a vacuum layer provided between the outer shell (8) and the inner shell (9). A vapor-deposited film or a plating film with a low radiation rate provided on the mutually facing surfaces of the outer shell (8) and the inner shell (9) and an inner shell (9) made of a material with a low thermal conductivity allow convection to occur. This reduces heat intrusion from the outside through radiation and conduction, reducing the load on the refrigerator (3).

[発明が解決しようとする課題] 上記のような従来の赤外線検知器では以下に述べるよう
な課題があった。 コールドフインガ(7)の先端より
サーマルインターフェース(11)を介して赤外線検知
素子(1)を冷却する際,サーマルインターフェース(
l1)は積層された銅箔などの細長い弾性体を用いてい
るため,熱の伝導面積が小さく伝導距離が長いため,赤
外線検知素子(1)とコールドフィンガ(7)の先端と
の熱抵抗が大きいので,赤外線検知素子(1)とコール
ドフインガ(7)の先端との温度差が大きくなり,赤外
線検知素子(1)を冷却するために,より低い温度を生
成しなければならず,大きな能力を有する冷凍機が必要
であるという課題があった。
[Problems to be Solved by the Invention] The conventional infrared detectors described above have the following problems. When cooling the infrared sensing element (1) from the tip of the cold finger (7) via the thermal interface (11), the thermal interface (
l1) uses a long and thin elastic body such as laminated copper foil, so the heat conduction area is small and the conduction distance is long, so the thermal resistance between the infrared sensing element (1) and the tip of the cold finger (7) is low. Because of the large size, the temperature difference between the infrared sensing element (1) and the tip of the cold finger (7) becomes large, and a lower temperature has to be generated to cool the infrared sensing element (1), resulting in a large temperature difference. There was a problem in that a refrigerator with sufficient capacity was required.

この発明はかかる課題を解決するのになされたもので赤
外線検知素子と冷凍を発生するコールドフィンガ先端の
熱抵抗を小さくすることにより赤外線検知素子とコール
ドフインガ先端との温度差を小さくでき小さな能力を有
する冷凍機で使用可能な赤外線検知器を得ることを目的
とする。
This invention was made to solve this problem, and by reducing the thermal resistance between the infrared sensing element and the tip of the cold finger that generates refrigeration, the temperature difference between the infrared sensing element and the cold finger tip can be reduced. The purpose of this invention is to obtain an infrared detector that can be used in a refrigerator having a

[課題を解決するための手段] この発明にかかる赤外線検知器は,インナシェル底面と
コールドフインガ先端とのすきまに一枚または複数の板
状のスベーサを詰めたものである[作用] この発明においては,熱の伝導面積が大きく,かつ伝導
距離の短い板状のスベーサを介して赤外線検知素子を冷
却するので,赤外線検知素子とコールドフィンガ先端の
熱抵抗を小さくでき,赤外線検知素子とコールドフイン
ガ先端の温度差を小さくすることができる。
[Means for Solving the Problem] The infrared detector according to the present invention is one in which one or more plate-shaped smoothers are filled in the gap between the bottom surface of the inner shell and the tip of the cold finger.[Operation] The present invention In this method, the infrared sensing element is cooled through a plate-shaped spacer with a large heat conduction area and a short conduction distance, so the thermal resistance between the infrared sensing element and the tip of the cold finger can be reduced, and the infrared sensing element and cold finger can be cooled. The temperature difference at the tip of the inger can be reduced.

[実施例] 第1図はこの発明の一実施例を示す図である。[Example] FIG. 1 is a diagram showing an embodiment of the present invention.

図において,(l)の赤外線検知素子,(3)〜(7)
の冷凍機,(2)のデュワは従来装置と同様であるが,
この発明の装置では(11)のサーマルインターフェー
スの代わりにインナシェル(9)の底面とコーノレドフ
ィンガ(7)先端とのすきまに一枚または複数の薄い板
状のスペーサ(13)を詰めている。前記スペーサ(l
3)は例えば純銅などの熱伝導の大きいものが好ましい
In the figure, infrared sensing element (l), (3) to (7)
The refrigerator in (2) and the dewar in (2) are the same as the conventional equipment, but
In the device of this invention, one or more thin plate-shaped spacers (13) are filled in the gap between the bottom of the inner shell (9) and the tip of the cone lead finger (7) instead of the thermal interface (11). . The spacer (l
For 3), a material with high thermal conductivity such as pure copper is preferable.

本来,赤外線検知素子(1)とコールドフインガ(ア)
先端の熱抵抗を最小にするためには,インナシェル(9
)底面とコールドフィンガ(7)先端を密着させれば良
いのだが,そのためにはインナシェル(9)の深さ寸法
とコールドフィンガ(7)の長さ寸法がほぼ等しくなる
よう高精度で加工しなければならず,加工費が高くなる
とともに加工が非常に難しくなるので量産には適さない
Originally, infrared detection element (1) and cold finger (a)
In order to minimize the thermal resistance of the tip, the inner shell (9
) The bottom surface and the tip of the cold finger (7) should be brought into close contact, but in order to do this, the depth of the inner shell (9) and the length of the cold finger (7) must be machined with high precision so that they are almost equal. This increases processing costs and makes processing extremely difficult, making it unsuitable for mass production.

そこでこの発明のように前記スベーサ(l3)を用いれ
ば,前記インナシェル(9)の深さと前記コールドフィ
ンガ(7)の長さを高精度で加工しなくとも,製造上発
生する寸法ばらつきに応じて,前記インナンエル(9)
底面と前記コールドフィンガ(9)先端とのすきまをう
めるのに必要な枚数の前記スペーサ(I3)を詰めるだ
けで良い。
Therefore, if the smoother (l3) is used as in the present invention, the depth of the inner shell (9) and the length of the cold finger (7) can be adjusted to accommodate dimensional variations that occur during manufacturing without having to process the depth of the inner shell (9) and the length of the cold finger (7) with high precision. The above Innanel (9)
It is sufficient to pack as many spacers (I3) as necessary to fill the gap between the bottom surface and the tip of the cold finger (9).

なお,赤外線検知素子(1)が80K付近まで冷却され
る際,前記インナシェル(9)と前記コールドフィンガ
(7)の熱膨張率の差異により寸法差が発生しないよう
に,前記インナシェル(9)と前記コールドフィンガ(
7)は同一材料または同程度の熱膨張率の材料で製作す
るか,あるいは前記コールドフィンガ(7)と前記イン
ナシェル(9)の熱膨張率の差異により寸法差が発生し
ても前記インナシェル(9)の深さ寸法の減少量よりも
前記コールドフインガ(7)の長さの減少量の方が小と
なるように前記コールドフィンガ(7)の材料の熱膨張
率が前記インナシェル(9)の材料の熱膨張率よりも若
干小さい材料で製作することが望ましい。
Note that when the infrared sensing element (1) is cooled to around 80K, the inner shell (9) and the cold finger (7) are cooled in order to prevent a dimensional difference from occurring due to a difference in thermal expansion coefficient between the inner shell (9) and the cold finger (7). ) and the cold finger (
7) is made of the same material or a material with a similar coefficient of thermal expansion, or even if a dimensional difference occurs due to a difference in coefficient of thermal expansion between the cold finger (7) and the inner shell (9), the inner shell The coefficient of thermal expansion of the material of the cold finger (7) is set such that the decrease in the length of the cold finger (7) is smaller than the decrease in the depth of the cold finger (9). It is desirable to use a material with a coefficient of thermal expansion slightly smaller than that of the material 9).

また,前記各スペース(l3)の両面と前記コールドフ
ィンガ(7)先端と,前記インナシェル(9)底面に熱
伝導グリスを塗布することにより,熱伝導グリスが,前
記インナシェル(9)底面に対する前記コールドフィン
ガ(9)先端の平行度不足により発生するすきまや,前
記インナシェル(9)底面と前記コールドフィンガ(7
)先端とのすきまにスペーサ(13)を詰めても極わず
かに残るすきまに充填されるので,前記インナシェル(
9)底面と前記コールドフィンガ(7)先端のすきまを
完全になくすことができるため,熱伝導グリスを併用す
ることが好ましい。
Further, by applying thermal conductive grease to both sides of each space (l3), the tip of the cold finger (7), and the bottom surface of the inner shell (9), the thermal conductive grease is applied to the bottom surface of the inner shell (9). There may be a gap caused by insufficient parallelism of the tip of the cold finger (9), or a gap between the bottom surface of the inner shell (9) and the cold finger (7).
Even if the spacer (13) is filled in the gap with the tip of the inner shell (
9) Since the gap between the bottom surface and the tip of the cold finger (7) can be completely eliminated, it is preferable to use thermal conductive grease in combination.

上記のように構成された赤外線検知器において熱伝導の
大きい板状のスペーサ(13)を介して赤外線検知素子
(1)を冷却するので,熱の伝導面積をインナシェル(
9)内径面積まで大きくできるとともに伝導距離を短く
できるので,赤外線検知素子(1)とコールドフィンガ
(7)先端との熱抵抗が小さくなり,赤外線検知素子(
1)とコールドフインガ(7)先端の温度差を小さくす
ることができ,コールドフィンガ(7)先端であまり低
い温度を生成する必要がないため能力の小さい冷凍機(
3)でも使用できる赤外線検知器を得ることができる。
In the infrared detector configured as described above, the infrared sensing element (1) is cooled via the plate-shaped spacer (13) with high heat conduction, so the heat conduction area is reduced by the inner shell (
9) Since the inner diameter area can be increased and the conduction distance can be shortened, the thermal resistance between the infrared sensing element (1) and the tip of the cold finger (7) is reduced, and the infrared sensing element (
It is possible to reduce the temperature difference between the cold finger (7) tip and the cold finger (7) tip, and there is no need to generate a very low temperature at the cold finger (7) tip.
3) can also provide an infrared detector that can be used.

[発明の効果] この発明は以上説明したとうりインナシェル底面とコー
ルドフィンガ先端のすきまに一枚または複数の板状のス
ベーサを詰めることによって,熱の伝導面積を大きくで
きるとともに伝導距離を短くできるので,赤外線検知素
子とコールドフインガ先端の熱抵抗が小さくなり,赤外
線検知素子とコールドフィンガ先端の温度差小さくする
ことができ,コールドフィンガ先端であまり低い温度を
生成する必要がないため,能力の小さな冷凍機でも使用
できる赤外線検知器を得ることができるという効果があ
る。
[Effects of the Invention] As explained above, this invention can increase the heat conduction area and shorten the conduction distance by filling the gap between the bottom of the inner shell and the tip of the cold finger with one or more plate-shaped smoothers. Therefore, the thermal resistance between the infrared sensing element and the cold finger tip becomes smaller, the temperature difference between the infrared sensing element and the cold finger tip can be reduced, and there is no need to generate a very low temperature at the cold finger tip, so the performance can be improved. The effect is that an infrared detector that can be used even in a small refrigerator can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す図,第2図は従来の
赤外線検知器を示す図である。図において,(1)は赤
外線検知素子,(3)は冷凍機,(ア)はコールドフィ
ンガ(g)はアウタシェル, (9)はインナシェル,
(13)はスペーサである。なお,各図中同一符号は同
一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional infrared detector. In the figure, (1) is an infrared detection element, (3) is a refrigerator, (a) is a cold finger (g) is an outer shell, (9) is an inner shell,
(13) is a spacer. Note that the same reference numerals in each figure indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 先端が低温となる筒状のコールドフィンガを有する冷凍
機と、前記コールドフィンガが挿入される筒穴状の空間
を形成するインナシェルと、前記インナシェルの外側を
おおい、前記インナシェルとの間に真空層を形成するア
ウタシェルと、前記インナシェルに取付けられた赤外線
検知素子とを備えた赤外線検知器において、上記インナ
シェル底面とコールドフィンガ先端のすきまに一枚また
は複数の板状のスペーサを詰めたことを特徴とする赤外
線検知器。
A refrigerator having a cylindrical cold finger whose tip is at a low temperature, an inner shell forming a cylindrical hole-shaped space into which the cold finger is inserted, and a refrigerator that covers the outside of the inner shell and is between the inner shell and the cold finger. In an infrared detector comprising an outer shell forming a vacuum layer and an infrared detection element attached to the inner shell, one or more plate-shaped spacers are filled in the gap between the bottom surface of the inner shell and the tip of the cold finger. An infrared detector characterized by:
JP2001682A 1990-01-09 1990-01-09 Infrared-ray detector Pending JPH03206926A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001682A JPH03206926A (en) 1990-01-09 1990-01-09 Infrared-ray detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001682A JPH03206926A (en) 1990-01-09 1990-01-09 Infrared-ray detector

Publications (1)

Publication Number Publication Date
JPH03206926A true JPH03206926A (en) 1991-09-10

Family

ID=11508284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001682A Pending JPH03206926A (en) 1990-01-09 1990-01-09 Infrared-ray detector

Country Status (1)

Country Link
JP (1) JPH03206926A (en)

Similar Documents

Publication Publication Date Title
US5382797A (en) Fast cooldown cryostat for large infrared focal plane arrays
SU1281182A3 (en) Cryostat for high-sensitive photon detector
CA2615281C (en) Method and system for cryogenic cooling
US4501131A (en) Cryogenic cooler for photoconductive cells
JP2012032125A (en) Cryogenic refrigeration coupling structure
US4324104A (en) Noncontact thermal interface
US4952810A (en) Distortion free dewar/coldfinger assembly
US4954708A (en) Low distortion focal plane platform
JPH03206926A (en) Infrared-ray detector
US4412427A (en) Noncontact thermal interface
US4694175A (en) Thermal damper for infrared detector
US3188830A (en) Thermal oscillation filter
JPH08261821A (en) Infrared detector
JPH0632588Y2 (en) Infrared detector
US4918308A (en) Integrated detector dewar cryoengine
JPH01250026A (en) Infrared detecting device
US4399661A (en) Prolonged cold temperature cryogenic cooler
JPH0629698Y2 (en) Infrared detector
JPH0441307Y2 (en)
CN107045251A (en) A kind of space camera active refrigeration vacuum sealing focal plane subassembly
EP0290517A1 (en) Integrated detector dewar cryoengine.
JP3110456B2 (en) Rapidly cooled cryostat for large infrared focal plane arrays
JPH06258135A (en) Infrared ray detector
JP3467913B2 (en) Low temperature device
JPH02266240A (en) Infrared detector