JPH02266240A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH02266240A
JPH02266240A JP1087554A JP8755489A JPH02266240A JP H02266240 A JPH02266240 A JP H02266240A JP 1087554 A JP1087554 A JP 1087554A JP 8755489 A JP8755489 A JP 8755489A JP H02266240 A JPH02266240 A JP H02266240A
Authority
JP
Japan
Prior art keywords
mass
expander
vibration
expanding machine
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1087554A
Other languages
Japanese (ja)
Inventor
Kazuo Kashiwamura
和生 柏村
Yoshio Furuishi
古石 喜郎
Yoshio Kazumoto
数本 芳男
Michio Fujiwara
通雄 藤原
Kazuhiko Kawajiri
和彦 川尻
Kazunori Tsuchino
和典 土野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1087554A priority Critical patent/JPH02266240A/en
Publication of JPH02266240A publication Critical patent/JPH02266240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To reduce vibration which is generated from an expanding machine and to prevent a dewer from breaking by mounting a dynamic vibration absorber on the casing of the expanding machine. CONSTITUTION:When a refrigerator 3 begins operation, a displacer in the expanding machine 6 starts reciprocal motion. The operation frequency of the displacer is made coincident with the natural vibration frequency determined by the mass of a load mass 14 and the spring constant of a supporting spring 15. Further, the mass of the mass 14 is set to such a mass that a reciprocal motion inertial force nearly equivalent to the exciting force of the displacer is obtained. In this case, the inertial force of the mass 14 operates on the motion vibration absorber 12 on the casing 13 as the damping force, so the vibration generated by the expanding machine 6 can be reduced. Consequently, the breakage of the dewer 2 can be eliminated and the reliability is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、誘導飛翔体や赤外線撮像装置などに搭載さ
れ、赤外線を検知する赤外線検知装置に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an infrared detection device that is mounted on a guided flying object, an infrared imaging device, or the like and detects infrared rays.

〔従来の技術〕[Conventional technology]

第3図は、従来の赤外線検知装置を示す構成図である。 FIG. 3 is a configuration diagram showing a conventional infrared detection device.

この赤外線検知装置は、一般に太き(分けて、赤外線検
知素子Iを内蔵したデユア2と、上記赤外線検知素子1
を冷却するめの冷凍機3とにより構成される。上記冷凍
機3としては、逆スターリングサイクルやギフオードマ
クマホンサイクルなどの冷凍サイクルを利用したものが
良く用いられ、第3図ではその一例として、スターリン
グサイクルを利用した冷凍機を示した。上記冷凍機3は
、圧12i機4と連結管5及び膨張機6で構成され、上
記膨張m6にはコールドフィンガ7と呼ばれる細長い円
筒状の突起が設けられており、上記コールドフィンガ7
の先端にて冷凍を発生する構造となっている。
This infrared detection device is generally thick (divided into a Dual 2 with a built-in infrared detection element I and an infrared detection element 1).
and a refrigerator 3 for cooling the refrigerator. As the refrigerator 3, a refrigerator using a refrigeration cycle such as a reverse Stirling cycle or a Gifford McMahon cycle is often used, and FIG. 3 shows a refrigerator using a Stirling cycle as an example. The refrigerator 3 is composed of a pressure 12i machine 4, a connecting pipe 5, and an expander 6, and the expansion m6 is provided with an elongated cylindrical projection called a cold finger 7.
The structure is such that freezing occurs at the tip.

上記デユア2は、外側シェル8と内側シェル9とで構成
される二重壁構造を有しており、上記内側シェル9の先
端には、上記赤外線検知素子1が取り付けられ、上記外
側シェル8には赤外線を透過する窓10が設けられてい
る。
The dua 2 has a double-walled structure composed of an outer shell 8 and an inner shell 9. The infrared detecting element 1 is attached to the tip of the inner shell 9, and the outer shell 8 has a double wall structure. is provided with a window 10 that transmits infrared rays.

上記赤外線検知素子1及び上記コールドフィンガ7の先
端部には、外部から熱が浸入しないように、上記外側シ
ェル8と上記内側シェル9との間の空間は真空に保たれ
、上記外側シェル8及び上記内側シェル9の上記真空の
空間に面した表面には、例えばアルミニューム、銀など
の輻射率の小さい物質の蒸着膜または、メ・ツキ膜が形
成され、上記内側シェル9は、例えばガラスなどの熱伝
導率の小さい材料で作られている。11はサーマルイン
タフェースで、上記サーマルインタフェース11は、上
記コールドフィンガ7の先端に取り付けられ、一般に金
属で作られている上記コールドフィンガ7と一般にガラ
スで作られている上記内側シェル9の熱膨張の差異によ
る寸法変化を吸収するためのものであり、例えば、積層
された銅箔などのように弾性があり、かつ熱伝導率の大
きい物体が使われ、その先端が常に上記内側シェル9の
底面と密着するようになっている。
The space between the outer shell 8 and the inner shell 9 is kept in a vacuum to prevent heat from entering into the tips of the infrared detecting element 1 and the cold finger 7 from the outside. On the surface of the inner shell 9 facing the vacuum space, a vapor-deposited film or a metal film of a material with low emissivity such as aluminum or silver is formed, and the inner shell 9 is made of glass or the like. Made of material with low thermal conductivity. Reference numeral 11 denotes a thermal interface, and the thermal interface 11 is attached to the tip of the cold finger 7, and is configured to measure the difference in thermal expansion between the cold finger 7, which is generally made of metal, and the inner shell 9, which is generally made of glass. For example, a material that is elastic and has high thermal conductivity, such as laminated copper foil, is used, and its tip is always in close contact with the bottom surface of the inner shell 9. It is supposed to be done.

次に、第3図に示す従来装置の動作について説明する。Next, the operation of the conventional device shown in FIG. 3 will be explained.

冷凍機3が運転を開始し、コールドフィンガ7の先端部
で冷凍を発生し始めると、赤外線検知素子1は、サーマ
ルインタフェース11を介して冷凍機3に熱を奪われ、
温度降下し、77に付近まで温度降下すると、窓10よ
り、透過して(る赤外線を検知し始める。デユア2は上
記したように、外側シェル8と内側シェル9との互いに
面する表面に設けられた輻射率の小さい蒸着膜またはメ
ツキ膜と、熱伝導率の小さい材料で作られた内側シェル
9とで、対流、輻射、伝導による外部からの熱浸入を小
とし、冷凍機3の負荷を低減している。
When the refrigerator 3 starts operating and begins to generate refrigeration at the tip of the cold finger 7, the infrared sensing element 1 receives heat from the refrigerator 3 via the thermal interface 11.
When the temperature drops to around 77, it begins to detect infrared rays that pass through the window 10.As described above, the dual 2 is provided on the surfaces of the outer shell 8 and the inner shell 9 facing each other. The vapor-deposited film or plating film with low emissivity and the inner shell 9 made of a material with low thermal conductivity reduce heat intrusion from the outside due to convection, radiation, and conduction, and reduce the load on the refrigerator 3. It is decreasing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のような従来の赤外線検知装置では、デユア2の外
側シェル8や、内側シェル9は、熱伝導率の小さい材料
であるガラスが用いられ、かつ、膨張機6とは接着剤や
ボルトなどによって固着さ発生し、外側シェル8と内側
シェル9との間の真空を保てなくなり、デユア2そのも
のの機能を喪失するなどの問題点があった。
In the conventional infrared detection device as described above, the outer shell 8 and inner shell 9 of the Dua 2 are made of glass, which is a material with low thermal conductivity, and the expander 6 is connected to the expander 6 by adhesive or bolts. This caused problems such as sticking, making it impossible to maintain a vacuum between the outer shell 8 and the inner shell 9, and the duure 2 itself losing its function.

この発明は上記のような問題点を解決するためになされ
たもので、膨張機から発生する振動を小さくし、これに
よりデユアの破損を防止し、信頼性の高い赤外線検知装
置を提供することを目的とする。
This invention was made in order to solve the above-mentioned problems, and aims to reduce the vibration generated from the expander, thereby preventing damage to the dua, and providing a highly reliable infrared detection device. purpose.

(課題を解決するための手段〕 この発明に係る赤外線検知装置は、膨張機6のケーシン
グ13に振動吸収手段(動吸振器12)を装着したこと
を特徴とするものである。
(Means for Solving the Problems) The infrared detection device according to the present invention is characterized in that a vibration absorbing means (dynamic vibration absorber 12) is attached to the casing 13 of the expander 6.

〔作用〕[Effect]

振動吸収手段(動吸振器12)は、膨張機6から発生す
る往復動の慣性不平衡力を相殺するよう制振力を発生す
る。
The vibration absorbing means (dynamic vibration absorber 12) generates a vibration damping force to offset the inertial unbalanced force of the reciprocating motion generated from the expander 6.

〔発明の実施例〕[Embodiments of the invention]

第1図はこの発明の一実施例に係る赤外線検知装置の構
成図であり、第3図に示す構成要素には同一の符号を付
し、その説明を省略する。第1図において、12は膨張
機6のケーシングに装着された振動吸収手段としての動
吸振器である。第2図は、上記動吸振器12の詳細を示
す断面図である。第2図において、13は膨張機6のケ
ーシング、14は可動自在に装着された負荷マス、15
は上記負荷マス14を支持する支持ばね、16は上記負
荷マス14をロッド17にそって可動させるための軸受
、18は上記動吸振器12のケーシングである。
FIG. 1 is a block diagram of an infrared detection device according to an embodiment of the present invention, and the constituent elements shown in FIG. 3 are designated by the same reference numerals and their explanations will be omitted. In FIG. 1, reference numeral 12 denotes a dynamic vibration absorber as a vibration absorbing means attached to the casing of the expander 6. FIG. 2 is a sectional view showing details of the dynamic vibration reducer 12. In FIG. 2, 13 is the casing of the expander 6, 14 is a movably mounted load mass, and 15 is a casing of the expander 6.
16 is a bearing for moving the load mass 14 along the rod 17; and 18 is a casing of the dynamic vibration absorber 12.

次に動作について説明する。冷凍機3が運転を開始する
と、膨張機6内部のディスプレーサ(ここでは図示して
いない)が往復運動を開始する。
Next, the operation will be explained. When the refrigerator 3 starts operating, a displacer (not shown here) inside the expander 6 starts reciprocating motion.

このディスプレーサの運転周波数fdと、負荷マス14
の質量と支持ばね15のばね定数に、とにより決まる固
有振動数f、とを一致させ、かつ、負荷マス14の質量
をディスプレーサの加振力とほぼ同等な往復動悟性力が
得られる質量に設定した場合、この11.荷マス14の
慣性力がケーシング13に対して制振力として作用する
めに、膨張機6に発生する振動を極めて小さくすること
ができる。その結果、デユアの破損を無くすことができ
、信頼性の高い赤外線撮像装置を得ることができる。
The operating frequency fd of this displacer and the load mass 14
The mass of the load mass 14 is made to match the spring constant of the support spring 15 with the natural frequency f determined by the and the mass of the load mass 14 is a mass that can obtain a reciprocating force approximately equivalent to the excitation force of the displacer. If set, this 11. Since the inertial force of the load mass 14 acts as a damping force on the casing 13, vibrations generated in the expander 6 can be extremely reduced. As a result, it is possible to eliminate damage to the dual unit and obtain a highly reliable infrared imaging device.

なお、上記実施例では逆スターリングサイクルを用いた
赤外線撮像装置の膨張機について説明したが、ギフオー
ドマクマホンサイクルを用いた赤外線撮像装置の膨張機
であってもよく、この場合も上記実施例と同様な効果を
奏する。
Although the above embodiment describes an expander for an infrared imaging device using a reversed Stirling cycle, it may also be an expander for an infrared imaging device using a Gifford-McMahon cycle, and in this case, the same procedure as in the above embodiment can be applied. It has a great effect.

(発明の効果) 以上のように本発明によれば、膨張機のケーシングに振
動吸収手段を装着して構成したので、膨張機から発生す
る往復動の慣性不平衡力を相殺するような制振力が発生
し、これにより膨張機に発生ずる振動を極めて小さくで
き、その結果、デユアの破損が防止され、信頬性が高ま
るという効果が得られる。
(Effects of the Invention) As described above, according to the present invention, the vibration absorbing means is attached to the casing of the expander, so vibration damping is performed to offset the inertial unbalanced force of the reciprocating motion generated from the expander. A force is generated, and the vibration generated in the expander can thereby be extremely reduced. As a result, damage to the dua is prevented and reliability is improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る赤外線検知装置の要
部構成図、第2図は第1図中の動吸振器の要部断面図、
第3図は従来の赤外線検知装置の要部構成図である。 1・・・赤外線検知素子、2・・・デユア、3・冷凍機
、4・・・圧縮機、5・・・・連結管、6・・・膨張機
、12・・・動吸振器(振動吸収手段)、13・・・膨
張機のケーシング。 代理人  大  岩  増  a(ほか2名)1B;ケ
ーンンク
FIG. 1 is a configuration diagram of a main part of an infrared detection device according to an embodiment of the present invention, FIG. 2 is a sectional view of a main part of a dynamic vibration absorber in FIG. 1,
FIG. 3 is a block diagram of the main parts of a conventional infrared detection device. DESCRIPTION OF SYMBOLS 1... Infrared detection element, 2... Dual, 3... Refrigerator, 4... Compressor, 5... Connecting pipe, 6... Expander, 12... Dynamic vibration absorber (vibration absorption means), 13...casing of the expander. Agent Masu Oiwa A (and 2 others) 1B;

Claims (1)

【特許請求の範囲】[Claims] 赤外線検知素子を内蔵するデュアと、上記赤外線検知素
子を冷却するめの冷凍機と、上記冷凍機に内蔵される圧
縮機と、上記圧縮機と連結管によって連結される膨張機
とを備えた赤外線検知装置において、上記膨張機のケー
シングに振動吸収手段を装着したことを特徴とする赤外
線検知装置。
An infrared detection device comprising a dua incorporating an infrared detection element, a refrigerator for cooling the infrared detection element, a compressor built in the refrigerator, and an expander connected to the compressor by a connecting pipe. An infrared detection device characterized in that a vibration absorbing means is attached to the casing of the expander.
JP1087554A 1989-04-06 1989-04-06 Infrared detector Pending JPH02266240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1087554A JPH02266240A (en) 1989-04-06 1989-04-06 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1087554A JPH02266240A (en) 1989-04-06 1989-04-06 Infrared detector

Publications (1)

Publication Number Publication Date
JPH02266240A true JPH02266240A (en) 1990-10-31

Family

ID=13918208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1087554A Pending JPH02266240A (en) 1989-04-06 1989-04-06 Infrared detector

Country Status (1)

Country Link
JP (1) JPH02266240A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298064A (en) * 1999-04-13 2000-10-24 Hamamatsu Photonics Kk Infrared ray imaging device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000298064A (en) * 1999-04-13 2000-10-24 Hamamatsu Photonics Kk Infrared ray imaging device

Similar Documents

Publication Publication Date Title
Wang et al. A high efficiency hybrid stirling-pulse tube cryocooler
US4344302A (en) Thermal coupling structure for cryogenic refrigeration
US9146047B2 (en) Integrated Stirling refrigerator
JPH05215422A (en) Heat machine
JPH02266240A (en) Infrared detector
US4954708A (en) Low distortion focal plane platform
JPH01250026A (en) Infrared detecting device
CA1307313C (en) Linear motor compressor with stationary piston
JPH0632588Y2 (en) Infrared detector
JP2008115918A (en) Flat spring and stirling engine
US3188830A (en) Thermal oscillation filter
Park et al. An experimental study on the phase shift between piston and displacer in the Stirling cryocooler
JPH08261821A (en) Infrared detector
JP2000292022A (en) Gas cycle engine refrigerating machine
JPH0674819A (en) Freezing device
JP6913046B2 (en) Pulse tube refrigerator
JPH0441307Y2 (en)
JPH02103346A (en) Cryogenic cooler
Heiden Pulse tube refrigerators: a cooling option for high-T c SQUIDs
JP2953101B2 (en) Free displacer type Stirling refrigerator
JP2003083626A (en) Load supporting device for cryogenic refrigerating machine
JP2792004B2 (en) refrigerator
RU2204812C1 (en) Infrared radiation detector
JPH0629698Y2 (en) Infrared detector
USH1866H (en) Support spring for a cryocooler