JPH0632588Y2 - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH0632588Y2
JPH0632588Y2 JP11680789U JP11680789U JPH0632588Y2 JP H0632588 Y2 JPH0632588 Y2 JP H0632588Y2 JP 11680789 U JP11680789 U JP 11680789U JP 11680789 U JP11680789 U JP 11680789U JP H0632588 Y2 JPH0632588 Y2 JP H0632588Y2
Authority
JP
Japan
Prior art keywords
inner shell
friction coefficient
cold finger
infrared detector
infrared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11680789U
Other languages
Japanese (ja)
Other versions
JPH0355535U (en
Inventor
明文 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11680789U priority Critical patent/JPH0632588Y2/en
Publication of JPH0355535U publication Critical patent/JPH0355535U/ja
Application granted granted Critical
Publication of JPH0632588Y2 publication Critical patent/JPH0632588Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Radiation Pyrometers (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は,例えば赤外線撮像装置などに搭載され,例
えばHgTdTeやInSbなどの極低温例えば80K前後に冷却し
て使用する赤外線検知素子を用いた赤外線検知器に関す
る。
[Detailed Description of the Invention] [Industrial field of application] The present invention uses an infrared detection element mounted on, for example, an infrared imaging device and used by cooling to a very low temperature of, for example, about 80 K such as HgTdTe or InSb. Regarding infrared detectors.

〔従来の技術〕[Conventional technology]

第2図は従来の赤外線検知器を示す図で,赤外線検知器
は一般に大きくわけて赤外線検知素子(1)を内蔵したデ
ュア(2)と,前記赤外線検知素子(1)を極低温例えば80K
前後に冷却するための冷凍機(3)とで構成される。前記
冷凍機(3)としてはスターリングサイクルやギフオード
マクマホンサイクルなどの冷凍サイクルを利用したもの
が良く用いられ,第2図ではその一例としてスターリン
グサイクルを利用した冷凍機を例として示した。前記冷
凍機(3)は(4)の圧縮機と(5)の膨張器と(6)の連結管で構
成され,前記膨張器(5)にはコールドフィンガ(7)と呼ば
れる細長い円筒状の突起が設けられており,前記コール
ドフィンガ(7)先端にて冷凍を発生する構造となってい
る。
FIG. 2 is a view showing a conventional infrared detector. The infrared detector is generally divided into a dual (2) having a built-in infrared detecting element (1) and an infrared detecting element (1) at an extremely low temperature, for example, 80K.
It is composed of a refrigerator (3) for cooling back and forth. As the refrigerator (3), a refrigerator utilizing a Stirling cycle or a Gifode McMahon cycle is often used, and FIG. 2 shows a refrigerator utilizing a Stirling cycle as an example. The refrigerator (3) is composed of a compressor of (4), an expander of (5) and a connecting pipe of (6), and the expander (5) has an elongated cylindrical shape called a cold finger (7). Protrusions are provided, and the structure is such that freezing is generated at the tip of the cold finger (7).

前記デュア(2)は(8)のアウタシェルと(9)のインナシェ
ルで構成される二重壁構造を有しており,前記インナシ
ェル(9)の先端には前記赤外線検知素子(1)が取付けら
れ,前記アウタシェル(8)には赤外線を透過する窓(10)
が設けられている。前記赤外線検知素子(1)及び前記コ
ールドフィンガ(7)の先端部に外部から熱が侵入しない
ように前記アウタシェル(8)と前記インナシェル(9)の間
の空間は真空に保たれ,前記アウタシェル(8)及び前記
インナシェル(9)の前記真空の空間に面した表面には例
えばアルミニューム,銀などの輻射率の小さい物質の蒸
着膜またはめっき膜が形成され,前記インナシェル(9)
は熱伝導率の小さい材料で作られている。(1)はサーマ
ルインタフェースで,前記サーマルインタフェース(11)
は前記コールドフィンガ(7)の先端に取付けられ一般に
金属で作られており,前記コールドフィンガ(7)と前記
インナシェル(9)の熱膨張率の差異による寸法変化を吸
収するためのもので,例えば積層された銅箔などの弾性
があり,かつ熱伝導率の大きい物体が使われ,その先端
が常に前記インナシェル(9)の底面と密着するようにな
っている。(12)はOリングであり前記コールドフィンガ
(7)の前記インナシェル(9)の間の空間を外部と気密にし
ており数本のネジ(13)により締めつけられている。
The dual (2) has a double wall structure composed of an outer shell (8) and an inner shell (9), and the infrared detecting element (1) is provided at the tip of the inner shell (9). A window (10) attached to the outer shell (8) for transmitting infrared rays
Is provided. The space between the outer shell (8) and the inner shell (9) is kept in a vacuum so that heat does not enter from the outside to the tips of the infrared detection element (1) and the cold finger (7). (8) and the surface of the inner shell (9) facing the vacuum space is formed with a vapor deposition film or a plating film of a substance having a low emissivity such as aluminum or silver, and the inner shell (9)
Is made of a material with low thermal conductivity. (1) is a thermal interface, the thermal interface (11)
Is attached to the tip of the cold finger (7) and is generally made of metal, for absorbing the dimensional change due to the difference in the coefficient of thermal expansion between the cold finger (7) and the inner shell (9), For example, an object having elasticity and large thermal conductivity such as laminated copper foil is used, and its tip is always in close contact with the bottom surface of the inner shell (9). (12) is an O-ring and is the cold finger
The space between the inner shell (9) of (7) is airtight to the outside and is fastened by several screws (13).

次に第2図に示す従来装置の動作について説明する。冷
凍機(3)が運転を開始しコールドフィンガ(7)の先端部で
冷凍を発生し始めると,赤外線検知素子(1)はサーマル
インタフェース(11)を介して冷凍機(3)に熱を奪われ温
度降下し,80K付近まで温度降下すると窓(10)より透過
してくる赤外線を電気信号に変換する。デュア(2)は前
述したように,アウタシェル(8)とインナシェル(9)との
間に設けられた真空層と,アウタシェル(8)及びインナ
シェル(9)の互いに面する表面に設けられた輻射率の小
さい蒸着膜またはめっき膜と,熱伝導率の小さい材料で
作られたインナシェル(9)とで対流,輻射,伝導による
外部からの熱侵入を小とし,冷凍機(3)の負荷を低減し
ている。
Next, the operation of the conventional device shown in FIG. 2 will be described. When the refrigerator (3) starts to operate and freezing occurs at the tip of the cold finger (7), the infrared detection element (1) draws heat to the refrigerator (3) via the thermal interface (11). When the temperature drops to about 80K, infrared rays transmitted through the window (10) are converted into electric signals. As described above, the dual (2) is provided on the vacuum layer provided between the outer shell (8) and the inner shell (9) and on the surfaces of the outer shell (8) and the inner shell (9) facing each other. A vapor deposition film or plating film with a low emissivity and an inner shell (9) made of a material with a low thermal conductivity reduce the heat intrusion from the outside due to convection, radiation and conduction, and the load on the refrigerator (3) Has been reduced.

また,Oリング(12)によりコールドフィンガ(7)とイン
ナシェル(9)の間の空間を外部と気密にすることにより
外部からの空気の流入を防ぐ。これにより外部からの空
気の液化潜熱に冷却効果を奪われることを防止して冷凍
機(3)の負荷を低減している。
Further, the O-ring (12) makes the space between the cold finger (7) and the inner shell (9) airtight to the outside to prevent the inflow of air from the outside. As a result, the cooling effect is prevented from being lost to the liquefied latent heat of air from the outside, and the load on the refrigerator (3) is reduced.

〔考案が解決しようとする課題〕[Problems to be solved by the device]

上記のような従来の赤外線検知器では,以下に述べるよ
うな課題があった。
The conventional infrared detector as described above has the following problems.

すなわちインナシェル(9)は熱伝導率の小さい材料とし
て従来はよくガラスが使われていた。しかしガラスは衝
撃などの外部からの力に弱く,こわれやすい材料であ
る。
That is, the inner shell (9) has often been made of glass as a material having a low thermal conductivity. However, glass is a material that is vulnerable to external forces such as impact and is easily broken.

そこで航空機等の高衝撃が発生する機器に搭載するため
に,ガラスに代わるものとして金属の使用が考えられ
る。しかし金属の熱伝導率は小さなものでもガラスに比
べると10〜20倍大きく,そのためにインナシェル(9)の
肉厚を薄くする必要がある。
Therefore, it is possible to use metal as an alternative to glass in order to mount it on equipment such as aircraft that generates high impact. However, even if the thermal conductivity of metal is small, it is 10 to 20 times larger than that of glass, and therefore it is necessary to reduce the thickness of the inner shell (9).

このような金属のインナシェル(9)を使用した赤外線検
知器では,振動時,インナシェル(9)の肉厚が薄いため
共振周波数が低く,またその時の共振の変位の大きさを
示す共振倍率は,インナシェル(9)の金属の材料内部の
減衰だけであるため減衰率が小さくなり,減衰率と共振
倍率は反比例するため,その結果,共振倍率が大きくな
りインナシェル(9)の変位が大きくなる。よってその先
端にある赤外線検知素子(1)の変位も大きく性能が悪く
なるという課題があった。
In an infrared detector using such a metal inner shell (9), the resonance frequency is low during vibration because the inner shell (9) is thin, and the resonance magnification that indicates the magnitude of the resonance displacement at that time is low. , The damping rate is small because it is only the damping inside the metal material of the inner shell (9), and the damping rate and the resonance magnification are inversely proportional. As a result, the resonance magnification becomes large and the displacement of the inner shell (9) is growing. Therefore, there was a problem that the displacement of the infrared detecting element (1) at the tip was large and the performance was deteriorated.

この考案は上記のような課題を解消するためになされた
もので,耐振動性,耐衝撃性の高い赤外線検知器を得る
ことを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain an infrared detector having high vibration resistance and shock resistance.

〔課題を解決するための手段〕[Means for Solving the Problems]

この考案にかかる赤外線検知器は,コールドフィンガと
インナシェルの間に摩擦係数の大きな摩擦係数材を挿入
したものである。
The infrared detector according to the present invention has a friction coefficient material having a large friction coefficient inserted between the cold finger and the inner shell.

〔作用〕[Action]

この考案においてはコールドフィンガの外径とインナシ
ェルの内径の間で,かつインナシェルの根本位置に摩擦
係数の大きい摩擦係数材を挿入し,共振時発生するエネ
ルギをインナシェルと摩擦係数材との間の摩擦エネルギ
に変えて共振エネルギを減衰させ,共振倍率を小さくし
て赤外線検知素子(1)の変位を小さくし性能の劣化をな
くしたものである。
In this invention, a friction coefficient material with a large friction coefficient is inserted between the outer diameter of the cold finger and the inner diameter of the inner shell and at the root position of the inner shell, and the energy generated at resonance is transferred between the inner shell and the friction coefficient material. The resonance energy is attenuated by changing the friction energy between them, and the resonance magnification is reduced to reduce the displacement of the infrared detection element (1) and eliminate the deterioration of performance.

〔実施例〕〔Example〕

第1図はこの考案の一実施例を示す図である。図におい
て(1)〜(13)は第2図で示した従来装置と全く同じ構成
であるが,コールドフィンガ(7)の外径とインナシェル
(9)の内径の間で,かつインナシェルの根本位置に摩擦
係数が大きい摩擦係数材(14)を挿入し接着剤(15)で支持
パイプ(16)に接着し,支持パイプ(16)はインナシェル
(9)とコールドフィンガ(7)で挟まれて固定されている。
FIG. 1 is a diagram showing an embodiment of the present invention. In the figure, (1) to (13) have exactly the same configuration as the conventional device shown in Fig. 2, but the outer diameter of the cold finger (7) and the inner shell
A friction coefficient material (14) having a large friction coefficient is inserted between the inner diameters of (9) and at the root position of the inner shell, and the support pipe (16) is bonded with an adhesive (15) to the support pipe (16). Inner shell
It is fixed by being sandwiched between (9) and cold finger (7).

摩擦係数材(14)としては摩擦係数が大きく,かつ熱伝導
率の小さいアスベストやゴムなどを使用する。摩擦係数
材(14)をインナシェル(9)の根本位置に挿入するのは根
本部が振動により発生する曲げ応力が一番大きく,そこ
に摩擦係数材(14)を入れることによりエネルギの減衰を
大きくするためである。また摩擦係数の大きな材料を使
用するのはインナシェル(9)との摩擦エネルギをより大
きくするためである。摩擦係数材(14)をインナシェル
(9)の根本部だけにすることにより,摩擦係数材(14)か
らの赤外線検知素子(1)への熱侵入量を少なくすること
ができる。支持パイプ(16)は摩擦係数材(14)を確実に支
持するために剛性が高く,かつ熱侵入量を少なくするた
めに熱伝導率の小さい材料を使用する。
As the friction coefficient material (14), asbestos or rubber, which has a high friction coefficient and a low thermal conductivity, is used. Inserting the friction coefficient material (14) at the root position of the inner shell (9) causes the largest bending stress due to vibration at the root part, and by inserting the friction coefficient material (14) there, the energy is attenuated. This is to make it larger. The reason why the material with a large friction coefficient is used is to increase the friction energy with the inner shell (9). Inner shell friction coefficient material (14)
By using only the root part of (9), it is possible to reduce the amount of heat penetration from the friction coefficient material (14) to the infrared detection element (1). The support pipe (16) is made of a material having a high rigidity in order to securely support the friction coefficient material (14) and a small thermal conductivity in order to reduce the amount of heat intrusion.

上記のように構成された赤外線検知器において,振動が
加わると共振時そのエネルギはインナシェル(9)と摩擦
係数材(14)の間の摩擦エネルギに消費され共振エネルギ
を減衰させ,その結果,共振倍率が小さくなりインナシ
ェル(9)の変位が小さくなる。よってその先端にある赤
外線検知素子(1)の変位も小さくなり性能の劣化を防ぐ
ことが可能となる。
In the infrared detector configured as described above, when vibration is applied, the energy at resonance is consumed by the friction energy between the inner shell (9) and the friction coefficient material (14) to attenuate the resonance energy. The resonance magnification becomes smaller and the displacement of the inner shell (9) becomes smaller. Therefore, the displacement of the infrared detection element (1) at the tip is also small, and it is possible to prevent the deterioration of performance.

〔考案の効果〕[Effect of device]

この考案は以上説明した通り,コールドフィンガとイン
ナシェルの間に摩擦係数の大きな摩擦係数材を挿入する
という簡単な構造によって振動時の赤外線検知素子(1)
の変位を抑え性能の劣化を防ぐという効果がある。
As described above, this device has a simple structure in which a friction coefficient material having a large friction coefficient is inserted between the cold finger and the inner shell to detect an infrared ray detecting element during vibration (1).
It has the effect of suppressing the displacement of and preventing the deterioration of performance.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの考案の一実施例を示す図,第2図は従来の
赤外線検知器を示す図である。 図において,(1)は赤外線検知素子,(3)は冷凍機,(7)
はコールドフィンガ,(8)はアウタシェル,(9)はインナ
シェル,(14)は摩擦係数材,(15)は接着剤,(16)は支持
パイプである。 なお,各図中,同一符号は同一または相当部分を示す。
FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing a conventional infrared detector. In the figure, (1) is an infrared detector, (3) is a refrigerator, (7)
Is a cold finger, (8) is an outer shell, (9) is an inner shell, (14) is a friction coefficient material, (15) is an adhesive, and (16) is a support pipe. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】先端が低温となる筒状のコールドフィンガ
を有する冷凍機と、前記コールドフィンガが挿入される
穴状の空間を形成し、かつ金属で出来ているインナシェ
ルと、前記インナシェルの外側を覆い、前記インナシェ
ルとの間に真空層を形成するアウタシェルと、前記イン
ナシェルに取付けられた赤外線検知素子と、前記コール
ドフィンガと前記インナシェルとの間に設けられたアス
ベスト又はゴムからなる摩擦係数材とを備えたことを特
徴とする赤外線検知器。
1. A refrigerator having a tubular cold finger whose tip has a low temperature, an inner shell made of metal and having a hole-shaped space into which the cold finger is inserted, and an inner shell of the inner shell. An outer shell that covers the outside and forms a vacuum layer between the inner shell and the outer shell, an infrared detection element attached to the inner shell, and asbestos or rubber provided between the cold finger and the inner shell. An infrared detector comprising a friction coefficient material.
【請求項2】前記摩擦係数材をインナシェルの根本位置
に設けたことを特徴とする請求項1記載の赤外線検知
器。
2. The infrared detector according to claim 1, wherein the friction coefficient material is provided at a base position of the inner shell.
JP11680789U 1989-10-04 1989-10-04 Infrared detector Expired - Lifetime JPH0632588Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11680789U JPH0632588Y2 (en) 1989-10-04 1989-10-04 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11680789U JPH0632588Y2 (en) 1989-10-04 1989-10-04 Infrared detector

Publications (2)

Publication Number Publication Date
JPH0355535U JPH0355535U (en) 1991-05-29
JPH0632588Y2 true JPH0632588Y2 (en) 1994-08-24

Family

ID=31665070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11680789U Expired - Lifetime JPH0632588Y2 (en) 1989-10-04 1989-10-04 Infrared detector

Country Status (1)

Country Link
JP (1) JPH0632588Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06127656A (en) * 1992-10-21 1994-05-10 House Foods Corp Equipment for transferring bottle to sterile room
JP2829829B2 (en) * 1994-10-04 1998-12-02 東洋製罐株式会社 Container alignment device by screw

Also Published As

Publication number Publication date
JPH0355535U (en) 1991-05-29

Similar Documents

Publication Publication Date Title
US5811816A (en) Closed cycle gas cryogenically cooled radiation detector
US4344302A (en) Thermal coupling structure for cryogenic refrigeration
US7415830B2 (en) Method and system for cryogenic cooling
GB2370344A (en) Fast cooldown cryostat for large infrared focal plane arrays
EP2930484B1 (en) Ruggedized dewar unit for integrated dewar detector
Masi et al. A long duration cryostat suitable for balloon borne photometry
JPH0632588Y2 (en) Infrared detector
CN108106726A (en) A kind of spectrometer ambient noise suppression system
US4954708A (en) Low distortion focal plane platform
US4479367A (en) Thermal filter
US4412427A (en) Noncontact thermal interface
CN111189546A (en) Coupling structure of infrared Dewar component window and low-temperature optical system and implementation method
JPH01250026A (en) Infrared detecting device
US3188830A (en) Thermal oscillation filter
JP7375013B2 (en) Freestanding flexible thermal radiation shield for superconducting magnet assembly
JPH0441307Y2 (en)
JPH02266240A (en) Infrared detector
CN212007546U (en) Coupling structure of infrared Dewar assembly window and low-temperature optical system
JPH0629698Y2 (en) Infrared detector
JPH03206926A (en) Infrared-ray detector
JP2792004B2 (en) refrigerator
JPH0674819A (en) Freezing device
JPS6361123A (en) Infrared detector
JPH0545531U (en) Infrared detector
JP2905799B2 (en) Cryopump