JP2000292022A - Gas cycle engine refrigerating machine - Google Patents
Gas cycle engine refrigerating machineInfo
- Publication number
- JP2000292022A JP2000292022A JP11096158A JP9615899A JP2000292022A JP 2000292022 A JP2000292022 A JP 2000292022A JP 11096158 A JP11096158 A JP 11096158A JP 9615899 A JP9615899 A JP 9615899A JP 2000292022 A JP2000292022 A JP 2000292022A
- Authority
- JP
- Japan
- Prior art keywords
- cold head
- gas
- refrigerator
- cycle engine
- regenerator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000002093 peripheral effect Effects 0.000 claims description 40
- 239000000463 material Substances 0.000 claims description 9
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 4
- 239000010935 stainless steel Substances 0.000 claims description 4
- 229910000838 Al alloy Inorganic materials 0.000 claims description 3
- 229910052782 aluminium Inorganic materials 0.000 claims description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- 238000000034 method Methods 0.000 abstract description 5
- 230000006872 improvement Effects 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 113
- 238000005057 refrigeration Methods 0.000 description 11
- 230000005540 biological transmission Effects 0.000 description 8
- 238000001816 cooling Methods 0.000 description 8
- 230000006835 compression Effects 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/14—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
- F25B9/145—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1406—Pulse-tube cycles with pulse tube in co-axial or concentric geometrical arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1421—Pulse-tube cycles characterised by details not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/14—Compression machines, plants or systems characterised by the cycle used
- F25B2309/1426—Pulse tubes with basic schematic including at the pulse tube warm end a so called warm end expander
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D19/00—Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
- F25D19/006—Thermal coupling structure or interface
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、逆スターリングサ
イクル冷凍機(以下「スターリング冷凍機」と呼称す
る),もしくはパルス管冷凍機を対象とするガスサイク
ル機関冷凍機、詳しくは該冷凍機の低温伝熱部の構造に
関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inverse Stirling cycle refrigerator (hereinafter referred to as "Sterling refrigerator") or a gas cycle engine refrigerator intended for a pulse tube refrigerator, and more particularly, to a low-temperature refrigerator. It relates to the structure of the heat transfer section.
【0002】[0002]
【従来の技術】クライオクーラなどに適用して低温(絶
対温度80K程度)の寒冷を得る冷凍機として、頭記し
たスターリング冷凍機,パルス管冷凍機などのガスサイ
クル機関冷凍機が公知である。2. Description of the Related Art Gas cycle engine refrigerators such as a Stirling refrigerator and a pulse tube refrigerator have been known as refrigerators which are applied to a cryocooler or the like to obtain low-temperature (about 80 K absolute) cold.
【0003】ここで、スターリング冷凍機を例に挙げ
て、従来におけるスターリング冷凍機の構成,動作を図
4で説明する。図において、1は放熱フィン付きのシリ
ンダ1aに内装した圧縮ピストン1bをリニアモータな
どの駆動モータ(図示せず)で往復動するガス圧縮機、
2はガス圧縮機1のシリンダ1aの吐出口にガス導管3
を介して接続した蓄冷器、4は膨張シリンダ4aと膨張
ピストン4bからなるディスプレーサ(膨張機)、5は
蓄冷器2の低温側端とディスプレーサ4のシリンダ開口
端との間を連通するように両者間にまたがって被せ、そ
の内面を凹面として蓄冷器2とディスプレーサ4の膨張
シリンダ4aとの間を連通するガス流路5aを形成した
円盤状のコールドヘッド(低温伝熱部材)、6は組立ベ
ース板である。Here, the configuration and operation of a conventional Stirling refrigerator will be described with reference to FIG. 4, taking a Stirling refrigerator as an example. In the figure, reference numeral 1 denotes a gas compressor which reciprocates a compression piston 1b housed in a cylinder 1a with a radiation fin by a drive motor (not shown) such as a linear motor.
2 is a gas conduit 3 at the discharge port of the cylinder 1a of the gas compressor 1.
A regenerator 4 is connected via a disperser (expansion device) composed of an expansion cylinder 4a and an expansion piston 4b. A disk-shaped cold head (low-temperature heat transfer member) having a gas flow path 5a communicating between the regenerator 2 and the expansion cylinder 4a of the displacer 4 with its inner surface being a concave surface; It is a board.
【0004】ここで、蓄冷器3はディスプレーサ4のシ
リンダ4aを取り巻いて組立ベース板6の上に固定した
外筒7との間の環状空間に装填されており、コールドヘ
ッド5とともに一体に組立られている。また、ガス圧縮
機1とディスプレーサ4の間の閉じた空間を作動空間と
してここに作動ガス(ヘリウムガス)が封入されてお
り、かつガス圧縮機1とディスプレーサ4とは相対的に
90°の位相差で図示されてないモータで往復動され
る。そして、前記のコールドヘッド5はその頂部外面A
を寒冷発生部として、ここに被冷却体(例えば赤外線セ
ンサの光電素子)Wを搭載して伝熱的に結合し、次に記
す冷凍サイクル(逆スターリングサイクル)により寒冷
を発生して被冷却体Wを極低温に冷却する。Here, the regenerator 3 is mounted in an annular space between the cylinder 4a of the displacer 4 and an outer cylinder 7 fixed on an assembly base plate 6 around the cylinder 4a, and is assembled integrally with the cold head 5. ing. A working space (helium gas) is sealed in the closed space between the gas compressor 1 and the displacer 4, and the gas compressor 1 and the displacer 4 are relatively 90 ° apart. It is reciprocated by a motor (not shown) due to the phase difference. The cold head 5 has a top outer surface A
As a cold generating unit, a cooling target (for example, a photoelectric element of an infrared sensor) W is mounted thereon and thermally coupled to each other, and a cooling cycle is generated by a refrigeration cycle (reverse Stirling cycle) described below to generate a cooling target. Cool W to cryogenic temperature.
【0005】周知のように逆スターリングサイクルは、
等温圧縮,等容移送,等温膨張,等容移送の4工程でコ
ールドヘッドに寒冷を発生させる。すなわち、冷凍機の
定常動作では、等温圧縮工程でガス圧縮機1により作動
ガスが圧縮され、続く等容移送工程で作動ガスは蓄冷器
2により冷却されて膨張空間に送られる。次の等温膨張
工程では作動ガスが寒冷を発生し、コールドヘッド5を
伝熱して被冷却体8から熱を奪う。続く等容移送工程で
低温の作動ガスが蓄冷器2を冷却してガス圧縮機1に戻
る。そして、この冷凍サイクルを繰り返すことによりコ
ールドヘッド5に搭載した被冷却体Wが極低温に冷却さ
れる。As is well known, the reverse Stirling cycle is
Cold is generated in the cold head in four steps of isothermal compression, equal volume transfer, isothermal expansion, and equal volume transfer. That is, in the normal operation of the refrigerator, the working gas is compressed by the gas compressor 1 in the isothermal compression step, and the working gas is cooled by the regenerator 2 and sent to the expansion space in the subsequent equal volume transfer step. In the next isothermal expansion step, the working gas generates cold, transfers heat to the cold head 5 and removes heat from the cooled body 8. In the subsequent equal volume transfer step, the low-temperature working gas cools the regenerator 2 and returns to the gas compressor 1. Then, by repeating this refrigeration cycle, the cooled object W mounted on the cold head 5 is cooled to an extremely low temperature.
【0006】なお、冷凍機の始動開始直後は低温部の作
動ガスは常温状態にあるので、最初の膨張過程ではガス
とコールドヘッド5との間に熱の移動はなく、作動ガス
は断熱膨張してガス温度が降下する。この冷えたガスが
等容変化でガス圧縮機側に戻る過程で蓄冷器2を冷却す
るので、次のサイクルで作動ガスがディスプレーサに送
り出されるときには、蓄冷器2の温度は前のサイクルよ
りも低くなっており、これに冷やされたガスがさらに断
熱膨張するので温度はますます低下し、この冷凍サイク
ルの繰り返しにより定常運転状態に移行して極低温の寒
冷を発生するようになる。[0006] Since the working gas in the low temperature section is at a normal temperature immediately after the start of the refrigerator, no heat is transferred between the gas and the cold head 5 in the first expansion process, and the working gas expands adiabatically. Gas temperature drops. Since the cooled gas cools the regenerator 2 in the process of returning to the gas compressor side with a change in volume, when the working gas is sent to the displacer in the next cycle, the temperature of the regenerator 2 is lower than in the previous cycle. Since the cooled gas undergoes further adiabatic expansion, the temperature further decreases, and the repetition of this refrigeration cycle causes a transition to a steady-state operation state to generate extremely low-temperature refrigeration.
【0007】なお、ガスサイクル機関冷凍機には、前記
のスターリング冷凍機におけるディスプレーサ4をパル
ス管に置き換え、このパルス管にオリフィス,リザーバ
を組合せて構成したパルス管冷凍機も知られている。As a gas cycle engine refrigerator, there is also known a pulse tube refrigerator in which the displacer 4 in the Stirling refrigerator is replaced with a pulse tube, and the pulse tube is combined with an orifice and a reservoir.
【0008】[0008]
【発明が解決しようとする課題】ところで、図4に示し
た従来構造では次に記すような問題点がある。すなわ
ち、コールドヘッド5については、その製作,加工性の
面から円盤の内面を単純な凹面に加工してガス流路5a
を形成しているが、この構造では作動ガスとの接触面積
が大きく取れないことから、ここを通流する作動ガスと
の間の熱通過率が低く、このために小型で高効率な冷凍
機を得ることが困難である。The conventional structure shown in FIG. 4 has the following problems. That is, with respect to the cold head 5, the inner surface of the disk is processed into a simple concave surface from the viewpoint of manufacturing and workability, and the gas flow path 5a is formed.
However, since this structure does not allow a large contact area with the working gas, the heat transfer rate between the working gas and the working gas flowing through the structure is low. Is difficult to obtain.
【0009】すなわち、冷凍機は冷凍能力に対する消費
電力,体格(外形寸法)で評価され、その評価の因子と
してコールドヘッド5の熱通過率,ガス流路容積(死容
積),および圧力損失が挙げられる。ここでコールドヘ
ッド5の熱通過率,ガス流路の容積(死容積),圧力損
失の冷凍性能に与える影響について述べる。That is, the refrigerator is evaluated by the power consumption and the physique (external dimensions) with respect to the refrigeration capacity, and factors of the evaluation include the heat transfer rate of the cold head 5, the gas flow path volume (dead volume), and the pressure loss. Can be Here, the effects of the heat transfer rate of the cold head 5, the volume (dead volume) of the gas flow path, and the pressure loss on the refrigeration performance will be described.
【0010】(1) まず熱通過率については、冷凍機の運
転状態でコールドヘッド5の冷却端温度Taとガス流路
5aを通流する低温ガスのガス温度Tcとの間には、コ
ールドヘッド5の熱通過率(熱貫流率とも言う)に対応
した温度差ΔTが発生する。したがって、冷却端温度T
aを被冷却体8の要求する温度にするためには、低温ガ
ス温度Tcを冷却端温度Taよりもさらに温度差ΔTだ
け低く(Tc=Ta−ΔT)する必要がある。一方、ス
ターリング冷凍機の理論熱効率(成績係数:COP)
は、高温ガス温度をThとすると、(1) First, regarding the heat transfer rate, the cold head temperature between the cooling end temperature Ta of the cold head 5 and the gas temperature Tc of the low temperature gas flowing through the gas flow path 5a in the operation state of the refrigerator is determined. 5, a temperature difference ΔT corresponding to the heat transmission coefficient (also referred to as heat transmission coefficient) is generated. Therefore, the cooling end temperature T
In order to set “a” to the temperature required by the object 8 to be cooled, the low-temperature gas temperature Tc needs to be lower than the cooling end temperature Ta by a temperature difference ΔT (Tc = Ta−ΔT). On the other hand, the theoretical thermal efficiency of the Stirling refrigerator (coefficient of performance: COP)
Is the high temperature gas temperature as Th
【0011】[0011]
【数1】COP=Tc/(Th−Tc)=(Ta−Δ
T)/(Th−Ta+ΔT) として表され、温度差ΔTが大きくなると成績係数(C
OP)が低下し、同一の熱負荷に対しては冷凍機の入力
(消費電力)が増大する。また、冷却端温度Taに対し
て温度差ΔTを補償するように低温ガス温度Tcを低く
すると、蓄冷器2での熱損失,ディスプレーサ4のピス
トン4bとシリンダ4aとの相対変位に伴って生じるシ
ャトルロスなどの冷凍機自身の熱損失も増加して熱負荷
が増大する。このように、コールドヘッド5の熱通過率
が低いと、その分だけ被冷却体8が要求する冷却端温度
Taに対して低温ガス温度Tcを低めなければならず、
その結果として冷凍機の成績係数(COP)が低下する
とともに冷却すべき熱負荷が増大するので入力が増加
し、冷凍機の効率が低下するようになる。## EQU1 ## COP = Tc / (Th-Tc) = (Ta-.DELTA.)
T) / (Th−Ta + ΔT), and when the temperature difference ΔT increases, the coefficient of performance (C
OP) decreases, and the input (power consumption) of the refrigerator increases for the same heat load. When the low-temperature gas temperature Tc is lowered so as to compensate for the temperature difference ΔT with respect to the cooling end temperature Ta, the shuttle generated due to the heat loss in the regenerator 2 and the relative displacement between the piston 4 b and the cylinder 4 a of the displacer 4. The heat loss of the refrigerator itself, such as loss, also increases, and the heat load increases. As described above, when the heat transmission rate of the cold head 5 is low, the low-temperature gas temperature Tc must be reduced by the amount corresponding to the cooling end temperature Ta required by the object 8 to be cooled.
As a result, the coefficient of performance (COP) of the refrigerator decreases and the heat load to be cooled increases, so that the input increases and the efficiency of the refrigerator decreases.
【0012】かかる点、従来のコールドヘッド5では、
図4で示したように伝熱部材の内面を単純な凹面とし
て、その内面と蓄冷器2の端面,および膨張器4のシリ
ンダ開口端面との間の隙間で作動ガスが流れるガス流路
5aを形成しているため、ガス流路5aの内容積に対す
る作動ガスが直接接触する伝熱面積(穴の内周面)の比
率が小さく、このためにコールドヘッド5の熱通過率が
低くなる。In this respect, in the conventional cold head 5,
As shown in FIG. 4, the inner surface of the heat transfer member is a simple concave surface, and the gas flow path 5 a through which the working gas flows through the gap between the inner surface and the end surface of the regenerator 2 and the end surface of the cylinder opening of the expander 4. Due to the formation, the ratio of the heat transfer area (the inner peripheral surface of the hole) with which the working gas is in direct contact with the internal volume of the gas flow path 5a is small, and therefore, the heat transmission rate of the cold head 5 is reduced.
【0013】(2) また、コールドヘッド5に形成したガ
ス流路5aの容積(死容積)についてガス流路5aの容
積が大きいと、ガス圧縮機1のピストン1bの変位(移
動)に対するガス圧力の変化が小さくなる。このため
に、冷凍サイクルの等温圧縮工程と等温膨張工程の間で
必要な圧力振幅を得るには、ピストン1aのストローク
を大きくするか、ピストン1aの断面積を大きくする必
要があるが、これは冷凍機の体格大型化を招くととも
に、同一のガス圧変化に要するガス圧縮機1のガス吐出
し量が増して冷凍機の入力,つまり消費電力が大きくな
る。(2) When the volume (dead volume) of the gas passage 5a formed in the cold head 5 is large, the gas pressure with respect to the displacement (movement) of the piston 1b of the gas compressor 1 is increased. Change becomes small. For this reason, in order to obtain the necessary pressure amplitude between the isothermal compression step and the isothermal expansion step of the refrigeration cycle, it is necessary to increase the stroke of the piston 1a or increase the cross-sectional area of the piston 1a. In addition to increasing the size of the refrigerator, the amount of gas discharged from the gas compressor 1 required for the same change in gas pressure increases, so that the input of the refrigerator, that is, the power consumption increases.
【0014】(3) 一方、コールドヘッド5のガス流路5
aにおける圧力損失は、ガス圧縮機1の入力を増加させ
るほか、ディスプレーサ4におけるガス圧振幅を小さく
して冷凍出力を低下させる原因となるため、ガス流路の
断面積(流路の容積)との関連でできるだけ小さく抑え
ることが必要である。また、上記した問題点は、そのま
まパルス管冷凍機についてもあてはまる。(3) On the other hand, the gas flow path 5 of the cold head 5
The pressure loss at a increases the input of the gas compressor 1 and reduces the refrigeration output by reducing the gas pressure amplitude in the displacer 4, so that the cross-sectional area of the gas flow path (the volume of the flow path) is reduced. Therefore, it is necessary to keep it as small as possible. Further, the above-mentioned problems also apply to a pulse tube refrigerator as it is.
【0015】この発明は上記の点に鑑みなされたもので
あり、その目的は先記のスターリング冷凍機,パルス管
冷凍機などを実施対象に、そのコールドヘッドにおける
死容積,圧力損失を小さく抑えつつ熱通過率を高めるよ
う改良して小型な体格で熱効率の高いガスサイクル機関
冷凍機を提供することにある。The present invention has been made in view of the above points, and has as its object to reduce the dead volume and pressure loss in the cold head of the Stirling refrigerator and the pulse tube refrigerator described above. It is an object of the present invention to provide a gas cycle engine refrigerator having a small size and high thermal efficiency by improving the heat transmission rate.
【0016】[0016]
【課題を解決するための手段】上記目的を達成するため
に、本発明によればスターリング冷凍機,あるいはパル
ス管冷凍機を対象に次記のように構成するものとする。 (1) ガス圧縮機,蓄冷器,ディスプレーサ,および頂部
を寒冷発生部とするコールドヘッドを組合せて構成した
スターリング冷凍機を対象とするガスサイクル機関冷凍
機であり、ディスプレーサの膨張シリンダを内筒として
これを取り巻く外筒との間の空間に蓄冷器を内蔵すると
ともに、蓄冷器の低温側端とディスプレーサのシリンダ
開口端にまたがって頂部内面にガス流路を形成したコー
ルドヘッドを被着して蓄冷器,ディスプレーサ,コール
ドヘッドを一体に組立てたものにおいて、前記コールド
ヘッドをキャップ状体となしてその内周面に螺旋溝を形
成するとともに、該螺旋溝の始端,および終端部を除く
面域を覆ってコールドヘッドの内周面と前記膨張シリン
ダの外周面との間に栓状部材を装着し、前記螺旋溝を経
由して作動ガスをコールドヘッドに流すように構成する
(請求項1)。In order to achieve the above object, according to the present invention, a Stirling refrigerator or a pulse tube refrigerator is constituted as follows. (1) A gas cycle engine refrigerator intended for a Stirling refrigerator composed of a gas compressor, a regenerator, a displacer, and a cold head whose top is a cold-generating unit. The expansion cylinder of the displacer has an inner cylinder. A regenerator is built in the space between the outer cylinder surrounding it and a cold head that has a gas flow path formed on the inner surface of the top at the lower end of the regenerator and the open end of the cylinder of the displacer. In a device in which a container, a displacer, and a cold head are integrally assembled, the cold head is formed into a cap-like body to form a spiral groove on an inner peripheral surface thereof, and a surface area excluding a start end and a terminal end of the spiral groove is formed. A plug-like member is mounted between the inner peripheral surface of the cold head and the outer peripheral surface of the expansion cylinder to cover the working gas through the spiral groove. To flow to the cold head (claim 1).
【0017】(2) ガス圧縮機,蓄冷器,パルス管,およ
び頂部を寒冷発生部とするコールドヘッドを組合せて構
成したパルス管冷凍機を対象とするガスサイクル機関冷
凍機であり、パルス管を内筒としてこれを取り巻く外筒
との間の空間に蓄冷器を内蔵するとともに、蓄冷器の低
温側端とパルス管の開口端にまたがって頂部内面にガス
流路を形成したコールドヘッドを被着して蓄冷器,パル
ス管,コールドヘッドを一体に組立てたものにおいて、
前記コールドヘッドをキャップ状体となしてその内周面
に螺旋溝を形成するとともに、該螺旋溝の始端,および
終端部を除く面域を覆ってコールドヘッドの内周面と前
記膨張シリンダの外周面との間に栓状部材を装着し、前
記螺旋溝を経由して作動ガスをコールドヘッドに流すよ
うに構成する(請求項2)。(2) A gas cycle engine refrigerator intended for a pulse tube refrigerator configured by combining a gas compressor, a regenerator, a pulse tube, and a cold head having a cold generation section at the top. A cold head with a built-in regenerator in the space between the outer cylinder surrounding it as an inner cylinder, and a cold head with a gas flow path formed on the inner surface of the top covering the low-temperature end of the regenerator and the open end of the pulse tube And the regenerator, pulse tube, and cold head are assembled together,
The cold head is formed into a cap-like body, and a spiral groove is formed on the inner peripheral surface thereof. The inner peripheral surface of the cold head and the outer peripheral surface of the expansion cylinder are covered by covering a surface area excluding the start and end of the spiral groove. A plug-like member is mounted between the cold head and the surface, and the working gas is caused to flow to the cold head via the spiral groove (claim 2).
【0018】前項(1),(2) の構成によれば、冷凍サイク
ルでコールドヘッドを通流する作動ガスは経路の長い螺
旋溝を経由し、コールドヘッドの内周面を旋回して流
れ、その通流過程で低温の作動ガスが溝面を洗流してそ
の冷熱がコールドヘッドに伝熱する。したがって、作動
ガスとコールドヘッドとの接触面積が大きくとれるとと
もに、適正なガス流速も得られ、作動ガスとコールドヘ
ッドとの間の熱貫流が増大して両者間の熱通過率が高ま
る。また、コールドヘッドの内方に栓状部材を装填した
ことでガス流路の死容積が小さくなる。これにより、小
型な体格で熱効率の高いガスサイクル機関冷凍機が得ら
れる。また、本発明によれば、前項(1),(2) の構成は、
次記のような具体的態様で構成することができる。According to the constitutions of (1) and (2), the working gas flowing through the cold head in the refrigeration cycle passes through the spiral groove having a long path, and turns and flows on the inner peripheral surface of the cold head. During the flow, the low-temperature working gas flushes the groove surface, and the cold heat is transferred to the cold head. Accordingly, a large contact area between the working gas and the cold head can be obtained, and an appropriate gas flow rate can be obtained, so that the heat flow between the working gas and the cold head increases, and the heat transmission rate between the two increases. Further, the dead volume of the gas flow path is reduced by loading the plug-shaped member inside the cold head. As a result, a gas cycle engine refrigerator having a small size and high thermal efficiency can be obtained. Further, according to the present invention, the configuration of the preceding paragraphs (1) and (2)
It can be configured in the following specific modes.
【0019】(3) コールドヘッドの内周面に形成した螺
旋溝を断面三角溝となして作動ガスとの接触面積の増大
化を図るようにする(請求項3)。 (4) コールドヘッドの内周面に複数条の螺旋溝を形成し
て作動ガスとの接触面積を一層増大化するようにする
(請求項4)。 (5) コールドヘッドの頂部内面に形成したガス流路を、
その中央に形成した凹状のガス集流部と、該ガス集流部
から放射状に延びたガス流路溝とで形成し、作動ガスと
の接触面積の増大化を図るようにする(請求項5)。(3) The spiral groove formed on the inner peripheral surface of the cold head is formed into a triangular groove in cross section so as to increase the contact area with the working gas. (4) A plurality of spiral grooves are formed on the inner peripheral surface of the cold head to further increase the contact area with the working gas. (5) The gas flow path formed on the inner surface of the top of the cold head is
A concave gas collecting portion formed at the center thereof and a gas flow channel groove radially extending from the gas collecting portion are formed to increase the contact area with the working gas. ).
【0020】(6) 栓状部材の両端面に、コールドヘッド
の内周面に形成した螺旋溝の始端と蓄冷器との間,およ
び低温螺旋溝の終端とコールドヘッドの頂部内面に形成
したガス流路との間を連通する溝部を形成し、蓄冷器か
ら流出した作動ガス,あるいはコールドヘッドのガス流
路を経由してディスプレーサ,ないしパルス管から還流
する作動ガスの圧力損失を押さえて螺旋溝へ円滑に導く
ようにする(請求項6)。(6) Gases formed on both end surfaces of the plug-like member, between the beginning of the spiral groove formed on the inner peripheral surface of the cold head and the regenerator, and at the end of the cold spiral groove and on the inner surface of the top of the cold head. A helical groove is formed by forming a groove communicating with the flow path and suppressing the pressure loss of the working gas flowing out of the regenerator or the working gas returning from the displacer or pulse tube through the gas flow path of the cold head. (Claim 6).
【0021】(7) 栓状部材をディスプレーサの膨張シリ
ンダおよびパルス管よりも熱膨張率の大きな材料で構成
し、冷凍機運転時の低温状態では熱膨張差を利用してリ
ング状になる栓状部材がディスプレーサの膨張シリン
ダ,ないしパルス管の外周に締まり嵌め(焼き嵌めと同
様な原理)となって、作動ガスがコールドヘッドのガス
流路を流れずに栓状部材の内周面側の隙間にバイパスす
るのを防止するようにし(請求項7)、具体的にはディ
スプレーサの膨張シリンダおよびパルス管の材質をステ
ンレス,もしくはチタン合金とし、栓状部材の材質を比
熱が小さく、かつ熱膨張率がステンレスおよびチタン合
金よりも大きなアルミニウム,もしくはアルミニウム合
金とし、前記のように熱膨張差を利用して栓状部材をデ
ィスプレーサのシリンダ,ないしパルス管の外周に締ま
り嵌め式に密着結合させるとともに、冷凍機の起動から
定常運転に移行するまでのプルダウン時間の短縮化を図
るようにする(請求項8)。(7) The plug-shaped member is made of a material having a larger coefficient of thermal expansion than the expansion cylinder and the pulse tube of the displacer, and becomes a ring-shaped plug using a difference in thermal expansion when the refrigerator operates at a low temperature. The member is tightly fitted to the expansion cylinder of the displacer or the outer periphery of the pulse tube (the same principle as shrink fitting), and the working gas does not flow through the gas flow path of the cold head and the gap on the inner peripheral surface side of the plug-like member Specifically, the material of the expansion cylinder and pulse tube of the displacer is made of stainless steel or a titanium alloy, and the material of the plug-shaped member has a small specific heat and a thermal expansion coefficient. Is made of aluminum or aluminum alloy larger than stainless steel and titanium alloy, and the plug-like member is made of a displacer syringe by utilizing the difference in thermal expansion as described above. The pull-down time from the start of the refrigerator to the transition to the steady operation is shortened while being tightly and tightly fitted to the outer periphery of the pulse tube or the pulse tube.
【0022】(9) 前項(2) のパルス管冷凍機において、
低温伝熱部部材のガス流路に通じるパルス管の開口端に
整流部を配し、かつ該整流部を筒状のホルダに収容した
上で、該ホルダの頂部から外周に張り出す鍔状フランジ
を栓状部材の端面と該部材の端面に締結した支持板との
間に挟持固定し(請求項9)、さらに前記整流部ホルダ
の先端にパルス管内に向けて拡大するテーパ面を形成す
る(請求項10)ことで、パルス管を通流する作動ガス
の乱流発生を押さえて圧力損失の低減化を図るようにす
る。(9) In the pulse tube refrigerator according to the above (2),
A rectifying portion is arranged at the open end of the pulse tube communicating with the gas flow path of the low-temperature heat transfer portion member, and the rectifying portion is housed in a cylindrical holder, and a flange-like flange projecting outward from the top of the holder. Between the end surface of the plug-shaped member and the support plate fastened to the end surface of the member (Claim 9), and further, a tapered surface that expands toward the inside of the pulse tube is formed at the tip of the rectifying portion holder (Claim 9). According to the tenth aspect, turbulence of the working gas flowing through the pulse tube is suppressed to reduce the pressure loss.
【0023】[0023]
【発明の実施の形態】以下、先記した各項に対応する本
発明の実施の形態を図1,図2,図3に示す実施例に基
づいて説明する。なお、各実施例の図中で図4に対応す
る同一部材には同じ符号を付してその説明は省略する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention corresponding to the above-mentioned items will be described below with reference to the embodiments shown in FIGS. In the drawings of each embodiment, the same members corresponding to those in FIG. 4 are denoted by the same reference numerals, and description thereof will be omitted.
【0024】〔実施例1〕図1は本発明の請求項2,3
を除く1〜8に対応する実施例として、スターリング冷
凍機を対象とした蓄冷器,ディスプレーサ,コールドヘ
ッドの組立構造を示すものである。この実施例において
は、蓄冷器2の低温側端とディスプレーサ4の膨張シリ
ンダの開口端との間にまたがって被着したコールドヘッ
ド5をキャップ状体となして外筒7に被着,溶接接合
し、さらにその内方にはリング状の栓状部材8が装填さ
れている。FIG. 1 shows a second embodiment of the present invention.
1 shows an assembly structure of a regenerator, a displacer, and a cold head for a Stirling refrigerator as an embodiment corresponding to 1 to 8 except for the above. In this embodiment, a cold head 5 attached between the low-temperature end of the regenerator 2 and the open end of the expansion cylinder of the displacer 4 is formed as a cap and attached to the outer cylinder 7 by welding. Further, a ring-shaped plug-shaped member 8 is loaded in the inside thereof.
【0025】ここで、コールドヘッド5の内周面域には
ガス流路となる1ないし複数条の螺旋溝5bが形成され
ている。また、コールドヘッド5の頂部内面に形成した
ガス流路5aは、図1(b) で示すように、その中心部に
形成したディスプレーサ4と略同径な凹状のガス集流部
5a-1と、該ガス集流部5a-1からコールドヘッド5の
内周面に向けて放射状に延在する複数条のガス流路溝5
a-2とからなる。Here, in the inner peripheral surface area of the cold head 5, one or a plurality of spiral grooves 5b serving as gas flow paths are formed. As shown in FIG. 1 (b), a gas flow path 5a formed on the inner surface of the top of the cold head 5 has a concave gas collecting part 5a-1 having substantially the same diameter as the displacer 4 formed at the center thereof. A plurality of gas flow grooves 5 radially extending from the gas collecting portion 5a-1 toward the inner peripheral surface of the cold head 5.
a-2.
【0026】一方、リング状の栓状部材8は、その内
径,外径寸法がそれぞれディスプレーサ4の膨張シリン
ダ4aの外径,キャップ状コールドヘッド5の内径に対
応して設定されており、組立て状態では図示のように栓
状部材8がコールドヘッド5の内周面に形成した螺旋溝
5aの端面をその内周側から塞ぐ。また、蓄冷器2と対
向する底面側端面にはガス流路として、図1(c) で示す
ように栓状部材8の内外周縁に沿って形成した周溝8
a,8b,および中央のリブ突起8cを貫いて周溝8a
と8bとの間を結ぶ半径方向の凹溝8dが形成されてお
り、さらにコールドヘッド5の頂部内面に形成したガス
流路5aと対向する上面側には外周縁に沿って周溝8e
が切欠き形成されている。そして、前記の周溝8a,8
eは、それぞれ組立て位置で先記した螺旋溝5bの始
端,終端と連通し合い、さらに上面側の周溝8eは先記
したコールドヘッド5のガス流路溝5a-1に連通し合
う。On the other hand, the inner diameter and outer diameter of the ring-shaped plug-shaped member 8 are set corresponding to the outer diameter of the expansion cylinder 4a of the displacer 4 and the inner diameter of the cap-shaped cold head 5, respectively. As shown in the figure, the plug-like member 8 closes the end face of the spiral groove 5a formed on the inner peripheral surface of the cold head 5 from the inner peripheral side. A peripheral groove 8 formed along the inner and outer peripheral edges of the plug-shaped member 8 as a gas flow path is provided on the bottom end face facing the regenerator 2 as shown in FIG.
a, 8b, and the peripheral groove 8a through the central rib projection 8c.
And a radial groove 8d is formed on the upper surface of the cold head 5 facing the gas flow path 5a along the outer peripheral edge.
Are notched. Then, the aforementioned circumferential grooves 8a, 8
e communicates with the beginning and end of the spiral groove 5b described above at the assembly position, and the peripheral groove 8e on the upper surface communicates with the gas channel groove 5a-1 of the cold head 5 described above.
【0027】かかる構成において、スターリング冷凍機
の運転時には、蓄冷器2から流出した作動ガスは、栓状
部材8の底面側に形成した前記溝8a,8b,8dを通
じてコールドヘッド5の内周面に形成した螺旋溝5bを
通流し、その終端から出た後に栓状部材8の上面に形成
した周溝8eを通じてコールドヘッド5の頂部内面に形
成したガス流路5aのガス流路溝5a-2,ガス集流部5
a-1を流れてディスプレーサ4の膨張シリンダ4aに送
られる。したがって、このガス通流過程では、作動ガス
は通路容積に対する伝熱面積の割合が大きな螺旋溝5b
に沿ってコールドヘッド5の内周面側を旋回しながら流
れた後、さらに頂部側ではガス流路溝5a-1を流れ、こ
の通流過程で作動ガスの冷熱がコールドヘッド5に伝熱
する。In this configuration, during operation of the Stirling refrigerator, the working gas flowing out of the regenerator 2 is transferred to the inner peripheral surface of the cold head 5 through the grooves 8a, 8b, 8d formed on the bottom surface of the plug-shaped member 8. After flowing through the formed spiral groove 5b and exiting from the end thereof, the gas flow groove 5a-2 of the gas flow path 5a formed on the inner surface of the top of the cold head 5 through the peripheral groove 8e formed on the upper surface of the plug-shaped member 8. Gas collecting part 5
It flows through a-1 and is sent to the expansion cylinder 4a of the displacer 4. Therefore, in this gas flow process, the working gas is supplied to the spiral groove 5b having a large ratio of the heat transfer area to the passage volume.
After flowing while turning on the inner peripheral surface side of the cold head 5 along the flow path, the gas further flows through the gas flow channel 5a-1 on the top side, and the cold heat of the working gas is transferred to the cold head 5 in the flowing process. .
【0028】したがって、ガス流路の容積(死容積)を
低く抑えながら、一方ではコールドヘッド5と作動ガス
との間の伝熱面積を大きくとれ、これによりコールドヘ
ッド5の熱通過率が高くなり、冷凍サイクルで発生した
冷熱がコールドヘッド5に効率よく伝熱する。なお、螺
旋溝5bを多条溝として形成すれば、作動ガスとの伝熱
面積がより一層大きくなる。Therefore, while keeping the volume (dead volume) of the gas flow channel low, the heat transfer area between the cold head 5 and the working gas can be increased, thereby increasing the heat transmission rate of the cold head 5. In addition, cold generated in the refrigeration cycle is efficiently transferred to the cold head 5. If the spiral groove 5b is formed as a multiple groove, the heat transfer area with the working gas is further increased.
【0029】また、ディスプレーサ4は管壁からの熱伝
導による熱侵入を極力低く抑えるために、通常はステン
レス鋼,あるいはTi合金などの熱伝導率の低い材料が
用いられているが、これに対して栓状部材8はディスプ
レーサ4よりも熱膨張率の大きな材質で構成する。これ
により、冷凍機運転時の低温状態ではディスプレーサ4
との熱膨張率の差を利用して栓状部材8がディスプレー
サの膨張シリンダ4aの外周に締まり嵌め状態に密着さ
れる。したがって、作動ガスがコールドヘッド5のガス
流路5a,螺旋溝5bを経由せずに栓状部材8の内周面
と膨張シリンダ4aとの間の隙間にバイパス(短絡)す
るのを効果的に防止できる。また、この場合に栓状部材
8の材質として、比熱の小さなアルミニウム,あるいは
アルミニウム合金を採用すれば、栓状部材8の熱容量が
小さくなるので前記効果に加えて冷凍機の起動から定常
運転に移行するプルダウン時間が短縮する効果が期待で
きる。The displacer 4 is usually made of a material having a low thermal conductivity, such as stainless steel or a Ti alloy, in order to minimize heat penetration due to heat conduction from the tube wall. The plug-like member 8 is made of a material having a higher coefficient of thermal expansion than the displacer 4. As a result, the displacer 4 is kept at a low temperature during the operation of the refrigerator.
The plug-shaped member 8 is tightly fitted to the outer circumference of the expansion cylinder 4a of the displacer by utilizing the difference in the coefficient of thermal expansion between the plug-shaped member 8 and the plug-shaped member 8. Therefore, it is possible to effectively prevent the working gas from bypassing (short-circuiting) the gap between the inner peripheral surface of the plug-shaped member 8 and the expansion cylinder 4a without passing through the gas flow path 5a and the spiral groove 5b of the cold head 5. Can be prevented. In this case, if aluminum or an aluminum alloy having a small specific heat is adopted as the material of the plug-shaped member 8, the heat capacity of the plug-shaped member 8 becomes small. The effect of reducing the pull-down time can be expected.
【0030】〔実施例2〕図2は本発明の請求項3に対
応する実施例を示すものである。この実施例において
は、その構成が基本的に先記実施例1と同様であるが、
コールドヘッド5の内周面に形成した螺旋溝5bが断面
三角溝としてなる。[Embodiment 2] FIG. 2 shows an embodiment corresponding to claim 3 of the present invention. In this embodiment, the configuration is basically the same as that of the first embodiment.
The spiral groove 5b formed on the inner peripheral surface of the cold head 5 becomes a triangular groove in cross section.
【0031】これにより、図1の断面矩形溝と比べて螺
旋溝の周長/断面積比が大きくなるので、これによりガ
ス流路の死容積を小さく抑えつつ、作動ガスとコールド
ヘッド5との間の接触面積,つまり伝熱面積をより一層
高めることができ、これによりコールドヘッド5の熱通
過率を高めて大きな冷凍出力が得られる。As a result, the peripheral length / cross-sectional area ratio of the spiral groove becomes larger than that of the rectangular groove shown in FIG. 1. The contact area between them, that is, the heat transfer area can be further increased, thereby increasing the heat transmission rate of the cold head 5 and obtaining a large refrigeration output.
【0032】〔実施例3〕図3はパルス管冷凍機を実施
対象とした本発明の請求項2,および9,10に対応す
る実施例を示すものである。この実施例においては、図
1,図2に示したスターリング冷凍機のディスプレーサ
4に代えてパルス管9を設置し、このパルス管9と蓄冷
器2,コールドヘッド5,および栓状部材8が一体に組
立てられている。[Embodiment 3] FIG. 3 shows an embodiment corresponding to the second, ninth and tenth aspects of the present invention, which is applied to a pulse tube refrigerator. In this embodiment, a pulse tube 9 is provided in place of the displacer 4 of the Stirling refrigerator shown in FIGS. 1 and 2, and the pulse tube 9 and the regenerator 2, the cold head 5, and the plug member 8 are integrated. Is assembled.
【0033】ここで、コールドヘッド5は先記実施例1
と同様に、キャップ状体となしてその内周面には螺旋溝
5bが形成されており、さらにコールドヘッド5の内周
面とパルス管9との間にはリング状の栓状部材8が装着
されている。また、パルス管9の開口端部には積層金網
などで作られた整流部10が筒状のホルダ11に収容さ
れこの位置に保持されている。この筒状ホルダ11は図
示のように筒部の断面がZ字形であり、その頂部から外
周に張出した鍔状フランジ11aを栓状部材8の端面と
該部材の上に載置した支持板12との間に挟持し、かつ
支持板12を栓状部材8にねじ13で締結して定位置に
固定している。さらに、整流部10を支持してパルス管
9の内方に突き出した筒形ホルダ11の先端部には、パ
ルス管9の管内に向けて拡大するテーパ面11bを形成
している。Here, the cold head 5 is used in the first embodiment.
Similarly, a spiral groove 5b is formed on the inner peripheral surface of the cap-shaped body, and a ring-shaped plug-shaped member 8 is provided between the inner peripheral surface of the cold head 5 and the pulse tube 9. It is installed. At the open end of the pulse tube 9, a rectifying unit 10 made of a laminated metal mesh or the like is accommodated in a cylindrical holder 11 and held at this position. The cylindrical holder 11 has a Z-shaped cross section as shown in the figure, and has a flange-like flange 11a projecting from the top to the outer periphery of the end surface of the plug-shaped member 8 and a support plate 12 placed on the member. , And the support plate 12 is fastened to the plug-like member 8 with screws 13 and fixed in place. Further, a tapered surface 11b that expands toward the inside of the pulse tube 9 is formed at the tip of the cylindrical holder 11 that supports the rectifying unit 10 and protrudes inward of the pulse tube 9.
【0034】かかる構成により、実施例1のスターリン
グ冷凍機と同様にコールドヘッド5の熱通過率を高めて
パルス管冷凍機の熱効率向上が図れるほか、作動ガスが
パルス管9に流入,流出する際には整流部10の整流作
用と併せて、前記のテーパ面11bが渦などの乱流発生
を抑えてパルス管冷凍機の効率改善に寄与する。With this configuration, as in the case of the Stirling refrigerator of the first embodiment, the heat transfer rate of the cold head 5 is increased to improve the thermal efficiency of the pulse tube refrigerator, and when the working gas flows into and out of the pulse tube 9. In addition to the rectifying action of the rectifying section 10, the tapered surface 11b suppresses the generation of turbulence such as eddies and contributes to the improvement of the efficiency of the pulse tube refrigerator.
【0035】[0035]
【発明の効果】以上述べたように、本発明の構成によれ
ば、コールドヘッドの内周面に螺旋溝を形成したこと
で、ここを流れる作動ガスとの熱交換面積の増加,並び
に適切なガス流速が得られて熱通過率,熱交換量の増大
化が図れる。さらに、コールドヘッド内に栓状部材を装
填したことでガス流路の死容積を低減して冷凍出力を高
めることができ、これにより小型な体格で熱効率の高い
ガスサイクル機関冷凍機を提供することができる。As described above, according to the structure of the present invention, since the spiral groove is formed on the inner peripheral surface of the cold head, the area of heat exchange with the working gas flowing therethrough can be increased, and the appropriate area can be obtained. The gas flow velocity is obtained, and the heat transfer rate and the amount of heat exchange can be increased. Furthermore, by mounting a plug-like member in the cold head, the dead volume of the gas flow path can be reduced and the refrigerating output can be increased, thereby providing a gas cycle engine refrigerator having a small size and high thermal efficiency. Can be.
【図1】本発明の実施例1に対応するスターリング冷凍
機のコールドヘッド周辺部の構成図であり、(a) は縦断
面図、(b),(c) はそれぞれ(a) 図における矢視X−X,
Y−Y断面図FIG. 1 is a configuration diagram of a cold head peripheral portion of a Stirling refrigerator corresponding to a first embodiment of the present invention, where (a) is a longitudinal sectional view, and (b) and (c) are arrows in FIG. Sight XX,
YY sectional view
【図2】本発明の実施例2に対応するスターリング冷凍
機のコールドヘッド周辺部の構成断面図FIG. 2 is a cross-sectional view of a configuration around a cold head of a Stirling refrigerator corresponding to a second embodiment of the present invention.
【図3】本発明の実施例3に対応するパルス管冷凍機の
コールドヘッド周辺部の構成断面図FIG. 3 is a cross-sectional view of a configuration around a cold head of a pulse tube refrigerator corresponding to a third embodiment of the present invention.
【図4】従来におけるスターリング冷凍機の全体構成図FIG. 4 is an overall configuration diagram of a conventional Stirling refrigerator.
1 ガス圧縮機 2 蓄冷器 4 ディスプレーサ 4a 膨張シリンダ 5 コールドヘッド 5a ガス流路 5a-1 ガス集流部 5a-2 ガス流路溝 5b 螺旋溝 7 外筒 8 栓状部材 8a,8b,8d,8e 溝(ガス流路) 9 パルス管 10 整流部 11 ホルダ 11a フランジ 11b テーパ面 12 支持板 DESCRIPTION OF SYMBOLS 1 Gas compressor 2 Regenerator 4 Displacer 4a Expansion cylinder 5 Cold head 5a Gas flow path 5a-1 Gas collecting part 5a-2 Gas flow path groove 5b Spiral groove 7 Outer cylinder 8 Plug member 8a, 8b, 8d, 8e Groove (gas flow path) 9 Pulse tube 10 Rectifier 11 Holder 11a Flange 11b Tapered surface 12 Support plate
Claims (10)
よび頂部を寒冷発生部とするコールドヘッドを組合せて
構成したスターリング冷凍機を対象とするガスサイクル
機関冷凍機であり、ディスプレーサの膨張シリンダを内
筒としてこれを取り巻く外筒との間の空間に蓄冷器を内
蔵するとともに、蓄冷器の低温側端とディスプレーサの
シリンダ開口端にまたがって頂部内面にガス流路を形成
したコールドヘッドを被着して蓄冷器,ディスプレー
サ,コールドヘッドを一体に組立てたものにおいて、前
記コールドヘッドをキャップ状体となしてその内周面に
螺旋溝を形成するとともに、該螺旋溝の始端,および終
端部を除く面域を覆ってコールドヘッドの内周面と前記
膨張シリンダの外周面との間に栓状部材を装着し、前記
螺旋溝を経由して作動ガスをコールドヘッドに流すよう
にしたことを特徴とするガスサイクル機関冷凍機。1. A gas cycle engine refrigerator intended for a Stirling refrigerator comprising a gas compressor, a regenerator, a displacer, and a cold head having a cold-generating section at the top, wherein an expansion cylinder of the displacer has an internal cylinder. A regenerator is built in the space between the outer cylinder surrounding it as a cylinder, and a cold head with a gas flow path formed on the inner surface of the top is attached to the low-temperature end of the regenerator and the cylinder opening end of the displacer. A regenerator, a displacer, and a cold head, which are integrally assembled, wherein the cold head is formed into a cap-like body to form a spiral groove on an inner peripheral surface thereof, and a surface excluding a start end and an end of the spiral groove. A plug-like member is attached between the inner peripheral surface of the cold head and the outer peripheral surface of the expansion cylinder so as to cover the region, and is formed via the spiral groove. Gas cycle engine refrigerator is characterized in that so as to flow the gas into the cold head.
部を寒冷発生部とするコールドヘッドを組合せて構成し
たパルス管冷凍機を対象とするガスサイクル機関冷凍機
であり、パルス管を内筒としてこれを取り巻く外筒との
間の空間に蓄冷器を内蔵するとともに、蓄冷器の低温側
端とパルス管の開口端にまたがって頂部内面にガス流路
を形成したコールドヘッドを被着して蓄冷器,パルス
管,コールドヘッドを一体に組立てたものにおいて、前
記コールドヘッドをキャップ状体となしてその内周面に
螺旋溝を形成するとともに、該螺旋溝の始端,および終
端部を除く面域を覆ってコールドヘッドの内周面と前記
膨張シリンダの外周面との間に栓状部材を装着し、前記
螺旋溝を経由して作動ガスをコールドヘッドに流すよう
にしたことを特徴とするガスサイクル機関冷凍機。2. A gas cycle engine refrigerator intended for a pulse tube refrigerator comprising a gas compressor, a regenerator, a pulse tube, and a cold head having a cold generation section at the top. A cold head with a built-in regenerator in the space between the outer cylinder surrounding it as a cylinder and a gas head formed on the inner surface of the top covering the low-temperature side end of the regenerator and the open end of the pulse tube is attached. A regenerator, a pulse tube, and a cold head, which are integrally assembled, wherein the cold head is formed into a cap-like body to form a spiral groove on an inner peripheral surface thereof, and excluding a start end and an end of the spiral groove. A plug-like member is mounted between the inner peripheral surface of the cold head and the outer peripheral surface of the expansion cylinder so as to cover the surface area, and the working gas flows to the cold head via the spiral groove. That gas cycle institutions refrigerator.
て、コールドヘッドの内周面に形成した螺旋溝を断面三
角形のV溝となしたことを特徴とするガスサイクル機関
冷凍機。3. The gas cycle engine refrigerator according to claim 1, wherein the spiral groove formed on the inner peripheral surface of the cold head is a V-shaped groove having a triangular cross section.
冷凍機において、コールドヘッドの内周面に複数条の螺
旋溝を形成したことを特徴とするガスサイクル機関冷凍
機。4. The gas cycle engine refrigerator according to claim 1, wherein a plurality of spiral grooves are formed on an inner peripheral surface of the cold head.
て、コールドヘッドの頂部内面に形成したガス流路が、
内筒の開口端と向かい合わせに形成した凹状のガス集流
部と、該ガス集流部から放射状に延びたガス流路溝とか
らなることを特徴とするガスサイクル機関冷凍機。5. The refrigerator according to claim 1, wherein the gas flow path formed on the inner surface of the top of the cold head comprises:
A gas cycle engine refrigerator comprising: a concave gas collecting portion formed to face an opening end of an inner cylinder; and a gas passage groove radially extending from the gas collecting portion.
て、栓状部材の両端面に、コールドヘッドの内周面に形
成した螺旋溝の始端と蓄冷器との間,および低温螺旋溝
の終端とコールドヘッドの頂部内面に形成したガス流路
との間を連通する溝部を形成したことを特徴とするガス
サイクル機関冷凍機。6. The refrigerating machine according to claim 1, wherein both ends of the plug-like member are provided between a start end of a spiral groove formed on an inner peripheral surface of the cold head and the regenerator, and a low-temperature spiral groove. A gas cycle engine refrigerator characterized in that a groove is formed to communicate between an end of the cold head and a gas flow path formed on the inner surface of the top of the cold head.
冷凍機において、栓状部材をディスプレーサの膨張シリ
ンダおよびパルス管よりも熱膨張率の大きな材料で構成
したことを特徴とするガスサイクル機関冷凍機。7. The refrigerator according to claim 1, wherein the plug-shaped member is made of a material having a larger coefficient of thermal expansion than the expansion cylinder and the pulse tube of the displacer. Gas cycle engine refrigerator.
レーサの膨張シリンダおよびパルス管の材質をステンレ
ス,もしくはチタン合金とし、栓状部材の材質をアルミ
ニウム,もしくはアルミニウム合金としたことを特徴と
するガスサイクル機関冷凍機。8. The gas refrigerator according to claim 7, wherein the material of the expansion cylinder and the pulse tube of the displacer is stainless steel or a titanium alloy, and the material of the plug-like member is aluminum or an aluminum alloy. Cycle engine refrigerator.
ヘッドのガス流路に通じるパルス管の開口端に整流部を
配し、該整流部を筒状のホルダに収容保持した上で、該
ホルダの頂部から外周に張り出す鍔状フランジを栓状部
材の端面と該部材の端面に締結した支持板との間に挟持
したことを特徴とするガスサイクル機関冷凍機。9. The refrigerator according to claim 2, wherein a rectifying section is provided at an open end of the pulse tube communicating with the gas flow path of the cold head, and the rectifying section is housed and held in a cylindrical holder. A gas cycle engine refrigerator, wherein a flange-like flange extending outward from the top of the holder is sandwiched between an end surface of the plug-like member and a support plate fastened to the end surface of the member.
ホルダの先端にパルス管内に向けて拡大するテーパ面を
形成したことを特徴とするガスサイクル機関冷凍機。10. The gas cycle engine refrigerator according to claim 9, wherein a tapered surface expanding toward the inside of the pulse tube is formed at the tip of the rectifying portion holder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09615899A JP3654041B2 (en) | 1999-04-02 | 1999-04-02 | Gas cycle engine refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09615899A JP3654041B2 (en) | 1999-04-02 | 1999-04-02 | Gas cycle engine refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000292022A true JP2000292022A (en) | 2000-10-20 |
JP3654041B2 JP3654041B2 (en) | 2005-06-02 |
Family
ID=14157560
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09615899A Expired - Fee Related JP3654041B2 (en) | 1999-04-02 | 1999-04-02 | Gas cycle engine refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3654041B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2821150A1 (en) * | 2001-02-17 | 2002-08-23 | Lg Electronics Inc | Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator |
US7434408B2 (en) | 2003-07-31 | 2008-10-14 | High Energy Accelerator Research Organization | Method for cooling an article using a cryocooler and cryocooler |
WO2012012785A1 (en) * | 2010-07-22 | 2012-01-26 | Flir Systems, Inc. | Expander for stirling engines and cryogenic coolers |
JP2014044018A (en) * | 2012-08-28 | 2014-03-13 | Sumitomo Heavy Ind Ltd | Cryogenic refrigerator |
JP2014129995A (en) * | 2012-12-28 | 2014-07-10 | Hyundai Motor Company Co Ltd | Rectification unit for stirling refrigerator |
JP2015183963A (en) * | 2014-03-25 | 2015-10-22 | 住友重機械工業株式会社 | Stirling refrigerator |
CN106016803A (en) * | 2016-06-29 | 2016-10-12 | 安徽万瑞冷电科技有限公司 | Cooling head of low temperature refrigerating machine |
CN112325499A (en) * | 2020-11-10 | 2021-02-05 | 南通智能感知研究院 | Pneumatic Stirling expander |
-
1999
- 1999-04-02 JP JP09615899A patent/JP3654041B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2821150A1 (en) * | 2001-02-17 | 2002-08-23 | Lg Electronics Inc | Pulse tube refrigerator has cover partially inserted into hollow cylinder with central cylinder combined with pulse tube and regenerator |
US7434408B2 (en) | 2003-07-31 | 2008-10-14 | High Energy Accelerator Research Organization | Method for cooling an article using a cryocooler and cryocooler |
WO2012012785A1 (en) * | 2010-07-22 | 2012-01-26 | Flir Systems, Inc. | Expander for stirling engines and cryogenic coolers |
US8910486B2 (en) | 2010-07-22 | 2014-12-16 | Flir Systems, Inc. | Expander for stirling engines and cryogenic coolers |
JP2014044018A (en) * | 2012-08-28 | 2014-03-13 | Sumitomo Heavy Ind Ltd | Cryogenic refrigerator |
JP2014129995A (en) * | 2012-12-28 | 2014-07-10 | Hyundai Motor Company Co Ltd | Rectification unit for stirling refrigerator |
JP2015183963A (en) * | 2014-03-25 | 2015-10-22 | 住友重機械工業株式会社 | Stirling refrigerator |
US10228164B2 (en) | 2014-03-25 | 2019-03-12 | Sumitomo Heavy Industries, Ltd. | Stirling refrigerator |
CN106016803A (en) * | 2016-06-29 | 2016-10-12 | 安徽万瑞冷电科技有限公司 | Cooling head of low temperature refrigerating machine |
CN112325499A (en) * | 2020-11-10 | 2021-02-05 | 南通智能感知研究院 | Pneumatic Stirling expander |
Also Published As
Publication number | Publication date |
---|---|
JP3654041B2 (en) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6327862B1 (en) | Stirling cycle cryocooler with optimized cold end design | |
US10274230B2 (en) | Annular portions protruding from a displacer and expansion space of a cryocooler | |
JP2000292022A (en) | Gas cycle engine refrigerating machine | |
KR100348618B1 (en) | Aftercooler and its manufacturing mathod for pulse tube refrigerator | |
JP3602823B2 (en) | Pulsating tube refrigerator | |
JPH03117855A (en) | Chiller type cryogenic refrigerator | |
JP3293538B2 (en) | Cool storage refrigerator | |
JP5415502B2 (en) | Cryogenic refrigerator | |
JP2521299Y2 (en) | Cold generation mechanism of cryogenic refrigerator | |
JP3635904B2 (en) | Gas cycle engine refrigerator | |
JPH0674584A (en) | Cryogenic refrigerator and operating method thereof | |
WO2019009019A1 (en) | Cryogenic refrigerator | |
JPH0634216A (en) | Expansion cylinder device of refrigerator | |
JP2019045046A (en) | Multistage cold storage refrigerator | |
Shinde et al. | A Review Paper on Pulse Tube Refrigerator | |
JPH04124561A (en) | Expander of stirling refrigerating machine | |
JP3741300B2 (en) | Pulse tube refrigerator | |
JP3363697B2 (en) | Refrigeration equipment | |
JP6975013B2 (en) | Cryogenic freezer | |
JPH09264623A (en) | Free displacer type stirling refrigerating machine | |
JP2004286414A (en) | Thermal damper for refrigerating machine | |
JP2004163038A (en) | Staring refrigerator | |
JP2004278877A (en) | Cold storage unit for refrigerating machine | |
JPH11257771A (en) | Cold storage refrigerator | |
JPH09133419A (en) | Pulse tube freezer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050221 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3654041 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080311 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090311 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100311 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110311 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120311 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130311 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140311 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |