JP3467913B2 - Low temperature device - Google Patents

Low temperature device

Info

Publication number
JP3467913B2
JP3467913B2 JP15653295A JP15653295A JP3467913B2 JP 3467913 B2 JP3467913 B2 JP 3467913B2 JP 15653295 A JP15653295 A JP 15653295A JP 15653295 A JP15653295 A JP 15653295A JP 3467913 B2 JP3467913 B2 JP 3467913B2
Authority
JP
Japan
Prior art keywords
low temperature
cooling
closed
cycle cooling
closed cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15653295A
Other languages
Japanese (ja)
Other versions
JPH098184A (en
Inventor
栄治 名取
武富 上川
節也 岩下
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15653295A priority Critical patent/JP3467913B2/en
Publication of JPH098184A publication Critical patent/JPH098184A/en
Application granted granted Critical
Publication of JP3467913B2 publication Critical patent/JP3467913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、冷却装置を用いたアン
テナ、検波装置など通信機器、赤外線分光分析器(IR
分析)、マイクロ波分光分析器など科学機器やコンピュ
ータ装置、記録装置など情報機器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an antenna using a cooling device, a communication device such as a detector, an infrared spectroscopic analyzer (IR).
Analysis), microwave spectroscopic analyzers and other scientific equipment, computer equipment, recording equipment, and other information equipment.

【0002】[0002]

【従来の技術】最近通信機器、科学機器、情報機器等の
高性能化に伴い、高性能化に重要な役割を持つデバイス
を低温環境で使うことが検討されている。それは低温環
境にすることにより、周知の如く極めて優れた性能を持
つ超電導デバイスを使えるだけでなく半導体デバイスも
低雑音化、高速化、高集積化が図れるためである。
2. Description of the Related Art Recently, as communication equipments, scientific equipments, information equipments, etc. have been improved in performance, it has been considered to use devices which play an important role in improving the performance in a low temperature environment. This is because, as is well known, not only can a superconducting device having extremely excellent performance be used, but also a semiconductor device can be made to have low noise, high speed, and high integration by making a low temperature environment.

【0003】低温環境にするための冷却装置は開サイク
ルタイプと閉サイクルタイプの2種類に大別できる。開
サイクルタイプはいわゆる寒剤冷却である液体窒素や液
体ヘリウムを用いる液体冷媒冷却、固体アルゴンやメタ
ン等の昇華潜熱を利用する固体冷媒冷却と宇宙空間の様
な低温シンクを利用し受動的に機能する放射冷却があ
る。これらは主にスーパーコンピューター、リニヤモー
タカー、電力エネルギー貯蔵装置の様な大型装置の冷却
に用いられている。
Cooling devices for maintaining a low temperature environment can be roughly classified into two types, an open cycle type and a closed cycle type. The open cycle type functions as a so-called cryogen cooling, liquid refrigerant cooling using liquid nitrogen or liquid helium, solid refrigerant cooling using latent heat of sublimation such as solid argon or methane, and a low temperature sink such as outer space to function passively. There is radiant cooling. These are mainly used for cooling large devices such as supercomputers, linear motor cars, and electric energy storage devices.

【0004】閉サイクルタイプにはスターリングサイク
ル(ST)、ギフォード・マクマホンサイクル(G
M)、ビルマイヤサイクル(VM)、ジュール・トムソ
ンサイクル(JT)、ブレイトンサイクル(BR)、パ
ルスチューブサイクル等がある。これらは主に蒸着機や
スパッタ装置に用いる真空ポンプ(クライオポンプ)や
コールドトラップ、赤外線イメージセンサー冷却、レー
ザーの冷却等比較的小型の産業機器・科学機器に用いら
れている。
The closed cycle type includes a Stirling cycle (ST) and a Gifford McMahon cycle (G
M), Bilmeier cycle (VM), Joule-Thomson cycle (JT), Brayton cycle (BR), pulse tube cycle and the like. These are mainly used in relatively small industrial and scientific equipment such as vacuum pumps (cryopumps) used in vapor deposition machines and sputtering equipment, cold traps, infrared image sensor cooling, and laser cooling.

【0005】近年は使用場所の制約が少なく、冷却温度
を容易に変えられる後者の閉サイクルタイプが注目され
ている。通常閉サイクルタイプを用いた冷却デバイス装
置の構造は図7に示す様に冷媒により冷却された冷却ス
テージ1にデバイス8を固定し冷却すると共にその周辺
を断熱のため真空チャンバー(断熱室)12で覆う構造
になっている。真空チャンバーの材料には主にステンレ
ススチールが用いられる。また図7では略式記号を用い
たが真空チャンバーには真空引きするための拡散ポンプ
17、ロータリーポンプ18またはクライオポンプ、タ
ーボ分子ポンプなどが併設される。
In recent years, the latter closed cycle type, which has few restrictions on the place of use and can easily change the cooling temperature, has been receiving attention. As shown in FIG. 7, the structure of the cooling device apparatus using the normally closed cycle type is such that the device 8 is fixed and cooled on the cooling stage 1 cooled by the refrigerant, and the periphery thereof is insulated by a vacuum chamber (insulation chamber) 12 for heat insulation. It has a structure that covers it. Stainless steel is mainly used as the material of the vacuum chamber. Although abbreviated symbols are used in FIG. 7, a diffusion pump 17, a rotary pump 18 or a cryopump, a turbo molecular pump, etc. for drawing a vacuum are provided in the vacuum chamber.

【0006】[0006]

【発明が解決しようとする課題】しかし、従来の閉サイ
クル冷却装置を用いた低温デバイス装置は以下の様な問
題を有していた。
However, the low temperature device apparatus using the conventional closed cycle cooling apparatus has the following problems.

【0007】(1)拡散ポンプ、ロータリーポンプ、ク
ライオポンプ、ターボ分子ポンプなどが併設されている
ため小型化が困難であった。
(1) Since a diffusion pump, a rotary pump, a cryopump, a turbo molecular pump and the like are provided side by side, downsizing is difficult.

【0008】(2)構造が複雑なため専門家のメンテナ
ンスを必要とした。例えばデバイスの故障であっても冷
凍機と共にメーカーに返品して修理を行っていた。
(2) Since the structure is complicated, it requires specialist maintenance. For example, even if the device failed, it was returned to the manufacturer together with the refrigerator and repaired.

【0009】(3)デバイスと冷凍機は一体となってい
て切り放す構造となっていないためユーザー側で必要な
デバイスを自由に選択して取り付けることが出来なかっ
た。
(3) Since the device and the refrigerator are not integrated and separated from each other, the user cannot freely select and install the required device.

【0010】(4)(3)の様に制約が多いと、冷凍機
は数量が出ない、数量が出ないと高価格、高価格だと数
量が出ないと悪循環となっていた。ちなみに小型冷却装
置の価格は現在最も安いものでも100万円以上と高
い。しかし数量が多くなると10万円以下も可能と言わ
れている。これらの点は民生機器へ低温デバイス装置を
普及させる上で大きな阻害となっていた。
If there are many restrictions as in (4) and (3), the refrigerator cannot produce the quantity, and if the quantity does not come out, the price is high. By the way, the price of a small cooling device is as high as 1 million yen or more even if it is the cheapest at present. However, it is said that less than 100,000 yen is possible if the quantity increases. These points have been a major obstacle to the spread of low-temperature device equipment to consumer equipment.

【0011】本発明は以上述べた問題点を解決するもの
であり、小型で、メンテナンスが容易で、自由にデバイ
スの選択が出来、民生機器へも応用可能な低温デバイス
装置を低コストで得んとするものである。
The present invention solves the above-mentioned problems and provides a low-temperature device which is small in size, easy to maintain, has a freely selectable device, and can be applied to consumer equipment at low cost. It is what

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
に、本発明よりなる低温デバイス装置は閉サイクル型冷
却装置を用いた低温デバイス装置において冷却ステージ
の周部に係合溝または係合部を有し冷却ステージを除く
シリンダ周部を真空に保持した閉サイクル冷却装置と、
一部に良熱伝導材料で構成され冷却ステージと熱的に接
続する部分を有する係合部または係合溝を有し、かつ
バイス周部を真空に保持したデバイス装置との2つのユ
ニットを含み前記デバイス装置と前記閉サイクル冷却
装置とは嵌合して成ること、上記デバイス装置は前記
サイクル冷却装置に繰り返し着脱が可能であること、熱
的に接合する場所を除く前記係合部または係合溝の材料
断面がメアンダ状であり、その厚さが0.2mm以下で
あること、前記デバイス装置または前記閉サイクル冷却
装置の熱的に接合する面にIn、In−Ga合金膜を形
成したことを特徴とする。このIn、In−Ga合金膜
はデバイス装置側に形成することが望ましい。さらに、
本発明よりなる低温デバイス装置は閉サイクル型冷却装
置を用いた低温デバイス装置は、前記デバイス装置にお
ける前記デバイス周部は窒素または不活性ガスの雰囲気
であること、前記デバイス周部の雰囲気の圧力が10
−3 〜10 −4 Torrであることを特徴とする。
To achieve the above object, according to the Invention The engagement groove or engagement with the periphery of the Oite cooling stage in the low-temperature device unit consisting of the present invention cryogenic device apparatus using the closed-cycle cooling system A closed-cycle cooling device that has a joint portion and holds the cylinder peripheral portion excluding the cooling stage in a vacuum;
It has an engaging portion or the engaging groove has a portion partially formed of a good thermal conductive material for connecting the cooling stage and thermally, and de <br/> devices periphery of the device apparatus held in vacuum Two you
Includes knit, said it made fitted to the device unit and the closed cycle cooling system, it is the device unit is capable of repeatedly detachable in the closed cycle cooling system, the engagement except where to thermally bonded material cross section of the engaging portion or the engaging groove is meander, that the thickness is 0.2mm or less, in the thermally bonded to the surface of the device unit or the closed cycle cooling system, in-Ga alloy It is characterized in that a film is formed. It is desirable to form the In and In-Ga alloy films on the device device side. further,
The low temperature device apparatus according to the present invention is a closed cycle type cooling device.
The low temperature device using the
The atmosphere around the device is nitrogen or an inert gas atmosphere.
That is, the pressure of the atmosphere around the device is 10
It is characterized in that it is -3 to 10 -4 Torr.

【0013】[0013]

【実施例】以下、実施例に従って本発明を詳細に説明し
ていく。
EXAMPLES The present invention will be described in detail below with reference to examples.

【0014】本発明による低温デバイス装置の基本構成
は閉サイクル冷却装置ユニットとデバイス装置ユニット
から成る。
The basic configuration of the low temperature device apparatus according to the present invention comprises a closed cycle cooling apparatus unit and a device apparatus unit.

【0015】その閉サイクル冷却装置ユニットのヘッド
部を図1に示す。閉サイクル型冷却装置には閉サイクル
冷却装置の中で最も高効率で小型化の可能なスターリン
グサイクルを採用し、中でも現時点で液体窒素温度以下
に冷却出来る装置で最も小型な冷却装置を用いた。先ず
閉サイクル冷却装置のシリンダ2の周部を冷却ステージ
1を残し覆う様に円筒状の外枠A4をセットする。該外
枠A4は熱伝導率の悪いステンレススチールよりなり外
周部の肉厚は1mmであるが上部は厚さ0.02〜0.
2mmで断面形状はメアンダ状6となっている。次にシ
リンダ2の上部と外枠A4を溶接し外部に冷却ステージ
1と外枠4により係合溝5を、内部にシリンダ2、フラ
ンジ3、外枠A4により断熱室A7を形成する。次に断
熱室A7をベーキングし脱ガスを行った後10ー5Tor
r以下の圧力に真空引きし更に外枠A4の低部と閉サイ
クル冷却装置のフランジ3を溶接し断熱室A7を高真空
状態に密封保持する。尚ここで外枠A4上部の厚さを
0.02〜0.2mmと薄くし、更に断面形状をメアン
ダ状6とし熱伝導経路を長くした理由は外枠A4の外周
から冷却ステージ1向けての熱伝導を極力抑えるためで
ある。また断面形状をメアンダ状6にした理由には熱伝
導を抑えるため外枠A4の厚さを薄くすると強度が低下
するがそれを補う目的もある。以上により閉サイクル冷
却装置ユニット14を得る。
The head portion of the closed cycle cooling device unit is shown in FIG. The closed-cycle type cooling system employs the most efficient and miniaturized Stirling cycle among closed-cycle cooling systems, and among them, the smallest cooling system that can cool below the liquid nitrogen temperature is used. First, a cylindrical outer frame A4 is set so as to cover the peripheral portion of the cylinder 2 of the closed-cycle cooling device while leaving the cooling stage 1. The outer frame A4 is made of stainless steel having a poor thermal conductivity, and the outer peripheral portion has a thickness of 1 mm, but the upper portion has a thickness of 0.02 to 0.
The cross-sectional shape is a meandering shape 6 at 2 mm. Next, the upper portion of the cylinder 2 and the outer frame A4 are welded to each other to form an engagement groove 5 on the outside by the cooling stage 1 and the outer frame 4, and an insulating chamber A7 on the inside by the cylinder 2, the flange 3 and the outer frame A4. Then 10 @ 5 Tor After degassing baked adiabatic chamber A7
The vacuum is evacuated to a pressure not higher than r, and the lower portion of the outer frame A4 and the flange 3 of the closed cycle cooling device are welded to hermetically maintain the heat insulating chamber A7 in a high vacuum state. Here, the reason why the thickness of the upper portion of the outer frame A4 was thinned to 0.02 to 0.2 mm and the cross-sectional shape was made into a meandering shape 6 to lengthen the heat conduction path was that the outer frame A4 was directed from the outer periphery toward the cooling stage 1. This is to suppress heat conduction as much as possible. Further, the reason why the cross-sectional shape is the meandering shape 6 is to reduce the strength by reducing the thickness of the outer frame A4 in order to suppress heat conduction, but there is also the purpose of supplementing it. As described above, the closed cycle cooling device unit 14 is obtained.

【0016】次にデバイス装置ユニットを図2に示す。
基本的にはHEMT(high electron m
obility transistor)に代表される
高速半導体デバイスやジョセフソンデバイスに代表され
る超伝導デバイスなどデバイス8、デバイス8と熱的に
接続した中間体9、前記係合溝5と嵌合する係合部1
0、外枠B11、断熱室B12から成る。先ず良熱伝導
材料である無酸素銅よりなる中間体9に閉サイクル冷却
装置ユニット14と同様な目的のメアンダ状断面を持つ
係合部10を接合し、次に中間体9に機械的な固定とI
n−Ga合金の様な低融点合金でデバイス8を接合固着
する。固体と固体の接点を通じての熱伝達率κ(WK-1
-2)はJ.Appl.Phys.27(1956)3
18に述べられているR.Bermanの研究によると κ=αP (αは比例定数) で示されるように接点に加えられる圧力にPに対して比
例関係にある。即ち熱伝導率κを向上させるには圧力P
を高くする必要がある。しかしデバイスは一般的に強度
がないため圧力Pを高くすると破壊や性能劣化を招く。
実施例の様に固体間を熱伝導性のよい低融点合金等で固
着することにより大きな圧力Pを加えることなく熱伝達
率κを向上させることが出来る。次にデバイス8等を接
合した中間体9と外枠B11を真空チャンバーに入れ1
ー5Torr以上の圧力に排気した後真空チャンバー内
にドライな窒素または不活性ガスを導入し10-3〜10
ー4Torrの圧力にする。更にこの真空状態で係合部1
0と外枠B11を接合し断熱室B12を真空状態に密封
保持する。ここでドライガスを導入したのは時間と共に
デバイス8や外枠B11の内部等の表面や内部に吸着し
ていたH2O、CO2等の放出によるデバイス特性の劣化
を防ぐためである。特に今話題の酸化物超伝導材料はH
2O、CO2により劣化し易いため必要不可欠な工程であ
る。また外枠B11の材料は低温デバイス装置の目的に
応じて使い分ける必要がある。特に電波、赤外線など電
磁波を検波する場合は外枠B11を金属でなく石英ガラ
ス、ソーダガラスなど電磁波を透過する材料で形成す
る。その場合ノイズや必要外の電磁波をカットするため
外枠B11内面の所定の場所にAl、Agなど金属膜ま
たは誘電体多層膜を形成する。以上によりデバイス装置
13ユニットを得る。
Next, the device unit is shown in FIG.
Basically, HEMT (high electron m)
device 8, such as a high-speed semiconductor device typified by an accessibility transistor, a superconducting device typified by a Josephson device, an intermediate body 9 thermally connected to the device 8, an engaging portion 1 that fits into the engaging groove 5.
0, an outer frame B11, and a heat insulating room B12. First, an engaging portion 10 having a meander-shaped cross section similar to that of the closed-cycle cooling device unit 14 is joined to an intermediate body 9 made of oxygen-free copper which is a good heat conductive material, and then mechanically fixed to the intermediate body 9. And I
The device 8 is bonded and fixed with a low melting point alloy such as an n-Ga alloy. Heat transfer coefficient κ (WK -1
m -2 ) is described in J. Appl. Phys. 27 (1956) 3
18 described in R. According to Berman's study, the pressure applied to the contact point is proportional to P as shown by κ = αP (α is a proportionality constant). That is, to improve the thermal conductivity κ, the pressure P
Need to be higher. However, since the device generally has no strength, increasing the pressure P causes breakage and performance deterioration.
By fixing the solids with a low melting point alloy having good thermal conductivity as in the embodiment, the heat transfer coefficient κ can be improved without applying a large pressure P. Next, the intermediate body 9 to which the devices 8 and the like are joined and the outer frame B11 are put in a vacuum chamber 1
0 -5 in a vacuum chamber was evacuated to a Torr or more pressure introducing dry nitrogen or inert gas 10 -3 to 10
-4 Set pressure to Torr. Further, in this vacuum state, the engaging portion 1
0 and the outer frame B11 are joined, and the heat insulating chamber B12 is hermetically held in a vacuum state. The dry gas is introduced here in order to prevent deterioration of the device characteristics due to the release of H 2 O, CO 2 and the like adsorbed on the surface such as the inside of the device 8 and the outer frame B11 and the inside with time. Especially, the oxide superconducting material which is the topic now is H
It is an indispensable step because it is easily deteriorated by 2 O and CO 2 . Further, it is necessary to properly use the material of the outer frame B11 according to the purpose of the low temperature device device. In particular, when electromagnetic waves such as radio waves and infrared rays are detected, the outer frame B11 is formed of a material such as quartz glass or soda glass that transmits electromagnetic waves instead of metal. In that case, a metal film such as Al or Ag or a dielectric multilayer film is formed at a predetermined position on the inner surface of the outer frame B11 in order to block noise and unnecessary electromagnetic waves. As a result, 13 device units are obtained.

【0017】次に作製した閉サイクル冷却装置ユニット
14とデバイス装置ユニット13を図3に示す様に嵌合
させ低温デバイス装置を得る。嵌合は係合溝5と係合部
10のメアンダ状にすることにより形成される表面凹凸
をスクリュー状に形成しネジ方式により行っている。そ
の嵌合状態を図4(a)に示す。接触面は密着している
程外周部から冷却ステージ1への熱伝導を抑える事が出
来る。尚図4(a)の他にも図4(b)の様な断面形状
でも良い。また中間体9の冷却ステージ1との接触面に
In、In−Ga合金の様な軟質金属膜を形成すると密
着性が向上し冷却ステージ1から中間体9しいてはデバ
イス8への熱伝導効率が良くなる。より好ましくはデバ
イス8と中間体9の接合で述べた様に低融点金属を溶融
し接合すると良い。その場合ユーザー側、特に家庭で取
り外しを行うことを前提とするとドライヤー程度で溶融
することが可能なIn−Gaの様な金属が好ましい。
Next, the closed cycle cooling device unit 14 and the device device unit 13 produced are fitted together as shown in FIG. 3 to obtain a low temperature device device. The fitting is performed by a screw method in which the surface irregularities formed by forming the engagement groove 5 and the engagement portion 10 in a meander shape are formed in a screw shape. The fitting state is shown in FIG. The closer the contact surface is, the more the heat transfer from the outer peripheral portion to the cooling stage 1 can be suppressed. In addition to the structure shown in FIG. 4A, the cross-sectional shape shown in FIG. Further, when a soft metal film such as In or In—Ga alloy is formed on the contact surface of the intermediate 9 with the cooling stage 1, the adhesion is improved, and the heat transfer efficiency from the cooling stage 1 to the intermediate 9 or the device 8 is increased. Will get better. More preferably, the low melting point metal is melted and bonded as described in the bonding of the device 8 and the intermediate 9. In that case, a metal such as In-Ga, which can be melted with a dryer, is preferable on the assumption that the user removes it, especially at home.

【0018】得られた低温デバイス装置のデバイス8部
の到達温度と80Kに於ける温度バラツキを測定した。
結果を従来例と共に表1に示した。断熱室B12に注入
したガスは断熱性の悪い(言い換えれば熱伝導性の良
い)Heを用い、圧力は8×10ー3Torrである。
The ultimate temperature of the device 8 part of the obtained low temperature device and the temperature variation at 80K were measured.
The results are shown in Table 1 together with the conventional example. As the gas injected into the heat insulating chamber B12, He having poor heat insulating property (in other words, having good heat conductivity) is used, and the pressure is 8 × 10 −3 Torr.

【0019】[0019]

【表1】 [Table 1]

【0020】表1から判るように従来例に比べ冷却能力
は僅か劣るもののデバイスの中で最も冷却能力が問題と
なる酸化物超伝導デバイスに最も小型な閉サイクル冷却
装置(冷却能力は冷媒であるHeの量に比例するため小
型にすると冷却能力は低下する)を用い、更に注入ガス
に最も断熱性の悪いHeを用いても充分使用可能な条件
であった。尚断熱室B12内の圧力は10ー2Torr台
以上になると冷却能力が顕著に低下するため10ー3To
rr以下が好ましい。N2または他の不活性ガスを注入
したものはHeより熱伝導率が低く断熱性がよいため表
1の到達温度より低くまたバラツキも少ない。
As can be seen from Table 1, although the cooling capacity is slightly inferior to that of the conventional example, the smallest closed-cycle cooling device for the oxide superconducting device (cooling capacity is a refrigerant) Since the cooling capacity is reduced when the size is reduced because it is proportional to the amount of He), and He, which has the worst adiabatic property as the injection gas, is sufficient. If the pressure in the heat insulating chamber B12 is in the range of 10 −2 Torr or more, the cooling capacity will be significantly reduced, so that it will be 10 −3 Tor.
It is preferably rr or less. The material into which N 2 or other inert gas is injected has a lower thermal conductivity than He and has a better heat insulating property, so that the temperature is lower than the ultimate temperature shown in Table 1 and there is little variation.

【0021】次に中間体9のデバイス8の代わりに7μ
幅のYBa2Cu37-xよりなる酸化物超伝導細線を形
成したSrTiO3基板を固着し装置ユニット13を1
20℃の恒温槽に1500H入れ酸化物超伝導細線の臨
界温度の変化を調べた。結果を断熱室B12内にガスを
注入しない比較例と別のガスを用いた比較例と共に表2
に示した。
Next, instead of the device 8 of the intermediate 9,
The SrTiO 3 substrate on which the oxide superconducting thin wire made of YBa 2 Cu 3 O 7-x having a width is formed is fixed and the device unit 13 is set to 1
The change in the critical temperature of the oxide superconducting thin wire was examined by putting 1500 H in a 20 ° C. constant temperature bath. The results are shown in Table 2 together with a comparative example in which no gas is injected into the heat insulation chamber B12 and a comparative example using another gas.
It was shown to.

【0022】[0022]

【表2】 [Table 2]

【0023】表2から判るように窒素または不活性ガス
を断熱室B12内に注入することにより臨界温度の低下
即ち劣化が抑えられている。これは酸化物超伝導体に影
響を与えないガスを注入することにより酸化物超伝導細
線へのH2O等の付着を抑えているためである。H2Oに
よる劣化はY系超伝導体で説明すると(1)式による分解
が考えられる。
As can be seen from Table 2, by injecting nitrogen or an inert gas into the heat insulating chamber B12, lowering of the critical temperature, that is, deterioration is suppressed. This is because by injecting a gas that does not affect the oxide superconductor, the adhesion of H 2 O or the like to the oxide superconducting thin wire is suppressed. Degradation due to H 2 O is considered to be decomposition according to Eq. (1) when explained using a Y-based superconductor.

【0024】 2Ba2YCu37+6H2O →3Ba(OH)2+Y2BaCuO5+5CuO+2O2 ・・・(1 ) これにCO2が加わるとBaCO3等炭素含有化合物の発
生が生じ劣化が更に進ものと考えられる。ちなみに空気
中に於ける分解生成物には炭素含有化合物が多い。
2Ba 2 YCu 3 O 7 + 6H 2 O → 3Ba (OH) 2 + Y 2 BaCuO 5 + 5CuO + 2O 2 (1) When CO 2 is added to this, a carbon-containing compound such as BaCO 3 is generated and the deterioration further progresses. Conceivable. By the way, many decomposition products in the air contain carbon-containing compounds.

【0025】尚コストアップとなるが長時間ベーキング
を行い問題となるH2O等を除去する場合はこの様なガ
スの注入は必要ない。またガスは使用温度で液化しない
方が好ましいが例えばArとKrは表2の臨界温度では
液化するが店頭や在庫の保管等デバイス装置は常に冷却
状態にないため有効である。
Although the cost is increased, such a gas injection is not necessary when baking for a long time to remove problematic H 2 O and the like. Further, it is preferable that the gas is not liquefied at the use temperature. For example, Ar and Kr are liquefied at the critical temperatures shown in Table 2, but it is effective because device devices such as storefronts and inventory storage are not always in a cooled state.

【0026】本実施例では閉サイクル冷却装置ユニット
14側に凹部即ち係合溝を設けたが図5の様にデバイス
装置ユニット13側に設けても、係合溝の形状が図6に
示す様に円筒状であっても何等差し支えない。尚円筒状
の場合図からも判るように外周部からメアンダ状部を通
っての熱侵入経路を長く出来き断熱性が更に良くなるた
めより好ましい。また閉サイクル冷却装置にスターリン
グサイクルを用いたがギフォードマクマフォンサイク
ル、JTサイクル、パルスチューブ冷却装置等他の閉サ
イクル冷却装置を用いても効果は同じであり何等差し支
え無い。
In this embodiment, the concave portion, that is, the engaging groove is provided on the closed cycle cooling device unit 14 side, but even if it is provided on the device device unit 13 side as shown in FIG. 5, the shape of the engaging groove is as shown in FIG. It does not matter if it is cylindrical. In the case of a cylindrical shape, as can be seen from the figure, it is more preferable because the heat penetration path from the outer peripheral portion to the meandering portion can be lengthened and the heat insulating property is further improved. Further, although the Stirling cycle is used as the closed cycle cooling device, the effect is the same even if other closed cycle cooling devices such as Gifford McMahon cycle, JT cycle, pulse tube cooling device are used, and there is no problem.

【0027】[0027]

【発明の効果】本発明は、以上説明した様に構成されて
いるので、以下に記載される様な効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0028】デバイス周部を真空に保持したデバイス装
置ユニットとシリンダ周部を真空に保持した閉サイクル
冷却装置ユニットからなること、デバイス装置ユニット
と閉サイクル冷却装置ユニットの嵌合部をメアンダ状に
して熱侵入経路を長くすると共にメアンダ状にして強度
を持たせてことにより肉厚を極力薄く抑えたことにより
デバイス装置と冷却装置の取り外しが可能になり故障が
発生した時ユーザーで故障箇所の交換が容易に出来るよ
うになった。また冷却装置を共通にして例えば半導体デ
バイスであるHEMTや超伝導デバイスであるジョセフ
ソンデバイスを必要特性や目的に応じて自由に選択でき
る様になった。この様なメンテナンスの容易化、応用の
自由度向上は高性能である低温デバイス装置の家庭への
普及を可能にする。また需要増加は閉サイクル冷却装置
の低価格化に、低価格化は需要増加につながり良い循環
となる。
It is composed of a device unit having a device peripheral portion kept in vacuum and a closed cycle cooling device unit having a cylinder peripheral portion kept in vacuum. The fitting unit of the device unit and the closed cycle cooling device unit is shaped like a meander. By lengthening the heat penetration path and making it meandering to have strength to keep the wall thickness as thin as possible, it is possible to remove the device unit and the cooling unit, and when a failure occurs the user can replace the failed part. It's easy now. Further, it has become possible to freely select, for example, a semiconductor device HEMT or a superconducting device Josephson device in accordance with a required characteristic or purpose by using a common cooling device. Such ease of maintenance and improvement in the degree of freedom of application enable the widespread use of high-performance low-temperature device devices in homes. In addition, increased demand leads to lower prices for closed-cycle cooling systems, and lower prices lead to increased demand, leading to a good cycle.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明よりなる第1の実施例に於ける低温デバ
イス装置の閉サイクル装置ユニットの部分縦断面図。
FIG. 1 is a partial vertical cross-sectional view of a closed cycle device unit of a low temperature device device according to a first embodiment of the present invention.

【図2】本発明よりなる第1の実施例に於ける低温デバ
イス装置のデバイス装置ユニットの部分縦断面図。
FIG. 2 is a partial vertical cross-sectional view of the device unit of the low-temperature device device according to the first embodiment of the present invention.

【図3】本発明よりなる第1の実施例に於ける低温デバ
イス装置の部分縦断面図。
FIG. 3 is a partial vertical sectional view of a low temperature device device according to a first embodiment of the present invention.

【図4】本発明よりなる第1の実施例に於ける低温デバ
イス装置の嵌合部部分断面図。
FIG. 4 is a partial cross-sectional view of a fitting portion of the low temperature device device according to the first embodiment of the present invention.

【図5】本発明よりなる第2の実施例に於ける低温デバ
イス装置の部分縦断面図。
FIG. 5 is a partial vertical cross-sectional view of a low-temperature device device according to a second embodiment of the present invention.

【図6】本発明よりなる第3の実施例に於ける低温デバ
イス装置の部分縦断面図。
FIG. 6 is a partial vertical cross-sectional view of a low temperature device device according to a third embodiment of the present invention.

【図7】従来の低温デバイス装置の部分縦断面図。FIG. 7 is a partial vertical cross-sectional view of a conventional low temperature device device.

【符号の説明】[Explanation of symbols]

1 ・・・冷却ステージ 2 ・・・シリンダ 3 ・・・フランジ 4 ・・・外枠A 5 ・・・係合溝 6 ・・・メンアンダ状 7 ・・・断熱室A 8 ・・・デバイス 9 ・・・中間体 10・・・係合部 11・・・外枠B 12・・・断熱室B 13・・・デバイス装置ユニット 14・・・閉サイクル冷却装置ユニット 15・・・リード線 16・・・コネクター 17・・・拡散ポンプ 18・・・ロータリーポンプ 1 ... Cooling stage 2 ... Cylinder 3 ... Flange 4 ... Outer frame A 5: Engagement groove 6 ... Men-under shape 7 ... Insulation room A 8 ・ ・ ・ Device 9 ... Intermediate 10 ... Engagement part 11 ... Outer frame B 12 ... Insulation room B 13 ... Device unit 14 ... Closed cycle cooling device unit 15 ... Lead wire 16 ... Connector 17 ... Diffusion pump 18 ... Rotary pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 達也 長野県諏訪市大和3丁目3番5号 セイ コーエプソン株式会社内 (56)参考文献 特開 平3−131726(JP,A) 特開 平8−200864(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25B 9/00 G01J 5/02 H01L 23/34 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Tatsuya Shimoda Inventor Tatsuya Shimoda, 3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation (56) Reference JP-A-3-131726 (JP, A) JP-A 8-200864 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) F25B 9/00 G01J 5/02 H01L 23/34

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 閉サイクル型冷却装置を用いた低温デバ
イス装置において冷却ステージの周部に係合溝または係
合部を有し、かつ冷却ステージを除くシリンダ周部を真
空に保持した閉サイクル冷却装置と、一部に良熱伝導材
料で構成され冷却ステージと熱的に接続する部分を有す
る係合部または係合溝を有しデバイス周部を真空に保持
したデバイス装置との2つのユニットを含み、前記デバ
イス装置と前記閉サイクル冷却装置とは嵌合して成るこ
とを特徴とする低温デバイス装置。
1. A closed holding has a engagement groove or engagement portion on the peripheral portion of the Oite cooling stage to a low temperature device apparatus using the closed-cycle cooling system, and a cylinder peripheral portion excluding the cooling stage vacuum A cycle cooling device and a device device having an engaging portion or an engaging groove having a portion which is partly made of a good heat conductive material and thermally connected to the cooling stage, and which holds the device peripheral portion in vacuum . comprises units, cryogenic devices apparatus characterized by comprising fitted from the device <br/> chair device and the closed cycle cooling system.
【請求項2】 上記デバイス装置は前記閉サイクル冷却
装置に繰り返し着脱が可能であることを特徴とする請求
項1記載の低温デバイス装置。
2. The low temperature device device according to claim 1, wherein the device device is repeatedly attachable to and detachable from the closed cycle cooling device.
【請求項3】 熱的に接合する場所を除く前記係合部ま
たは係合溝の材料断面がメアンダ状であり、その厚さが
0.2mm以下であることを特徴とする請求項1記載の
低温デバイス装置。
Wherein the engagement portion or the engagement groove of the material cross-section except where thermally bonding a meander, of claim 1, wherein the thickness thereof is 0.2mm or less Low temperature device equipment.
【請求項4】 前記デバイス装置または前記閉サイクル
冷却装置の熱的に接合する面にIn、In−Ga合金膜
を形成したことを特徴とする請求項1記載の低温デバイ
ス装置。
Wherein said device unit or the In thermally bonded to the surface of the closed cycle cooling system, cold device according to claim 1, wherein the forming the In-Ga alloy layer.
【請求項5】 前記デバイス装置における前記デバイス
周部は窒素または不活性ガスの雰囲気であることを特徴
とする請求項1記載の低温デバイス装置。
5. The device in the device device
Features a nitrogen or inert gas atmosphere around the perimeter
The low-temperature device device according to claim 1.
【請求項6】 前記デバイス周部の雰囲気の圧力が10
−3 〜10 −4 Torrであることを特徴とする請求項
5記載の低温デバイス装置。
6. The pressure of the atmosphere around the device is 10
-3 to 10 -4 Torr.
5. The low temperature device device according to 5.
JP15653295A 1995-06-22 1995-06-22 Low temperature device Expired - Lifetime JP3467913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15653295A JP3467913B2 (en) 1995-06-22 1995-06-22 Low temperature device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15653295A JP3467913B2 (en) 1995-06-22 1995-06-22 Low temperature device

Publications (2)

Publication Number Publication Date
JPH098184A JPH098184A (en) 1997-01-10
JP3467913B2 true JP3467913B2 (en) 2003-11-17

Family

ID=15629858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15653295A Expired - Lifetime JP3467913B2 (en) 1995-06-22 1995-06-22 Low temperature device

Country Status (1)

Country Link
JP (1) JP3467913B2 (en)

Also Published As

Publication number Publication date
JPH098184A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
KR930008003B1 (en) Low temperature thermoelectric refrigerating device using current carrying super conducting mode/nonsuperconducting mode
EP0797059B1 (en) Cryogenic cooling apparatus and cryogenic cooling method for cooling object to very low temperatures
US5714791A (en) On-chip Peltier cooling devices on a micromachined membrane structure
US5773875A (en) High performance, low thermal loss, bi-temperature superconductive device
JPH09312210A (en) Cooling device and cooling method
JP2002246922A (en) Radio receiver
JP2001174085A (en) Electronic equipment
KR100838969B1 (en) Cryogenic device with receiver and integrated antenna assembly
US6711912B2 (en) Cryogenic devices
JP3467913B2 (en) Low temperature device
JPS62261866A (en) Helium cooling device
JP2835305B2 (en) Multi-stage refrigerator
JP3656260B2 (en) Small cryogenic device
JPH06350146A (en) Superconducting device
JP2952552B2 (en) Current leads for superconducting equipment
JPH10275719A (en) Method for cooling superconductor
JPS63260007A (en) Superconducting equipment
JP3608296B2 (en) Low temperature device
JPH08200864A (en) Small-sized low-temperature device apparatus
JP2836221B2 (en) Cooling device for superconducting magnet
JPH06237020A (en) Current lead for superconducting coil device
JPS63263751A (en) Package for superconductor
JPH0722369U (en) Small cooling device
JP2001144635A (en) Wireless receiver
JPH0918062A (en) Superconducting magnet device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130905

Year of fee payment: 10

EXPY Cancellation because of completion of term