JPH08200864A - Small-sized low-temperature device apparatus - Google Patents

Small-sized low-temperature device apparatus

Info

Publication number
JPH08200864A
JPH08200864A JP7006671A JP667195A JPH08200864A JP H08200864 A JPH08200864 A JP H08200864A JP 7006671 A JP7006671 A JP 7006671A JP 667195 A JP667195 A JP 667195A JP H08200864 A JPH08200864 A JP H08200864A
Authority
JP
Japan
Prior art keywords
low
temperature device
small
temperature
sized low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7006671A
Other languages
Japanese (ja)
Inventor
Eiji Natori
栄治 名取
Taketomi Kamikawa
武富 上川
Setsuya Iwashita
節也 岩下
Tatsuya Shimoda
達也 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7006671A priority Critical patent/JPH08200864A/en
Publication of JPH08200864A publication Critical patent/JPH08200864A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE: To improve the maintainability by providing an outer frame having an engaging part to be engaged with a closed cycle refrigerator, and a connector for thermally connecting a low-temperature device such as an information unit etc., to the refrigerator, and holding vacuum at the periphery of the device corresponding to a heat insulation chamber formed of the frame and the connector. CONSTITUTION: A small-sized low-temperature device apparatus sole unit is formed at an outer frame 1 made of a material having excellent heat insulation by providing an engaging part 6 at the center, a material having excellent thermal conductivity (preferably a material having thermal conductivity of 100kcal/mhr deg.C or more) is disposed at the part 6, and a low-temperature device 3 is disposed at the connector 2. The frame 1 in which the connector 2 is assembled together with the device 3 is introduced into a vacuum chamber, which is evacuated in vacuum, the frame 1 and the connector 2 are welded or integrated by adhering, and evacuated in vacuum. Such a low temperature device apparatus is detachably set to a closed cycle refrigerator, and easily replaced.

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は、冷却装置を用いた放送
用アンテナ(BS等)、ミリ波・マイクロ波・極超短波
を利用した通信機器、赤外線分光分析器(IR分析)や
マイクロ波分光分析器など科学機器、コンピュータ装置
や記録装置など情報機器に関する。 【0002】 【従来の技術】最近通信機器、科学機器、情報機器等の
高性能化に伴い、高性能化に重要な役割を持つデバイス
を低温環境で使うことが検討されている。それは低温環
境にすることにより、周知の如く極めて優れた性能を持
つ超電導デバイスを使えるだけでなく半導体デバイスも
低雑音化、高速化、高集積化が図れるためである。 【0003】低温環境にするための冷却装置は開サイク
ルタイプと閉サイクルタイプの2種類に大別できる。開
サイクルタイプはいわゆる寒剤冷却である液体窒素や液
体ヘリウムを用いる液体冷媒冷却、固体アルゴンやメタ
ン等の昇華潜熱を利用する固体冷媒冷却と宇宙空間の様
な低温シンクを利用し受動的に機能する放射冷却があ
る。これらは主にスーパーコンピューター、リニヤモー
タカー、電力エネルギー貯蔵装置の様な大型装置の冷却
に用いられている。 【0004】閉サイクルタイプにはスターリングサイク
ル(ST)、ギフォード・マクマホンサイクル(G
M)、ビルマイヤサイクル(VM)、ジュール・トムソ
ンサイクル(JT)、ブレイトンサイクル(BR)、パ
ルスチューブサイクル等がある。これらは主に蒸着機や
スパッタ装置に用いる真空ポンプ(クライオポンプ)や
コールドトラップ、赤外線イメージセンサー冷却、レー
ザーの冷却等比較的小型の産業機器・科学機器に用いら
れている。 【0005】近年は使用場所の制約が少なく、冷却温度
を容易に変えられる後者の閉サイクルタイプが注目され
ている。閉サイクルタイプを用いた冷却デバイス装置の
構造は図13に示す様に冷却装置の冷媒により冷却され
た冷却ステージ9に低温デバイス3を固定冷却すると共
にその周辺を断熱のため真空キャビティー(断熱室)5
で覆う構造になっている。また真空キャビティー(断熱
室)5には真空引きするための拡散ポンプ(DP)21
やロータリーポンプ(RP)22などの排気系が併設さ
れる。排気系には他にクライオポンプ、ターボ分子ポン
プなどが用いられる。 【0006】 【発明が解決しようとする課題】しかし、従来の閉サイ
クル冷却装置を用いた低温デバイス装置は以下の様な問
題を有していた。 【0007】(1)拡散ポンプ、ロータリーポンプ、ク
ライオポンプ、ターボ分子ポンプなどが併設されている
ため小型化が困難であり、また構造が複雑になると専門
家のメンテナンスを必要とした。図10ではこれらのシ
ステムを簡略した記号で示しているが大きさは真空キャ
ビティーの数十倍から数百倍大きい。この点は民生機器
へ低温デバイス装置を普及させる上で大きな阻害因子と
なっていた。 【0008】(2)閉サイクル冷却装置本体を小型化す
ると冷媒の量が少なくなるため冷却能力が落ち、低温デ
バイス周辺の断熱効率や冷却ステージと低温デバイス間
の熱伝導効率面に無駄が有ると低温デバイスを均一に冷
却できずデバイスの特性劣化をまねいた。即ち小型化と
冷却能力には相反する面があり小型化を図るには如何に
断熱効率と熱伝導効率を高くするかがポイントと言え
る。 【0009】(3)低温デバイスまたは閉サイクル冷凍
機が故障したとき低温デバイス装置と閉サイクル冷凍機
が一体となっていたため必要な箇所だけの修理が困難で
あった。 【0010】故に低温デバイスと閉サイクル冷凍機の両
方を修理する場合メンテナンスコストが大きかった。ま
た必要な箇所の修理が可能な場合でもメーカーに於て可
能でありユーザー特に家庭に於いては不可能であった。
いまだ家庭で容易に交換できる装置はなかった。この点
も民生機器へ低温デバイス装置を普及させる上で大きな
阻害因子となっていた。 【0011】(4)マイクロ波、ミリ波などGHz以上
の高周波信号の伝送には損失を少なくするためリード線
を太くする必要がある。しかしリード線を太くするとリ
ード線からの熱伝導による熱エネルギーの侵入により低
温デバイスの温度を一定にすることができない。この様
な問題は電源のリード線にも有る。 【0012】本発明は以上述べた問題点を解決するもの
であり、小型化が出来、メンテナンスが容易で民生機器
への適用が可能で且つ多方面への応用が可能な小型低温
デバイス装置を得んとするものである。 【0013】 【課題を解決するための手段】上記目的を達成するため
に、本発明の小型低温デバイス装置は閉サイクル冷凍機
と係合するための係合部を有した外枠と、低温デバイス
を載せ低温デバイスと閉サイクル冷凍機とを熱的に接続
する接合体を備え、且つ該外枠と接合体により形成され
る断熱室即ち低温デバイスの周部を真空状態に保持して
いること、外枠をアンバー、絶縁体等熱伝導率が10k
cal/mhr℃以下好ましくは1kcal/mhr℃
以下のいわゆる断熱材料から形成し、接合体を100k
cal/mhr℃以上のいわゆる良熱伝導材料から形成
していることを特徴とする。この断熱室の真空度は10
ー3Torr以上好ましくは10-5torr以上である。 【0014】また本発明の小型低温デバイス装置は小型
低温デバイス装置と閉サイクル冷凍機が別ユニットにな
っていること、取り付け取り外しを行うネジ部、アンカ
ー部等取り付け機構を設けていること、閉サイクル冷凍
機の低温ステージと熱的に接続する接合体の表面にA
u、Pb、In、Ga金属または該金属を主成分とする
合金からなる膜または箔を形成していること、係合部周
部にパッキンを設け、小型低温デバイス装置と閉サイク
ル冷凍機よりなる空隙を外気と隔離したこと、その空隙
が減圧状態またはドライガス好ましくはC66、CO2
ガスで置換されていることを特徴とする。 【0015】さらに低温デバイスの周部を真空状態に保
持した小型低温デバイス装置に於て低温デバイスの周部
に低温デバイス装置と外部装置と信号を交信する発信回
路と受信回路を備えたこと、同様に低温デバイス装置の
周部に太陽電池の様な電磁波を電気エネルギーに変換す
る素子とコンデンサーを備えたことを特徴とする小型低
温デバイス装置。 【0016】 【実施例】以下、実施例に従って本発明を詳細に説明し
ていく。 【0017】(実施例1)本実施例の小型低温デバイス
装置の構造を図1と図2に示す。図1は小型低温デバイ
ス装置単体の断面図、図2は小型低温デバイス装置を閉
サイクル型冷凍機に組み込んだ冷凍機一体型デバイス装
置の断面図である。尚発明では閉サイクル冷凍機の中で
最も効率が良く、小型化の可能なスターリングサイクル
を用いた。 【0018】先ず図1に従い小型低温デバイス装置単体
から説明する。外枠1は断熱性の良い表1(熱伝導率は
0℃近傍に於ける値)に示す材料からなり中央部に係合
部6を有している。 【0019】 【表1】 【0020】 【表2】 【0021】外枠1の厚さは本実施例では1〜2mmで
あるが商品化に必要な強度を得られる範囲であれば外部
からの熱伝導による熱侵入を抑えるため極力薄い方が好
ましい。尚無機ガラスの様に太陽光線など熱エネルギー
となる電磁波を透過し易い材料を用いる場合は外枠1の
表面にAl等の金属膜を蒸着する。この金属膜は太陽光
線の浸入を防ぐだけでなく輻射防止効果をも合わせ持
つ。 【0022】接合体2は熱伝導性の良い表2に示す材料
よりなる。好ましくは100kcal/mhr℃以上の
熱伝導率を持つ材料が良い。また接合体2には低温デバ
イス3を密着固定している。次に外枠1内に低温デバイ
ス3他(リード線等)を載せた接合体2を組み込み、後
に真空チャンバー中に入れ真空引きすると共に外枠1と
接合体2を溶接または接着せしめ一体化する。一体化に
より断熱室5は真空状態に保持される。真空度は10-3
Torr以上が好ましく、より好ましくは10-5Tor
r以上である。真空度が悪いと断熱性が悪くなり低温デ
バイス3を冷却する能力が低下する。そのため真空度が
材料からの放出ガス等により長期に渡り維持できない場
合は外枠1をべーキングした後接合体2と接合する、外
枠1の内面に放出ガスを吸着するTi、Zr、Hf、希
土類等活性金属を蒸着する等の対策をとる。無機ガラス
と金属の様に相溶性の悪い材料の接合にはZnまたはS
bを添加したPb−Sn合金等無機ガラスと反応し易い
金属を添加した接合材4を用いて行うと強固で密封性に
優れた接合ができる。更に接合時に超音波を印加すると
よりその効果は大きくなる。 【0023】上記により得られた小型低温デバイス装置
(単体)を図2に示す様に冷凍機11にセットし冷凍機
一体型デバイス装置を得る。ここで用いた冷凍機は現在
得られる最も小型の冷凍機である。図2に於て8と9と
10はそれぞれ冷凍機11のシリンダと冷却ステージと
フランジである。小型低温デバイス装置を冷凍機11に
セットすることにより冷却ステージ9と接合体2、更に
低温デバイス3は熱的に接合し、低温デバイスを所定の
温度に冷却する。この熱的接合をより詳しく分析してみ
る。冷却ステージ9と接合体2、即ち固体と固体の接点
を通じての熱伝達率κ(WK-1-2)はR.Berma
nの研究によると κ=αP (αは比例定数) で示される。即ち熱伝達率κは接点に加えられる圧力P
に対して比例関係にある。故に低温デバイス3を安定し
て冷却するには冷却ステージ9と接合体2を所定の安定
した圧力で接触係合させる必要がある。 【0024】 【表3】 【0025】そこで本発明では図3または図4または図
5に示すように接合体2、または外枠1の係合部6、ま
たは外枠1の外周部にネジ部を形成し小型低温デバイス
装置を冷凍機11に固定している。ネジ固定の他にも図
7または図8の様なアンカー14や爪15による固定で
も何等差し支えない。以上により得られた冷凍機一体型
デバイス装置の77Kまでの到達時間と低温77Kに於
ける温度安定性を外枠1または接合体2に他の材料を用
いた装置と従来の排気系を有する装置と比較した。測定
は湿度60%温度25℃の恒温恒湿槽内で1H時間稼動
後行った。結果をそれぞれ表3(材料による比較)と表
4(従来例との比較:図11の装置)に示す。尚実施例
と比較例は材料が異なる他は外枠1と接合体2形状はほ
ぼ同じである。 【0026】表3から外枠1と接合体2の材料に冷却特
性が大きく影響され、適切な材料の選択が必要なことが
判る。尚差が顕著にでたのは民生機器への普及を考慮し
現在得られる最も小さい小型冷凍機を用いためである。
通常小型化を図ると冷媒の量が少なくなり冷却能力は低
下する。しかし民生機器への普及を考えると低下は避け
られないため如何に外部からの熱エネルギーの侵入を押
え、如何に冷却ステージ9から低温デバイスへの冷却効
率を上げるかがポイントと言える。 【0027】 【表4】 【0028】本実施例の様に適正材料の選択、冷却経路
の熱伝導効率向上、断熱室6の安定した高真空化を図る
ことにより従来の断熱室をDPやRPで排気する装置
(特性を表4に示す)と比較し僅か低下するもののほぼ
同等の性能が得られた。また外枠1と接合体2はそれぞ
れ熱伝導率が10kcal/mhr℃以下、100kc
al/mhr℃以上の材料を組み合わせる必要があるこ
とが判る。 【0029】(実施例2)外枠1に硼珪酸ガラス(内面
にAl蒸着)を、接合体2にCuを用いて実施例1とほ
ぼ同じ工程、構造で製造したものであるが図6に示すよ
うに接合体2の低温ステージ9と接触する面に密着層1
3を形成した点がことなる。密着層13には表面にA
u、Pb、In、Ga金属またはそれらを主成分とする
合金を用いて蒸着、箔の接着により形成する。密着層1
3の厚さは冷凍機11に組み込んだ状態で0.5mm以
下である。またGa−In合金等の様に室温近傍に融点
を有する材料は加熱し溶融した状態で冷凍機に組み込む
か組み込んだんだ状態で溶融し形成する。この様にして
得られた冷凍機一体型デバイス装置を実施例1と同様な
方法で評価した。結果を表5に示す。 【0030】 【表5】 【0031】表5に示す様に密着層13を形成すると実
施例1より更に性能が向上しているのが判る。これは軟
質性、延伸性に優れた密着層13を接合体2と低温ステ
ージ9の中間部に形成することにより部品の寸法バラツ
キや部品の表面凹凸により実質の接触面積が少なかった
ものが改善されたためである。さらにIn−Gaを用い
た時の様に加熱し溶融させると接触面積はより増加し確
実に接合するためより冷却性能は向上する。In−Ga
合金は組成比を調整することにより融点を室温近傍にで
きるため僅かな加熱でよく家庭でも容易に行うことが出
来る。但しAuを除き接合体2材料より熱伝導率が低く
厚すぎると逆効果になるため好ましくは0.5mm以下
が良い。 【0032】この様に密着層13の形成は更に冷却性能
を必要とする時に有効である。また個人差が大きい民生
に普及した場合はこの密着層13がその個人差によるセ
ットバラツキを吸収する。 【0033】(実施例3)実施例1の装置に図9に示す
ようにフランジ部またはシリンダ部またはその両方にパ
ッキン17、18を形成した。 【0034】 【表6】 【0035】更に小型低温デバイス装置と冷凍機を組み
込む時にできる隙間19を減圧状態かCO2やN2等ドラ
イガスで置換する。 【0036】得られた装置を雨天を想定して、湿度90
%以上の恒温恒湿槽内で77Kまでの到達時間と温度安
定性を調べた。尚到達時間は恒温恒湿槽内に1H入れ冷
凍機の昇温降温を1度繰り返した後の測定であり温度安
定性は到達時間測定後200H冷凍機を稼動した後測定
した値である。 【0037】結果を表6から判る様にパッキンを形成し
且つドライガスで置換または減圧にした装置は優れた長
期安定性を示しているのに対してパッキンの無い装置は
到達時間と温度安定性、共に悪くなっている。これはパ
ッキンの無い装置は隙間19内に水蒸気が侵入し凝結さ
らには接合体2の近傍で凝固して隙間19内の熱伝導率
を上げ断熱効果を低下させているためである。凝固は外
枠1に圧力を加え250H後には外枠1の係合部6が破
壊した。尚本実施例の中でも減圧中とCO2の特性が良
いのは上記ガス中でCO2が最も熱伝導率が低いためで
あり、減圧中はガス分子の自由行路が長くなり熱伝導率
は更に低下しているためである。 【0038】(実施例4)マイクロ波、ミリ波などGH
z以上の高周波信号の伝送などリード線を太くする必要
のある低温デバイス装置に適している。 【0039】図10と図11に本実施例による小型低温
デバイス装置の回路の模式図を図12にその断面構造図
を示す。超伝導アンテナ、超伝導ミクサ(周波数混合)
等を形成した低温デバイス2の近傍にミクサからのIF
信号を断熱室5外にある外部装置に発信するための発信
回路と超伝導アンテナから送信するための発信信号を外
部装置から受信するための受信回路よりなる発受信装置
20を設ける。本実施例では発信回路の発信素子に半導
体レーザーを、受信回路の受信素子にフォトダイオード
を用いた。また発受信回路20に隣接して電磁波を電気
エネルギーに変換する変換素子(例えば太陽電池)とそ
の電気エネルギーを貯蓄するコンデンサーを備えたエネ
ルギー貯蔵装置21を備える。変換素子には光電現象を
持つpn接合素子を用いた。発受信装置20、低温デバ
イス2は主にこのエネルギー貯蔵装置21から電気エネ
ルギーの供給を受け作動する。 【0040】得られた冷凍機一体型デバイス装置の室温
から77Kまでの到達時間、77Kに於ける熱安定性を
調べた。結果をリード線を用いた比較例と共に表7に示
した。尚ここに用いた比較例のリード線は高周波(GH
z域)の伝搬損を抑えるため可能な限り細くしているが
太い。 【0041】 【表7】 【0042】この様に本実施例では熱伝導経路となる太
いリード線を真空断熱した断熱室5内に引き込まなくて
もよいため77Kまでの到達時間と熱安定性は大幅に改
善された。尚外部装置との交信にミリ波以下の波長の電
磁波を用いると熱侵入の少ない石英ガラス、有機材料で
構成された光ファイバーでの信号伝送が可能となり同様
な効果が得られる。 【0043】上記実施例では閉サイクル冷凍機にスター
リングサイクル型を用いたがGM(ギフォードマクマホ
ンサイクル)型、ビルマイヤサイクル型、パルスチュー
ブ型等他の閉サイクル冷凍機を用いても何等差し支えな
い。 【0044】 【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載される様な効果を奏する。 【0045】低温デバイス周辺を適切な材料且つ適切な
構造で高真空に密閉保持したこと、低温デバイス側(小
型低温デバイス装置)と冷凍機を別ユニットにし脱着機
構を設けたこと、小型低温デバイス装置と冷凍機の係合
接触面に軟質延伸材料膜または箔を形成し密着面積を増
加させ係合バラツキがあっても熱伝導に影響が出ないよ
うにしたことにより低温デバイス側または冷凍機側が故
障した時に交換必要なユニットを容易に取り替えできる
ようになった。この様なメンテナンスの容易化は高性能
である低温デバイス装置の家庭への普及を可能にする。 【0046】そして、小型低温デバイス装置内に信号の
受発信装置と電磁波を電気エネルギーに変換し且つ貯蔵
する装置を設けることによりリード線を廃止し熱の侵入
を抑えることができるため冷却効率が改善され低温デバ
イスを安定に冷却することが可能になった。リード線の
廃止は交換時に於けるリード線の接続を必要としないた
めメンテナンスの容易化にもつながる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a broadcasting antenna (BS, etc.) using a cooling device, communication equipment utilizing millimeter waves, microwaves, and ultrashort waves, and infrared spectroscopy. The present invention relates to scientific equipment such as an analyzer (IR analysis) and a microwave spectrum analyzer, and information equipment such as a computer device and a recording device. 2. Description of the Related Art Recently, as communication equipment, scientific equipment, information equipment, and the like have become higher in performance, it has been considered to use a device that plays an important role in improving the performance in a low temperature environment. This is because, as is well known, not only can a superconducting device having extremely excellent performance be used, but also a semiconductor device can be made to have low noise, high speed, and high integration by making a low temperature environment. Cooling devices for maintaining a low temperature environment can be roughly classified into two types, an open cycle type and a closed cycle type. The open cycle type functions as a so-called cryogen cooling, liquid refrigerant cooling using liquid nitrogen or liquid helium, solid refrigerant cooling using latent heat of sublimation such as solid argon or methane, and a low temperature sink such as outer space to function passively. There is radiant cooling. These are mainly used for cooling large devices such as supercomputers, linear motor cars, and electric energy storage devices. The closed cycle type includes a Stirling cycle (ST) and a Gifford McMahon cycle (G
M), Bilmeier cycle (VM), Joule-Thomson cycle (JT), Brayton cycle (BR), pulse tube cycle and the like. These are mainly used in relatively small industrial and scientific equipment such as vacuum pumps (cryopumps) used in vapor deposition machines and sputtering equipment, cold traps, infrared image sensor cooling, and laser cooling. In recent years, the latter closed cycle type, which has few restrictions on the place of use and can easily change the cooling temperature, has been receiving attention. As shown in FIG. 13, the structure of the cooling device device using the closed cycle type is such that the low temperature device 3 is fixedly cooled on the cooling stage 9 cooled by the refrigerant of the cooling device, and the periphery thereof is vacuum cavity (insulation chamber). ) 5
The structure is covered with. The vacuum cavity (insulation chamber) 5 has a diffusion pump (DP) 21 for drawing a vacuum.
An exhaust system such as a rotary pump (RP) 22 is also provided. In addition, a cryopump, a turbo molecular pump, etc. are used for the exhaust system. [0006] However, the conventional low temperature device apparatus using the closed cycle cooling device has the following problems. (1) Since a diffusion pump, a rotary pump, a cryopump, a turbo molecular pump, etc. are provided side by side, downsizing is difficult, and if the structure becomes complicated, specialist maintenance is required. In FIG. 10, these systems are indicated by simplified symbols, but the size is several tens to several hundreds times larger than the vacuum cavity. This point was a major impediment to the spread of low-temperature device equipment to consumer equipment. (2) If the main body of the closed-cycle cooling device is downsized, the amount of the refrigerant is reduced, so that the cooling capacity is lowered, and there is a waste of heat insulation efficiency around the low temperature device and heat conduction efficiency between the cooling stage and the low temperature device. The low temperature device could not be cooled uniformly, resulting in deterioration of device characteristics. That is, there is a conflict between the miniaturization and the cooling capacity, and it can be said that how to increase the adiabatic efficiency and the heat conduction efficiency is the key to the miniaturization. (3) When the low-temperature device or the closed-cycle refrigerator is out of order, the low-temperature device device and the closed-cycle refrigerator are integrated, so that it is difficult to repair only necessary parts. Therefore, maintenance costs are high when repairing both the low temperature device and the closed cycle refrigerator. Moreover, even if the necessary parts can be repaired, it is possible at the manufacturer and not at the user, especially at home.
There was still no device that could be easily replaced at home. This point was also a major impediment to the spread of low-temperature device equipment to consumer equipment. (4) To transmit a high frequency signal of GHz or higher such as a microwave or a millimeter wave, it is necessary to make the lead wire thick to reduce loss. However, if the lead wire is made thick, the temperature of the low temperature device cannot be kept constant due to the penetration of thermal energy due to heat conduction from the lead wire. Such a problem also exists in the lead wire of the power supply. The present invention solves the above-mentioned problems and provides a small-sized low-temperature device device which can be miniaturized, easy to maintain, applicable to consumer equipment, and applicable to various fields. It is intended. In order to achieve the above object, a small-sized low-temperature device device of the present invention includes an outer frame having an engaging portion for engaging with a closed-cycle refrigerator, and a low-temperature device. A low temperature device and a closed-cycle refrigerator are thermally connected to each other, and a heat insulating chamber formed by the outer frame and the bonded body, that is, the peripheral portion of the low temperature device is held in a vacuum state, The outer frame is amber, the thermal conductivity of the insulator is 10k
cal / mhr ° C or lower, preferably 1 kcal / mhr ° C
It is made of the following so-called heat insulating material, and the bonded body is 100 k
It is characterized by being formed of a so-called good heat conductive material having a cal / mhr ° C. or higher. The degree of vacuum in this insulation room is 10
-3 Torr or more, preferably 10 -5 torr or more. Further, the small-sized low-temperature device device according to the present invention is such that the small-sized low-temperature device device and the closed-cycle refrigerator are separate units, provided with a mounting mechanism such as a screw part for attaching and detaching, an anchor part, and a closed-cycle. A on the surface of the bonded body that is thermally connected to the low temperature stage of the refrigerator
A film or foil made of u, Pb, In, Ga metal or an alloy containing the metal as a main component is formed, packing is provided around the engaging portion, and a small low temperature device device and a closed cycle refrigerator are used. The void is isolated from the outside air, and the void is in a depressurized state or dry gas, preferably C 6 H 6 , CO 2
It is characterized by being replaced by gas. Furthermore, in a small-sized low-temperature device device in which the peripheral part of the low-temperature device is held in a vacuum state, the peripheral part of the low-temperature device is provided with an oscillation circuit and a receiving circuit for communicating signals with the low-temperature device device and an external device. In addition, a small low temperature device device, which is provided with an element for converting electromagnetic waves such as a solar cell into electric energy and a capacitor around the periphery of the low temperature device device. EXAMPLES The present invention will be described in detail below with reference to examples. (Embodiment 1) The structure of a small-sized low-temperature device device of this embodiment is shown in FIGS. 1 and 2. FIG. 1 is a sectional view of a small-sized low-temperature device device alone, and FIG. 2 is a sectional view of a refrigerator-integrated device device in which the small-sized low-temperature device device is incorporated in a closed-cycle refrigerator. In the invention, the Stirling cycle, which has the highest efficiency among the closed cycle refrigerators and can be downsized, was used. First, referring to FIG. 1, a small low-temperature device unit alone will be described. The outer frame 1 is made of the material shown in Table 1 (heat conductivity is a value in the vicinity of 0 ° C.) having a good heat insulating property, and has an engaging portion 6 in the central portion. [Table 1] [Table 2] The thickness of the outer frame 1 is 1 to 2 mm in the present embodiment, but it is preferably as thin as possible in order to suppress heat intrusion due to heat conduction from the outside as long as the strength required for commercialization is obtained. When using a material such as inorganic glass that easily transmits electromagnetic waves such as sunlight that generate thermal energy, a metal film such as Al is deposited on the surface of the outer frame 1. This metal film not only prevents the intrusion of sunlight but also has the effect of preventing radiation. The joint body 2 is made of the material shown in Table 2 having good thermal conductivity. A material having a thermal conductivity of 100 kcal / mhr ° C. or higher is preferable. Further, the low temperature device 3 is tightly fixed to the bonded body 2. Next, the joined body 2 on which the low temperature device 3 and others (lead wires, etc.) are mounted is incorporated into the outer frame 1, and later placed in a vacuum chamber to evacuate and the outer frame 1 and the joined body 2 are welded or bonded to be integrated. . The heat insulation chamber 5 is maintained in a vacuum state by the integration. Vacuum degree is 10 -3
Torr or more is preferable, and 10 −5 Tor is more preferable.
r or more. If the degree of vacuum is poor, the heat insulation is poor and the ability to cool the low temperature device 3 is reduced. Therefore, when the degree of vacuum cannot be maintained for a long period of time due to the gas released from the material, the outer frame 1 is baked and then joined to the joined body 2, Ti, Zr, Hf, which adsorbs the released gas on the inner surface of the outer frame 1, Take measures such as vapor deposition of active metals such as rare earths. Zn or S is used for joining materials with poor compatibility such as inorganic glass and metal.
When the bonding material 4 containing a metal that easily reacts with the inorganic glass such as Pb-Sn alloy containing b is added, strong and excellent sealing can be achieved. Further, when ultrasonic waves are applied at the time of joining, the effect becomes larger. The small-sized low-temperature device device (single unit) obtained as described above is set in the refrigerator 11 as shown in FIG. 2 to obtain a refrigerator-integrated device device. The refrigerator used here is the smallest refrigerator currently available. In FIG. 2, 8 and 9 and 10 are a cylinder, a cooling stage and a flange of the refrigerator 11, respectively. By setting the small-sized low-temperature device device in the refrigerator 11, the cooling stage 9 and the joined body 2, and further the low-temperature device 3 are thermally joined to cool the low-temperature device to a predetermined temperature. Let us analyze this thermal bonding in more detail. The heat transfer coefficient κ (WK −1 m −2 ) through the cooling stage 9 and the bonded body 2, that is, the contact between solid and solid is R.I. Berma
According to the study of n, it is shown by κ = αP (α is a proportional constant). That is, the heat transfer coefficient κ is the pressure P applied to the contacts.
Is proportional to. Therefore, in order to stably cool the low temperature device 3, it is necessary to bring the cooling stage 9 and the bonded body 2 into contact with each other at a predetermined stable pressure. [Table 3] Therefore, in the present invention, as shown in FIG. 3 or FIG. 4 or FIG. 5, a small low temperature device device is formed by forming a threaded portion on the joined body 2, the engaging portion 6 of the outer frame 1, or the outer peripheral portion of the outer frame 1. Is fixed to the refrigerator 11. In addition to the screw fixing, the fixing by the anchor 14 or the claw 15 as shown in FIG. 7 or 8 does not matter. The above-obtained refrigerator-integrated device device has an arrival time up to 77K and temperature stability at a low temperature of 77K, and a device using another material for the outer frame 1 or the bonded body 2 and a device having a conventional exhaust system. Compared with. The measurement was performed after operating for 1 hour in a thermo-hygrostat having a humidity of 60% and a temperature of 25 ° C. The results are shown in Table 3 (comparison by material) and Table 4 (comparison with conventional example: apparatus in FIG. 11). In addition, the shapes of the outer frame 1 and the bonded body 2 are almost the same in the example and the comparative example except that the materials are different. It can be seen from Table 3 that the cooling characteristics are greatly affected by the materials of the outer frame 1 and the bonded body 2, and that it is necessary to select an appropriate material. The significant difference was due to the use of the smallest small refrigerators currently available in consideration of the spread to consumer equipment.
Usually, when the size is reduced, the amount of the refrigerant is reduced and the cooling capacity is lowered. However, in consideration of its widespread use in consumer equipment, a decrease is inevitable, so it can be said that the point is how to suppress the intrusion of thermal energy from the outside and how to improve the cooling efficiency from the cooling stage 9 to the low temperature device. [Table 4] A device for exhausting the conventional heat insulating chamber by DP or RP by selecting an appropriate material, improving the heat transfer efficiency of the cooling path, and achieving a stable high vacuum of the heat insulating chamber 6 as in this embodiment Almost the same performance was obtained, although slightly lower than that shown in Table 4). The outer frame 1 and the bonded body 2 have a thermal conductivity of 10 kcal / mhr ° C or less and 100 kc, respectively.
It is understood that it is necessary to combine materials having al / mhr ° C. or higher. (Example 2) Borosilicate glass (Al vapor deposition on the inner surface) was used for the outer frame 1 and Cu was used for the bonded body 2 in the same process and structure as in Example 1, but FIG. As shown in the figure, the adhesive layer 1 is formed on the surface of the bonded body 2 that contacts the low temperature stage 9.
The point where 3 is formed is different. The surface of the adhesion layer 13 is A
It is formed by vapor deposition using a metal of u, Pb, In, Ga or an alloy containing them as a main component and adhering a foil. Adhesion layer 1
The thickness of No. 3 when assembled in the refrigerator 11 is 0.5 mm or less. Further, a material having a melting point near room temperature, such as a Ga-In alloy, is formed by melting in a state of being heated and melted, or incorporated in a refrigerator. The refrigerator-integrated device apparatus thus obtained was evaluated in the same manner as in Example 1. The results are shown in Table 5. [Table 5] As shown in Table 5, it can be seen that when the adhesion layer 13 is formed, the performance is further improved as compared with the first embodiment. This is improved by forming an adhesion layer 13 having excellent softness and stretchability in the intermediate portion between the bonded body 2 and the low temperature stage 9 so that the actual contact area is small due to dimensional variation of parts and surface irregularities of parts. It is due to the fact. Further, when the material is heated and melted as in the case of using In-Ga, the contact area is further increased and the bonding is surely performed, so that the cooling performance is further improved. In-Ga
Since the melting point of the alloy can be brought to near room temperature by adjusting the composition ratio, slight heating is sufficient and it can be easily performed at home. However, except for Au, the thermal conductivity is lower than that of the material of the bonded body 2 and if the thickness is too thick, the opposite effect occurs. Therefore, 0.5 mm or less is preferable. Thus, the formation of the adhesion layer 13 is effective when further cooling performance is required. When the adhesive layer 13 spreads to consumers who have a large individual difference, the adhesion layer 13 absorbs the set variation due to the individual difference. (Embodiment 3) In the apparatus of Embodiment 1, as shown in FIG. 9, packings 17 and 18 were formed on the flange portion and / or the cylinder portion. [Table 6] Further, the gap 19 formed when the small-sized low temperature device unit and the refrigerator are assembled is replaced with a reduced pressure state or a dry gas such as CO 2 or N 2 . The obtained device is assumed to be 90 degrees in humidity, assuming rain.
The arrival time up to 77K and the temperature stability were examined in a constant temperature and humidity chamber of not less than%. The arrival time is measured after 1H is put in the constant temperature and humidity chamber and the temperature of the refrigerator is raised and lowered once, and the temperature stability is a value measured after operating the 200H refrigerator after measuring the arrival time. As can be seen from Table 6, the apparatus in which packing is formed and replaced with dry gas or reduced pressure exhibits excellent long-term stability, while the apparatus without packing exhibits arrival time and temperature stability. , Both are getting worse. This is because in a device without packing, water vapor enters the gap 19 and condenses, and further solidifies in the vicinity of the bonded body 2 to increase the thermal conductivity in the gap 19 and reduce the heat insulating effect. For solidification, pressure was applied to the outer frame 1 and the engaging portion 6 of the outer frame 1 broke after 250 hours. In this example, CO 2 has good characteristics during depressurization and CO 2 because CO 2 has the lowest thermal conductivity in the above-mentioned gas, and during depressurization, the free path of gas molecules becomes long and the thermal conductivity is further improved. This is because it is decreasing. (Example 4) Microwave, millimeter wave, etc. GH
It is suitable for low-temperature device devices that require thick lead wires for transmission of high-frequency signals of z or higher. 10 and 11 are schematic views of the circuit of the small-sized low-temperature device device according to this embodiment, and FIG. 12 is a sectional structural view thereof. Superconducting antenna, superconducting mixer (frequency mixing)
IF from the mixer near the low temperature device 2
A transmitter / receiver 20 is provided which includes a transmitter circuit for transmitting a signal to an external device outside the heat insulation chamber 5 and a receiver circuit for receiving a transmission signal for transmitting from a superconducting antenna from the external device. In this embodiment, a semiconductor laser is used as the transmitting element of the transmitting circuit and a photodiode is used as the receiving element of the receiving circuit. Further, an energy storage device 21 including a conversion element (for example, a solar cell) that converts an electromagnetic wave into electric energy and a capacitor that stores the electric energy is provided adjacent to the transmission / reception circuit 20. A pn junction element having a photoelectric phenomenon was used as the conversion element. The transmitter / receiver 20 and the low-temperature device 2 mainly receive electric energy from the energy storage device 21 to operate. The arrival time from room temperature to 77K and the thermal stability at 77K of the obtained refrigerator-integrated device were examined. The results are shown in Table 7 together with the comparative example using the lead wire. The lead wire of the comparative example used here is high frequency (GH
It is as thin as possible in order to suppress the propagation loss in the z region), but it is thick. [Table 7] As described above, in the present embodiment, since it is not necessary to draw the thick lead wire serving as the heat conduction path into the heat insulating chamber 5 which is vacuum-insulated, the arrival time up to 77K and the thermal stability are greatly improved. If an electromagnetic wave having a wavelength of millimeter wave or less is used for communication with an external device, signal transmission can be performed by an optical fiber made of quartz glass or an organic material with less heat intrusion, and the same effect can be obtained. In the above embodiment, the Stirling cycle type was used as the closed cycle refrigerator, but other closed cycle refrigerators such as the GM (Gifford McMahon Cycle) type, the Bilmeier cycle type and the pulse tube type may be used. Since the present invention is constructed as described above, it has the following effects. The low temperature device and its surroundings are hermetically held in a high vacuum with an appropriate material and an appropriate structure, a low temperature device side (small low temperature device device) and a refrigerator are provided as separate units, and a desorption mechanism is provided. And the low-temperature device side or the refrigerator side failed by forming a soft stretchable material film or foil on the engaging contact surface of the refrigerator and increasing the contact area so that heat conduction is not affected even if there is engagement variation. It became possible to easily replace the unit that needs to be replaced. Such ease of maintenance enables the popularization of high-performance low-temperature device devices into homes. By providing a device for receiving and transmitting signals and a device for converting electromagnetic waves into electric energy and storing it in the small-sized low-temperature device, lead wires can be eliminated and heat intrusion can be suppressed, so that cooling efficiency is improved. It has become possible to cool the low temperature device stably. The elimination of the lead wire does not require connection of the lead wire at the time of replacement, which leads to easier maintenance.

【図面の簡単な説明】 【図1】本発明の小型低温デバイス装置の一実施例を示
す部分縦断面図。 【図2】本発明の小型低温デバイス装置の冷凍機との係
合状態を示す縦断面図。 【図3】本発明の小型低温デバイス装置の係合部部分断
面図。 【図4】本発明の小型低温デバイス装置の他の係合部部
分断面図。 【図5】本発明の小型低温デバイス装置の他の係合部を
示す部分断面図。 【図6】本発明の小型低温デバイス装置の他の係合部を
示す部分断面図。 【図7】本発明の小型低温デバイス装置の脱着機構を示
す部分断面図。 【図8】本発明の小型低温デバイス装置の他の脱着機構
を示す部分断面図。 【図9】本発明の小型低温デバイス装置の他の実施例を
示す部分断面図。 【図10】本発明の小型低温デバイス装置の他の実施例
の回路図。 【図11】本発明の小型低温デバイス装置の他の実施例
の回路図。 【図12】本発明の小型低温デバイス装置の他の実施例
を示す部分縦断面図。 【図13】従来の低温デバイス装置の部分縦断面図。 【符号の説明】 1 外枠 2 接合体 3 低温デバイス 4 接合材 5 断熱室 6 係合部 7 係合部ネジ部 8 冷凍機シリンダ 10 冷凍機フランジ 11 冷凍機本体 12 外枠ネジ部 13 密着層 14 脱着機構アンカー 15 脱着機構爪 16 脱着機構スプリング 17 外部パッキン 18 内部パッキン 19 係合隙間 20 受発信装置 21 エネルギー貯蓄装置
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a partial vertical cross-sectional view showing an embodiment of a small-sized low-temperature device device of the present invention. FIG. 2 is a vertical cross-sectional view showing an engaged state of the small-sized low-temperature device device of the present invention with a refrigerator. FIG. 3 is a partial sectional view of an engaging portion of the small-sized low-temperature device device of the present invention. FIG. 4 is a partial sectional view of another engaging portion of the small-sized low-temperature device device of the present invention. FIG. 5 is a partial cross-sectional view showing another engaging portion of the compact low temperature device device of the present invention. FIG. 6 is a partial cross-sectional view showing another engaging portion of the small-sized low-temperature device device of the present invention. FIG. 7 is a partial cross-sectional view showing the attachment / detachment mechanism of the small-sized low-temperature device device of the present invention. FIG. 8 is a partial cross-sectional view showing another attachment / detachment mechanism of the small-sized low-temperature device device of the present invention. FIG. 9 is a partial cross-sectional view showing another embodiment of the small-sized low-temperature device device of the present invention. FIG. 10 is a circuit diagram of another embodiment of the small-sized low-temperature device device of the present invention. FIG. 11 is a circuit diagram of another embodiment of the small-sized low-temperature device device of the present invention. FIG. 12 is a partial vertical sectional view showing another embodiment of the small-sized low-temperature device device of the present invention. FIG. 13 is a partial vertical cross-sectional view of a conventional low temperature device device. [Description of Reference Signs] 1 outer frame 2 bonded body 3 low temperature device 4 bonding material 5 heat insulating chamber 6 engaging part 7 engaging part screw part 8 refrigerator cylinder 10 refrigerator flange 11 refrigerator body 12 outer frame screw portion 13 adhesion layer 14 Desorption Mechanism Anchor 15 Desorption Mechanism Claw 16 Desorption Mechanism Spring 17 External Packing 18 Inner Packing 19 Engagement Gap 20 Receiving / Transmitting Device 21 Energy Saving Device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 下田 達也 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Tatsuya Shimoda             Seiko, 3-3-3 Yamato, Suwa City, Nagano Prefecture             -In Epson Corporation

Claims (1)

【特許請求の範囲】 【請求項1】 閉サイクル冷凍機と係合するための係合
部を有した外枠と、低温デバイスを載せ低温デバイスと
閉サイクル冷凍機とを熱的に接続する接合体とを備え、
且つ該外枠と接合体により形成される断熱室に対応する
低温デバイスの周部を真空状態に保持していることを特
徴とする小型低温デバイス装置。 【請求項2】 前記外枠をアンバー、絶縁体等熱伝導率
が10kcal/mhr℃以下の断熱材料から形成し、
接合体を100kcal/mhr℃以上の良熱伝導材料
から形成していることを特徴とする請求項1記載の小型
低温デバイス装置。 【請求項3】 小型低温デバイス装置と閉サイクル冷凍
機が別ユニットになっていること、取り付け取り外しを
行うネジ部、アンカー部等取り付け機構を設けているこ
とを特徴とする小型低温デバイス装置。 【請求項4】 閉サイクル冷凍機の低温ステージと熱的
に接続する接合体の表面にAu、Pb、In、Ga金属
または該金属を主成分とする合金からなる膜または箔を
形成していることを特徴とする請求項3記載の小型低温
デバイス装置。 【請求項6】 係合部周部にパッキンを設け、小型低温
デバイス装置と閉サイクル冷凍機よりなる空隙を外気と
隔離したことを特徴とする請求項3記載の小型低温デバ
イス装置。 【請求項7】 空隙が減圧状態またはドライガス好まし
くはC66、CO2ガスで置換されていることを特徴と
する請求項6記載の小型低温デバイス装置。 【請求項8】 低温デバイスの周部を真空状態に保持し
た小型低温デバイス装置に於て、低温デバイスの周部に
低温デバイス装置と外部装置と信号を交信する発信回路
と受信回路を備えたことを特徴とする小型低温デバイス
装置。 【請求項9】 低温デバイスの周部を真空状態に保持し
た小型低温デバイス装置に於て、電磁波を電気エネルギ
ーに変換する素子とコンデンサーを備えたことを特徴と
する小型低温デバイス装置。
Claim: What is claimed is: 1. An outer frame having an engaging portion for engaging with a closed cycle refrigerator, and a joint for mounting a low temperature device and thermally connecting the low temperature device and the closed cycle refrigerator. With a body,
Further, a small-sized low-temperature device device characterized in that the peripheral portion of the low-temperature device corresponding to the heat insulation chamber formed by the outer frame and the bonded body is held in a vacuum state. 2. The outer frame is formed of a heat insulating material having a thermal conductivity of 10 kcal / mhr ° C. or less such as an amber or an insulator,
The small-sized low-temperature device apparatus according to claim 1, wherein the bonded body is formed of a material having a good thermal conductivity of 100 kcal / mhr ° C. or higher. 3. A small-sized low-temperature device device characterized in that the small-sized low-temperature device device and the closed-cycle refrigerator are separate units, and a mounting mechanism such as a screw part and an anchor part for mounting and dismounting is provided. 4. A film or foil made of Au, Pb, In, Ga metal or an alloy containing the metal as a main component is formed on the surface of a bonded body that is thermally connected to a low temperature stage of a closed cycle refrigerator. The small-sized low-temperature device device according to claim 3, wherein 6. The small-sized low-temperature device apparatus according to claim 3, wherein packing is provided around the engagement portion, and a space formed by the small-sized low-temperature device apparatus and the closed-cycle refrigerator is isolated from outside air. 7. The small-sized low-temperature device device according to claim 6 , wherein the voids are depressurized or replaced by a dry gas, preferably C 6 H 6 or CO 2 gas. 8. A small-sized low-temperature device device in which a peripheral part of a low-temperature device is kept in a vacuum state, wherein a peripheral part of the low-temperature device is provided with a transmitting circuit and a receiving circuit for communicating signals with the low-temperature device device and an external device. Small-sized low-temperature device device. 9. A small-sized low-temperature device device in which a peripheral portion of the low-temperature device is kept in a vacuum state, which is provided with an element for converting electromagnetic waves into electric energy and a capacitor.
JP7006671A 1995-01-19 1995-01-19 Small-sized low-temperature device apparatus Withdrawn JPH08200864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7006671A JPH08200864A (en) 1995-01-19 1995-01-19 Small-sized low-temperature device apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7006671A JPH08200864A (en) 1995-01-19 1995-01-19 Small-sized low-temperature device apparatus

Publications (1)

Publication Number Publication Date
JPH08200864A true JPH08200864A (en) 1996-08-06

Family

ID=11644844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7006671A Withdrawn JPH08200864A (en) 1995-01-19 1995-01-19 Small-sized low-temperature device apparatus

Country Status (1)

Country Link
JP (1) JPH08200864A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109700A (en) * 1996-06-21 1998-01-16 Seiko Epson Corp Low temperature device
WO2004055452A1 (en) * 2002-12-16 2004-07-01 Sumitomo Heavy Industries, Ltd. Method and device for installing refrigerator
JP2016050714A (en) * 2014-08-29 2016-04-11 株式会社東芝 Vacuum heat insulation module case for refrigerator and refrigerator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225874A (en) * 1986-03-26 1987-10-03 セイコーインスツルメンツ株式会社 Cryostat
JPS63193891A (en) * 1987-02-06 1988-08-11 スタンレー電気株式会社 Identification card
JPH02112038U (en) * 1989-02-23 1990-09-07
JPH0380334U (en) * 1989-12-04 1991-08-16
JPH04263768A (en) * 1991-02-19 1992-09-18 Mitsui Mining & Smelting Co Ltd Cooling method of superconductive magnetic sealed vessel and device therefor
JPH05281025A (en) * 1992-03-03 1993-10-29 Fujitsu Ltd Cooling type infrared ray detector and manufacture of cooling vessel

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62225874A (en) * 1986-03-26 1987-10-03 セイコーインスツルメンツ株式会社 Cryostat
JPS63193891A (en) * 1987-02-06 1988-08-11 スタンレー電気株式会社 Identification card
JPH02112038U (en) * 1989-02-23 1990-09-07
JPH0380334U (en) * 1989-12-04 1991-08-16
JPH04263768A (en) * 1991-02-19 1992-09-18 Mitsui Mining & Smelting Co Ltd Cooling method of superconductive magnetic sealed vessel and device therefor
JPH05281025A (en) * 1992-03-03 1993-10-29 Fujitsu Ltd Cooling type infrared ray detector and manufacture of cooling vessel

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109700A (en) * 1996-06-21 1998-01-16 Seiko Epson Corp Low temperature device
WO2004055452A1 (en) * 2002-12-16 2004-07-01 Sumitomo Heavy Industries, Ltd. Method and device for installing refrigerator
US7266954B2 (en) 2002-12-16 2007-09-11 Sumitomo Heavy Industries, Ltd Method and device for installing refrigerator
JP2016050714A (en) * 2014-08-29 2016-04-11 株式会社東芝 Vacuum heat insulation module case for refrigerator and refrigerator

Similar Documents

Publication Publication Date Title
JP4356250B2 (en) Wireless receiver
GB2370344A (en) Fast cooldown cryostat for large infrared focal plane arrays
JP2001174085A (en) Electronic equipment
US6417514B1 (en) Sensor/support system having a stabilization structure affixed to a side of a platform oppositely disposed from a sensor assembly
US5179283A (en) Infrared detector focal plane
KR100838969B1 (en) Cryogenic device with receiver and integrated antenna assembly
JPH08200864A (en) Small-sized low-temperature device apparatus
US6711912B2 (en) Cryogenic devices
CN110913665A (en) Precise temperature control system of satellite-borne detector
US4954708A (en) Low distortion focal plane platform
CN100439817C (en) Electron optical device for direct cooling long wave infrared detector of pulse tube refrigerator
JP3656260B2 (en) Small cryogenic device
CN111189546A (en) Coupling structure of infrared Dewar component window and low-temperature optical system and implementation method
EP0253883B1 (en) Cryogenically cooled radiation detection apparatus
CN112683404A (en) Metal micro Dewar vacuum structure of infrared detector
JP3467913B2 (en) Low temperature device
CN113351951A (en) Packaging structure of integrated ceramic cold platform and implementation method
US6688127B2 (en) Cryogenic devices
JP3608296B2 (en) Low temperature device
JP3565464B2 (en) High sensitivity radio
CN111403504A (en) Large-target-surface detector array type multi-stage semiconductor refrigeration method
JP2003179512A (en) Radio equipment
JP2001144635A (en) Wireless receiver
JP4496634B2 (en) Superconducting filter device
JP2001136083A (en) Radio receiver

Legal Events

Date Code Title Description
A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20031218