JP2001144635A - Wireless receiver - Google Patents

Wireless receiver

Info

Publication number
JP2001144635A
JP2001144635A JP32371299A JP32371299A JP2001144635A JP 2001144635 A JP2001144635 A JP 2001144635A JP 32371299 A JP32371299 A JP 32371299A JP 32371299 A JP32371299 A JP 32371299A JP 2001144635 A JP2001144635 A JP 2001144635A
Authority
JP
Japan
Prior art keywords
cooling
temperature
receiving circuit
refrigerator
wireless receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32371299A
Other languages
Japanese (ja)
Inventor
Wataru Hattori
渉 服部
Tsutomu Yoshitake
務 吉武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32371299A priority Critical patent/JP2001144635A/en
Publication of JP2001144635A publication Critical patent/JP2001144635A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized lightweight wireless receiver that can deprive a refrigerator of its generated heat and reduce its operating temperature without increasing the refrigerating power of the refrigerator. SOLUTION: An electronic cooling element 11 is inserted between a cooling stage 6 and a reception circuit sealed in a vacuum package 5 so as to cool the reception circuit 2 to a temperature below the temperature of the cooling stage 6.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、無線受信機に関
し、特に移動体通信や衛星通信等の基地局無線装置に適
用され、冷凍機で冷却された高周波受信回路を用いて、
所望の周波数帯域の信号を受信出力する無線受信機に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radio receiver, and more particularly to a radio receiver which is applied to a base station radio apparatus such as mobile communication and satellite communication and uses a high frequency receiving circuit cooled by a refrigerator.
The present invention relates to a wireless receiver that receives and outputs a signal in a desired frequency band.

【0002】[0002]

【従来の技術】近年の移動体通信の急速な普及に伴い、
周波数資源の有効利用等の観点から、基地局無線装置の
受信部を高感度化することが必要とされている。従来、
このような要請に応えるため、基地局受信部を冷凍機に
より冷却する高感度無線受信機が提案されている(例え
ば、特開平10−126290号公報など参照)。この
無線受信機は、図3に示すように、アンテナ端子51か
ら入力された受信信号から所望の帯域の信号を選択する
受信帯域通過濾波器53Aと、受信帯域通過濾波器53
Aの出力を所望のレベルまで低雑音で増幅する受信低雑
音増幅器53Bと、受信低雑音増幅器53Bで増幅され
た受信信号を出力するための受信信号出力端子54とを
備えている。
2. Description of the Related Art With the rapid spread of mobile communication in recent years,
From the viewpoint of effective use of frequency resources and the like, it is necessary to increase the sensitivity of the receiving unit of the base station wireless device. Conventionally,
In order to meet such a demand, a high-sensitivity wireless receiver that cools a base station receiving unit with a refrigerator has been proposed (for example, see Japanese Patent Application Laid-Open No. H10-126290). As shown in FIG. 3, the radio receiver includes a reception band-pass filter 53A for selecting a signal in a desired band from a reception signal input from an antenna terminal 51, and a reception band-pass filter 53A.
A reception low-noise amplifier 53B for amplifying the output of A to a desired level with low noise, and a reception signal output terminal 54 for outputting the reception signal amplified by the reception low-noise amplifier 53B are provided.

【0003】また、受信帯域通過濾波器53Aおよび受
信低雑音増幅器53Bを含む受信回路52は、真空容器
55中に真空封入され、外部と真空断熱されるととも
に、冷却ステージ56上に熱接触を保って設置される。
さらに受信低雑音増幅器53Bに動作電力を供給するた
めの第1電源端子58と冷凍機57に動作電力を供給す
るための第2電源端子59がそれぞれ設けられる。真空
容器55および冷凍機57は筐体60に設置される。真
空容器55は内部を真空状態に保持し、真空断熱するこ
とにより、外部からの熱侵入を遮断する構造となってい
る。このため冷却ステージ56に設置された受信帯域通
過濾波器53Aおよび受信低雑音増幅器53Bは、冷凍
機57により150K以下の極低温に冷却することがで
きる。冷凍機57にはパルス管冷凍機などを利用するこ
とによって長期の連続運転が可能となる。
A receiving circuit 52 including a receiving band-pass filter 53A and a receiving low-noise amplifier 53B is vacuum-sealed in a vacuum vessel 55, is vacuum-insulated from the outside, and maintains thermal contact on a cooling stage 56. Installed.
Further, a first power supply terminal 58 for supplying operating power to the reception low noise amplifier 53B and a second power supply terminal 59 for supplying operating power to the refrigerator 57 are provided. The vacuum container 55 and the refrigerator 57 are installed in the housing 60. The vacuum vessel 55 has a structure in which the inside is kept in a vacuum state and is insulated in a vacuum to block heat intrusion from the outside. Therefore, the reception band-pass filter 53A and the reception low-noise amplifier 53B installed on the cooling stage 56 can be cooled to an extremely low temperature of 150K or less by the refrigerator 57. By using a pulse tube refrigerator or the like for the refrigerator 57, a long-term continuous operation is possible.

【0004】このように、受信回路52を極低温に冷却
することにより、受信回路52で発生する熱雑音を低減
することができる。その結果、図1に示した無線受信機
の雑音指数が大幅に改善され、受信感度が大幅に改善さ
れる。したがって、図1の無線受信機を用いることによ
り、低いレベルの受信信号に対しても、例えば規定され
たC/N(搬送波電力/雑音電力)の受信出力を得るこ
とができ、規定されたC/Nの受信出力を得るのに必要
な送信側の送信電力が小さくて済む等の効果を得ること
ができる。この無線受信機は、受信信号がアンテナ端子
1に入力されるまでの損失を低減するために屋外やアン
テナ鉄塔の塔頂部近傍に設置されることが多い。
As described above, by cooling the receiving circuit 52 to an extremely low temperature, thermal noise generated in the receiving circuit 52 can be reduced. As a result, the noise figure of the wireless receiver shown in FIG. 1 is greatly improved, and the receiving sensitivity is greatly improved. Therefore, by using the wireless receiver of FIG. 1, for example, a reception output of a specified C / N (carrier power / noise power) can be obtained even for a received signal of a low level, and a specified C / N can be obtained. For example, it is possible to obtain an effect such that the transmission power on the transmission side necessary for obtaining the reception output of / N is small. This wireless receiver is often installed outdoors or near the top of an antenna tower in order to reduce the loss until a received signal is input to the antenna terminal 1.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、こよう
な無線受信機では、受動素子である受信帯域通過濾波器
53Aからはほとんど熱を発生しないものの、受信低雑
音増幅器53Bが熱を発生する。また、室温である真空
容器55と極低温に保持されている受信回路52へ、外
部から接続される同軸ケーブルを通して熱伝導による熱
流入が存在する。したがって、冷却ステージ56を極低
温に保持するためには、冷凍機57はこれらによる熱を
奪うだけの冷凍能力を最低限備えていることが必要とさ
れる。
However, in such a radio receiver, although little heat is generated from the receiving band-pass filter 53A which is a passive element, the receiving low-noise amplifier 53B generates heat. Further, heat flows into the vacuum chamber 55 at room temperature and the receiving circuit 52 maintained at an extremely low temperature by heat conduction through a coaxial cable connected from the outside. Therefore, in order to keep the cooling stage 56 at an extremely low temperature, the refrigerator 57 needs to have at least a refrigerating capacity capable of removing heat from the refrigerator.

【0006】このような無線受信機の熱雑音を下げ、性
能を向上させるための方法として、冷却ステージ56の
温度を低くする方法が考えられるが、同一の冷凍能力で
冷却ステージ56の温度を低くしようとすると、冷却効
率が低下し、冷凍機57の負担は大きくなる。また、冷
凍機57の冷凍能力を大きくする方法も考えられるが、
冷凍能力を大きくすると冷凍機57のサイズや重量が非
常に大きくなってしまうという問題がある。特に、移動
通信の無線基地局として、無線受信機を屋外、例えばア
ンテナ鉄塔の塔頂部に設置するためには、施行上、また
鉄塔の強度的負担を軽減するためにも無線受信機を小型
軽量化することが必要とされている。
As a method for reducing the thermal noise of such a radio receiver and improving the performance, a method of lowering the temperature of the cooling stage 56 is conceivable. However, the temperature of the cooling stage 56 is lowered with the same refrigeration capacity. If this is attempted, the cooling efficiency will decrease, and the load on the refrigerator 57 will increase. A method of increasing the refrigerating capacity of the refrigerator 57 is also conceivable.
When the refrigerating capacity is increased, there is a problem that the size and weight of the refrigerator 57 become very large. Particularly, as a wireless base station for mobile communication, in order to install a wireless receiver outdoors, for example, at the top of an antenna tower, the size and weight of the wireless receiver must be reduced for implementation and to reduce the strength of the tower. Needs to be developed.

【0007】一方、近年、盛んに開発の行われているペ
ルチエ素子等の電子冷却素子は、冷却効率は20%以上
のものも存在し、得られる冷却効果が極めて高い。さら
に、電子冷却素子は固体素子であり、信頼性が高く、寿
命が長く、小型軽量である。しかしながら、このような
電子冷却素子の冷却温度範囲は比較的狭く、無線受信機
に必要とされる冷却温度範囲、すなわち室温から150
K以下の極低温まで冷却することはできない。本発明は
このような課題を解決するためのものであり、冷凍機の
冷凍能力を増加させることなく、受信回路からの発生熱
を奪い、かつ動作温度を低くすることの可能な、小型軽
量の無線受信機を提供することを目的としている。
On the other hand, some electronic cooling elements such as Peltier elements, which have been actively developed in recent years, have a cooling efficiency of 20% or more, and the obtained cooling effect is extremely high. Further, the thermoelectric cooler is a solid state device, has high reliability, has a long life, is small and lightweight. However, the cooling temperature range of such an electronic cooling device is relatively narrow, and the cooling temperature range required for the radio receiver, that is, from room temperature to 150
It cannot be cooled to extremely low temperatures below K. The present invention has been made to solve such a problem, and without increasing the refrigerating capacity of a refrigerator, can remove heat generated from a receiving circuit and reduce the operating temperature, and can reduce the operating temperature. It is intended to provide a radio receiver.

【0008】[0008]

【課題を解決するための手段】このような目的を達成す
るために、本発明による無線受信機は、真空容器中に封
入された冷却ステージと受信回路との間に電子冷却素子
を設けて、受信回路を冷却ステージの温度からさらに冷
却するようにしたものである。この電子冷却素子は、少
なくとも、受信回路のうち受信信号を所望の周波数帯域
で濾波する受信帯域濾波器と冷却ステージとの間に設け
るようにしてもよい。また、電子冷却素子への入力電圧
を変化させることにより、冷却機の運転状態を一定に保
ったまま受信回路の冷却温度を調節するようにしてもよ
い。受信帯域濾波器の導電部は、冷却ステージおよび電
子冷却素子で冷却される冷却温度で超伝導状態となる超
伝導材料から構成してもよい。この超伝導材料として、
高温超伝導体を用いてもよく、具体的にはBi系、Tl
系、Hg系、Y系あるいはAg系の銅酸化物超伝導体を
用いてもよい。
In order to achieve the above object, a radio receiver according to the present invention is provided with an electronic cooling element between a cooling stage sealed in a vacuum vessel and a receiving circuit, The receiving circuit is further cooled from the temperature of the cooling stage. The electronic cooling element may be provided at least between a cooling band and a receiving bandpass filter for filtering a received signal in a desired frequency band in the receiving circuit. Further, by changing the input voltage to the electronic cooling element, the cooling temperature of the receiving circuit may be adjusted while keeping the operating state of the cooler constant. The conductive portion of the reception bandpass filter may be made of a superconducting material that is in a superconducting state at a cooling temperature cooled by the cooling stage and the electronic cooling element. As this superconducting material,
High-temperature superconductors may be used, specifically, Bi-based, Tl
, Hg-based, Y-based or Ag-based copper oxide superconductor may be used.

【0009】[0009]

【発明の実施の形態】次に、本発明について図面を参照
して説明する。図1は本発明の一実施の形態である無線
受信機のブロック図である。本無線受信機は、アンテナ
端子1から入力された受信信号から所望の帯域の信号を
選択する受信帯域通過濾波器3Aと、受信帯域通過濾波
器3Aの出力を所望のレベルまで低雑音で増幅する受信
低雑音増幅器3Bと、受信低雑音増幅器3Bで増幅され
た受信信号を出力するための受信信号出力端子4とを備
えている。これら受信帯域通過濾波器3Aおよび受信低
雑音増幅器3Bを含む受信回路2は、真空容器5中に真
空封入され、外部と真空断熱される。
Next, the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of a wireless receiver according to an embodiment of the present invention. This radio receiver selects a signal of a desired band from a received signal input from the antenna terminal 1, and amplifies the output of the received band-pass filter 3A to a desired level with low noise. The reception low noise amplifier 3B includes a reception signal output terminal 4 for outputting the reception signal amplified by the reception low noise amplifier 3B. The receiving circuit 2 including the receiving band-pass filter 3A and the receiving low-noise amplifier 3B is vacuum-sealed in a vacuum container 5 and is vacuum-insulated from the outside.

【0010】受信帯域通過濾波器3Aおよび受信低雑音
増幅器3Bは、電子冷却素子11を介して冷却ステージ
6上に設置される。さらに受信低雑音増幅器3Bに動作
電力を供給するための第1電源端子8と冷凍機7に動作
電力を供給するための第2電源端子9と、電子冷却素子
11への入力電圧を制御することにより温度を制御する
温度調節器13に動作電力を供給するための第3電源端
子12がそれぞれ設けられる。真空容器5および冷凍機
7は筐体10に設置される。
The receiving band-pass filter 3A and the receiving low-noise amplifier 3B are installed on the cooling stage 6 via the electronic cooling element 11. Further, controlling a first power supply terminal 8 for supplying operating power to the reception low noise amplifier 3B, a second power supply terminal 9 for supplying operating power to the refrigerator 7, and an input voltage to the electronic cooling element 11. A third power supply terminal 12 for supplying operating power to a temperature controller 13 that controls the temperature according to is provided. The vacuum container 5 and the refrigerator 7 are installed in the housing 10.

【0011】真空容器5は内部を真空状態に保持し、真
空断熱することにより、外部からの熱侵入を遮断する構
造となっている。このため冷却ステージ6に設置された
受信帯域通過濾波器3Aおよび受信低雑音増幅器3B
は、冷凍機7と電子冷却素子11により150K以下の
極低温に冷却することができる。特に、受信帯域通過濾
波器3Aに超伝導材料を用いる場合にはその超伝導転移
温度よりも低い温度に冷却する。冷凍機7にはパルス管
冷凍機などを利用することによって長期の連続運転が可
能となる。また、電子冷却素子としてはペルチエ素子な
どを用いることができる。
The vacuum vessel 5 has a structure in which the inside is kept in a vacuum state and the heat intrusion from the outside is blocked by vacuum insulation. Therefore, the reception band-pass filter 3A and the reception low-noise amplifier 3B installed in the cooling stage 6
Can be cooled to an extremely low temperature of 150 K or less by the refrigerator 7 and the electronic cooling element 11. In particular, when a superconducting material is used for the receiving bandpass filter 3A, it is cooled to a temperature lower than its superconducting transition temperature. By using a pulse tube refrigerator or the like for the refrigerator 7, long-term continuous operation becomes possible. Further, a Peltier element or the like can be used as the electronic cooling element.

【0012】次に、図2を参照して、本発明の動作につ
いて説明する。図2は冷凍機および電子冷却素子の冷却
能力と温度の関係を示す説明図である。本実施の形態で
は、受信帯域通過濾波器3Aおよび受信低雑音増幅器3
Bは電子冷却素子11を介して冷却ステージ6上に設置
し、冷却手段として冷凍機7と電子冷却素子11を用い
ている。この場合、冷凍機7の冷却能力と温度の関係は
図2の線分21によって示される。すなわち、冷却ステ
ージ6の温度がT1の場合には冷却能力Q1となり、温度
2の場合には冷却能力Q2となる。したがって、例えば
低雑音増幅器3Bの発生熱と外部から同軸ケーブル等を
伝わって侵入する熱量の和がQ2であった場合、冷凍機
7のみを用いた冷却では、冷却ステージ6の温度はT2
となる。
Next, the operation of the present invention will be described with reference to FIG. FIG. 2 is an explanatory diagram showing the relationship between the cooling capacity of the refrigerator and the electronic cooling element and the temperature. In the present embodiment, the reception bandpass filter 3A and the reception low noise amplifier 3A
B is installed on the cooling stage 6 via the electronic cooling element 11, and uses the refrigerator 7 and the electronic cooling element 11 as cooling means. In this case, the relationship between the cooling capacity of the refrigerator 7 and the temperature is indicated by a line segment 21 in FIG. That is, when the temperature of the cooling stage 6 of the T 1 is the cooling capacity Q 1 becomes, in the case of temperature T 2 is the cooling capacity Q 2. Thus, for example, if the sum of the amount of heat entering from heat generated and an external low-noise amplifier 3B and transmitted to the coaxial cable or the like was Q 2, the cooling using only the refrigerator 7, the temperature of the cooling stage 6 T 2
Becomes

【0013】次に、電子冷却素子11も活用した場合に
ついて説明する。例えば、ある入力電圧を温度調節器1
3から電子冷却素子11に印可した場合、前述の熱量Q
2に加えて電子冷却素子11からも熱が発生する。これ
らの和がQ3であったとすると、線分21から冷却ステ
ージ6の温度はT3となる。ここで、電子冷却素子11
の冷却効率は温度範囲が狭い場合には冷凍機7より良い
ため、電子冷却素子11の冷却能力と温度の関係は、Q
3とT3の平衡点Pから線分21の傾きより小さい線分2
2で表される。したがって、残りのQ3−Q2分の熱量を
電子冷却素子11が受け持つとすると、電子冷却素子1
1上の受信回路2が設置された面の温度は熱量Q2に対
してT4となり、結果として、冷凍機7のみを用いた場
合の温度T 2より低い温度T4で受信回路2を冷却するこ
とができる。
Next, when the electronic cooling element 11 is also used,
explain about. For example, when a certain input voltage is applied to the temperature controller 1
3 to the thermoelectric cooling element 11, the above-mentioned heat quantity Q
TwoIn addition, heat is also generated from the electronic cooling element 11. this
The sum of them is QThreeFrom the line 21
The temperature of page 6 is TThreeBecomes Here, the electronic cooling element 11
Cooling efficiency is better than refrigerator 7 when temperature range is narrow
Therefore, the relationship between the cooling capacity of the electronic cooling element 11 and the temperature is Q
ThreeAnd TThreeSegment 2 smaller than the slope of segment 21 from the equilibrium point P of
It is represented by 2. Therefore, the remaining QThree−QTwoHeat of minutes
If the electronic cooling element 11 is responsible, the electronic cooling element 1
The temperature of the surface on which the receiving circuit 2 is installed is the heat quantity QTwoTo
Then TFourAs a result, when only the refrigerator 7 is used,
Combined temperature T TwoLower temperature TFourTo cool the receiving circuit 2
Can be.

【0014】また、温度調節器13を用いて電子冷却素
子11に印可する電圧を調節することにより、冷却能力
2を維持したままT5あるいはT6のような温度を実現
できる。これにより、稼動部品からなる冷凍機7の運転
状態を変えることなく、一定のコンディションで運転で
きるため、冷凍機7の寿命を延ばすことができる。さら
に、温度調整が電子冷却素子11に印可する電圧で設定
できるため、極めて高速で高精度な温度調整が可能とな
る。
Further, by adjusting the voltage applied to the electronic cooling element 11 with a temperature controller 13, can be realized temperatures such as left T 5 or T 6 was maintained a cooling capacity Q 2. Thus, the refrigerator 7 can be operated in a constant condition without changing the operation state of the refrigerator 7 composed of the moving parts, so that the life of the refrigerator 7 can be extended. Further, since the temperature adjustment can be set by the voltage applied to the electronic cooling element 11, extremely high-speed and high-precision temperature adjustment is possible.

【0015】図1では、受信回路2全体を電子冷却素子
11で冷却する例について説明したが、受信帯域濾波器
3Aと冷却ステージ6との間にのみ電子冷却素子11を
設け、受信回路2の他の部分は冷却ステージ6で冷却す
るようにしてもよい。これにより、電子冷却素子11か
らの発熱がほとんどないため、電子冷却素子11の負担
熱量が低減されて受信帯域濾波器3Aを効率よく冷却で
き、受信帯域濾波器3Aでの損失を極めて小さくでき
る。特に、後述のように受信帯域濾波器3Aの導電部を
超伝導材料で構成した場合は、極めて有効である。な
お、受信帯域濾波器3Aだけでなく受信低雑音増幅器3
Bと冷却ステージ6との間に別個の電子冷却素子を設け
てもよく、これにより受信低雑音増幅器3Bから受信帯
域濾波器3Aへの熱伝導をある程度抑制でき、受信低雑
音増幅器3Bでの発熱に起因する受信機の雑音指数を大
幅に低減できる。
In FIG. 1, an example in which the entire receiving circuit 2 is cooled by the electronic cooling element 11 has been described. However, the electronic cooling element 11 is provided only between the receiving bandpass filter 3A and the cooling stage 6, and the receiving circuit 2 is cooled. Other parts may be cooled by the cooling stage 6. Thereby, since there is almost no heat generation from the electronic cooling element 11, the heat load on the electronic cooling element 11 is reduced, the receiving bandpass filter 3A can be efficiently cooled, and the loss in the receiving bandpass filter 3A can be extremely reduced. In particular, when the conductive portion of the reception bandpass filter 3A is made of a superconducting material as described later, it is extremely effective. Note that not only the reception bandpass filter 3A but also the reception low noise amplifier 3
A separate electronic cooling element may be provided between B and the cooling stage 6, whereby heat conduction from the reception low noise amplifier 3B to the reception bandpass filter 3A can be suppressed to some extent, and heat generation in the reception low noise amplifier 3B. Can greatly reduce the noise figure of the receiver.

【0016】図1の受信帯域濾波器3Aを、冷却した温
度で超伝導状態となる超伝導材料を用いて構成できる。
受信帯域濾波器3Aは例えばマイクロストリップライン
で構成され、そのマイクロストリップラインを構成する
導電部すなわちグランド層と信号線とがともに超伝導材
料で構成される。受信帯域濾波器3Aを超伝導材料を用
いて構成することにより、受信帯域濾波器3Aの損失を
著しく小さくし、受信機の雑音指数を大幅に低減でき
る。その結果、受信機の感度を大幅に改善することがで
きる。
The receiving bandpass filter 3A shown in FIG. 1 can be constituted by using a superconducting material which becomes a superconducting state at a cooled temperature.
The reception bandpass filter 3A is composed of, for example, a microstrip line, and the conductive portion constituting the microstrip line, that is, the ground layer and the signal line are both composed of a superconductive material. By configuring the reception bandpass filter 3A using a superconducting material, the loss of the reception bandpass filter 3A can be significantly reduced, and the noise figure of the receiver can be greatly reduced. As a result, the sensitivity of the receiver can be significantly improved.

【0017】受信帯域濾波器3Aを構成する超伝導材料
として、高温超伝導体を用いてもよい。高温超伝導体と
しては、例えばBi系、Tl系、Hg系、Y系、Ag系
等の銅酸化物超伝導体があり、これらはいずれも使用可
能である。高温超伝導体の中には超伝導状態に転移する
温度が100Kを超える物質も存在する。このような超
伝導体では、例えば1気圧下での液体窒素の沸点77.
4K程度に冷却するだけで超伝導状態が得られるため、
さらに冷却能力を緩和でき、より小型で、かつ、安価な
極低温冷凍機が使用可能となる。その結果、無線受信機
を小型かつ安価に構成することができる。
A high-temperature superconductor may be used as the superconducting material constituting the reception bandpass filter 3A. Examples of the high-temperature superconductor include copper oxide superconductors such as Bi-based, Tl-based, Hg-based, Y-based, and Ag-based superconductors, and any of them can be used. Some high-temperature superconductors have a temperature at which the transition to the superconducting state exceeds 100K. In such a superconductor, for example, the boiling point of liquid nitrogen at 1 atm.
Superconducting state can be obtained only by cooling to about 4K,
Further, the cooling capacity can be reduced, and a smaller and less expensive cryogenic refrigerator can be used. As a result, the wireless receiver can be made small and inexpensive.

【0018】[0018]

【発明の効果】以上説明したように、本願発明によれ
ば、受信帯域通過濾波器を含む受信回路を真空容器中に
封入して冷凍機で冷却する場合、冷凍機の冷却ステージ
と少なくとも受信帯域通過濾波器の間に電子冷却素子を
挿入することにより、冷凍機の冷却能力を増加させるこ
となく、発生熱を奪い、かつ動作温度を低くすることの
可能となる。したがって、冷凍機の冷却能力を増加させ
ることなく、発生熱を奪い、かつ動作温度を低くするこ
との可能な、小型軽量の無線受信機を提供することが可
能となる。
As described above, according to the present invention, when a receiving circuit including a receiving band-pass filter is enclosed in a vacuum vessel and cooled by a refrigerator, at least a receiving stage is connected to a cooling stage of the refrigerator. By inserting an electronic cooling element between the pass-through filters, it is possible to remove generated heat and lower the operating temperature without increasing the cooling capacity of the refrigerator. Therefore, it is possible to provide a small and lightweight wireless receiver capable of removing the generated heat and lowering the operating temperature without increasing the cooling capacity of the refrigerator.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施の形態による無線受信機を示
すブロック図である。
FIG. 1 is a block diagram illustrating a wireless receiver according to an embodiment of the present invention.

【図2】 冷凍機および電子冷却素子の冷却能力と温度
の関係を示す図である。
FIG. 2 is a diagram showing a relationship between a cooling capacity of a refrigerator and an electronic cooling element and a temperature.

【図3】 従来の無線受信機を示すブロック図である。FIG. 3 is a block diagram showing a conventional wireless receiver.

【符号の説明】[Explanation of symbols]

1…アンテナ端子、2…受信回路、3A…受信帯域通過
濾波器、3B…受信低雑音増幅器、4…受信信号出力端
子、5…真空容器、6…冷却ステージ、7…冷凍機、8
…第1電源端子、9…第2電源端子、10…筐体、11
…電子冷却素子、12…第3電源端子、13…温度調節
器。
DESCRIPTION OF SYMBOLS 1 ... Antenna terminal, 2 ... Receiving circuit, 3A ... Reception band pass filter, 3B ... Reception low noise amplifier, 4 ... Reception signal output terminal, 5 ... Vacuum container, 6 ... Cooling stage, 7 ... Refrigerator, 8
... first power supply terminal, 9 ... second power supply terminal, 10 ... housing, 11
... Electronic cooling element, 12 ... Third power supply terminal, 13 ... Temperature controller.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5F036 AA01 BA32 BF01 5K016 AA00 AA06 AA08 CA08 DA00 EA00 5K052 AA02 BB02 DD18 EE05 GG01 ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 5F036 AA01 BA32 BF01 5K016 AA00 AA06 AA08 CA08 DA00 EA00 5K052 AA02 BB02 DD18 EE05 GG01

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 真空断熱により外部からの熱侵入を遮断
する真空容器と、 この真空容器中に封入され、前記真空容器外部の冷却機
により冷却される冷却ステージと、 前記真空容器中に封入され、アンテナで受信された受信
信号を所望の周波数帯域で濾波して出力する受信回路
と、 前記真空容器中に封入されるとともに前記冷却ステージ
と前記受信回路との間に設けられ、前記受信回路を前記
冷却ステージの温度からさらに冷却する電子冷却素子と
を備えることを特徴とする無線受信機。
1. A vacuum container for blocking heat from entering from outside by vacuum insulation, a cooling stage sealed in the vacuum container, and cooled by a cooler outside the vacuum container, and a cooling stage sealed in the vacuum container. A receiving circuit that filters a received signal received by the antenna in a desired frequency band and outputs the filtered signal, and is provided between the cooling stage and the receiving circuit while being enclosed in the vacuum vessel, and the receiving circuit An electronic cooling element for further cooling from a temperature of the cooling stage.
【請求項2】 請求項1記載の無線受信機において、 前記電子冷却素子は、少なくとも、前記受信回路のうち
受信信号を所望の周波数帯域で濾波する受信帯域濾波器
と前記冷却ステージとの間に設けられていることを特徴
とする無線受信機。
2. The wireless receiver according to claim 1, wherein the electronic cooling element is at least between a receiving bandpass filter for filtering a received signal in a desired frequency band in the receiving circuit and the cooling stage. A wireless receiver, which is provided.
【請求項3】 請求項1または2記載の無線受信機にお
いて、 前記電子冷却素子への入力電圧を変化させることによ
り、前記冷却機の運転状態を一定に保ったまま前記受信
回路の冷却温度を調節する温度調節器を備えることを特
徴とする無線受信機。
3. The radio receiver according to claim 1, wherein a cooling temperature of the receiving circuit is reduced by changing an input voltage to the electronic cooling element while keeping an operation state of the cooling machine constant. A wireless receiver comprising a temperature controller for adjusting.
【請求項4】 請求項1〜3記載の無線受信機におい
て、 前記受信帯域濾波器の導電部は、前記冷却ステージおよ
び前記電子冷却素子で冷却される冷却温度で超伝導状態
となる超伝導材料から構成されていることを特徴とする
無線受信機。
4. The radio receiver according to claim 1, wherein the conductive portion of the reception bandpass filter is in a superconducting state at a cooling temperature cooled by the cooling stage and the electronic cooling element. A wireless receiver characterized by comprising:
【請求項5】 請求項4記載の無線受信機において、 前記超伝導材料として、高温超伝導体を用いることを特
徴とする無線受信機。
5. The radio receiver according to claim 4, wherein a high-temperature superconductor is used as the superconducting material.
【請求項6】 請求項4記載の無線受信機において、 前記超伝導材料として、Bi系、Tl系、Hg系、Y系
あるいはAg系の銅酸化物超伝導体を用いることを特徴
とする無線受信機。
6. The radio receiver according to claim 4, wherein a Bi-based, Tl-based, Hg-based, Y-based or Ag-based copper oxide superconductor is used as the superconducting material. Receiving machine.
JP32371299A 1999-11-15 1999-11-15 Wireless receiver Pending JP2001144635A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32371299A JP2001144635A (en) 1999-11-15 1999-11-15 Wireless receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32371299A JP2001144635A (en) 1999-11-15 1999-11-15 Wireless receiver

Publications (1)

Publication Number Publication Date
JP2001144635A true JP2001144635A (en) 2001-05-25

Family

ID=18157769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32371299A Pending JP2001144635A (en) 1999-11-15 1999-11-15 Wireless receiver

Country Status (1)

Country Link
JP (1) JP2001144635A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065653A1 (en) * 2001-02-13 2002-08-22 Nec Corporation Radio receiver
WO2004088216A1 (en) 2003-03-28 2004-10-14 Fujitsu Limited Cooler for low-temperature operating article

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065653A1 (en) * 2001-02-13 2002-08-22 Nec Corporation Radio receiver
US7206605B2 (en) 2001-02-13 2007-04-17 Nec Corporation Radio receiver
WO2004088216A1 (en) 2003-03-28 2004-10-14 Fujitsu Limited Cooler for low-temperature operating article
EP1610074A1 (en) * 2003-03-28 2005-12-28 Fujitsu Limited Cooler for low-temperature operating article
CN1322285C (en) * 2003-03-28 2007-06-20 富士通株式会社 Cooler for low-temperature operating article
US7571616B2 (en) 2003-03-28 2009-08-11 Fujitsu Limited Cooling apparatus for articles operated at low temperature
EP1610074A4 (en) * 2003-03-28 2012-09-05 Fujitsu Ltd Cooler for low-temperature operating article

Similar Documents

Publication Publication Date Title
US6754510B2 (en) MEMS-based bypass system for use with a HTS RF receiver
Mansour Microwave superconductivity
Simon et al. Superconducting microwave filter systems for cellular telephone base stations
JP2001174085A (en) Electronic equipment
Willemsen HTS filter subsystems for wireless telecommunications
US6711912B2 (en) Cryogenic devices
US20020053215A1 (en) Cryogenic devices
US6795697B2 (en) RF receiver switches
US6698224B2 (en) Electronic apparatus having at least two electronic parts operating at different temperatures
JP2001144635A (en) Wireless receiver
US6688127B2 (en) Cryogenic devices
JP3592562B2 (en) High sensitivity radio
JP2001136083A (en) Radio receiver
US6999741B2 (en) Signal processor and cooling method of the same, and radio receiver including the signal processor and cooling method of the same
WO2002067446A1 (en) Superconducting filter device and wireless receiver amplifier
JP3565464B2 (en) High sensitivity radio
JP3916476B2 (en) Communication equipment
JPH09139528A (en) High frequency equipment provided with superconducting element and temperature control apparatus
JP2003179512A (en) Radio equipment
JP3608296B2 (en) Low temperature device
US20020183011A1 (en) Method and apparatus for combined receive and transmit subsystems in cellular communication systems
Knack et al. Superconducting Technology for Wireless Communication: Development of a CDMA Base Station Cryogenic Front End Receiver
Knack et al. Superconducting technology: Development of a CDMA base station cryogenic front end receiver
JP2003023374A (en) Radio receiver
JP3467913B2 (en) Low temperature device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040629