JP3916476B2 - Communication equipment - Google Patents

Communication equipment Download PDF

Info

Publication number
JP3916476B2
JP3916476B2 JP2002034283A JP2002034283A JP3916476B2 JP 3916476 B2 JP3916476 B2 JP 3916476B2 JP 2002034283 A JP2002034283 A JP 2002034283A JP 2002034283 A JP2002034283 A JP 2002034283A JP 3916476 B2 JP3916476 B2 JP 3916476B2
Authority
JP
Japan
Prior art keywords
cooler
filter
noise amplifier
temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002034283A
Other languages
Japanese (ja)
Other versions
JP2003234660A (en
Inventor
範行 加賀屋
貴 内田
秀明 高橋
雅樹 須藤
陽一 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP2002034283A priority Critical patent/JP3916476B2/en
Priority to US10/263,710 priority patent/US6698224B2/en
Publication of JP2003234660A publication Critical patent/JP2003234660A/en
Application granted granted Critical
Publication of JP3916476B2 publication Critical patent/JP3916476B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低温で動作する電子部品、特に異なる温度で動作する2以上の電子部品を備えた通信機に関するものである。
【0002】
【従来の技術】
電子部品には低温もしくは極低温にて動作するものがあり、このような2以上の電子部品を備えることにより、性能の良い通信機を構成することが可能となる。
【0003】
図2に上記2以上の電子部品を備えた通信機、特に受信用通信機の一例を示す。1は信号を受信するアンテナであり、2は所望の帯域の信号を選択する帯域フィルタであり、3は前記帯域フィルタで選択された帯域の信号を所望のレベルまで増幅する低雑音増幅器であり、4は電子部品を極低温状態とする冷却部材であるコールドヘッドであり、5は電子部品や冷却器を収容し外部との断熱を図る熱遮蔽容器であり、6は前記コールドヘッドを冷却する冷却器である。
【0004】
ここで前記帯域フィルタ2は、例えば超伝導材料を構成要素に有する超伝導フィルタである。超伝導材料は、高温超伝導材料であることが好ましい。高温超伝導材料は、例えばBi系、Ti系、、Pb系、Y系等の銅酸化物である。高温超伝導フィルタ(HTSF:High Temperature Superconductinng Filter)は、例えばマイクロストリップ構造の薄膜HTSF、キャビティ共振器構造の厚膜HTSFである。前記低雑音増幅器3が動作するための電力は、増幅器用電源端子8を介して外部電源から供給される。また、低雑音化のため前記熱遮蔽容器5に収容されることが好ましい。この場合に、前記低雑音増幅器3は極低温増幅器(CLNA:Cryogenic Low Noise Amplifier)であることが好ましい。前記熱遮蔽容器5は、例えば真空断熱により外部からの熱進入を遮断する構造を有したデュワー瓶等である。
【0005】
前記冷却器6は前記コールドヘッド4を用いて前記帯域フィルタ2が超伝導状態を示す温度に冷却する。前記冷却器6が動作するための電力は、冷却器用電源端子7を介して外部から供給される。ここでいう冷却器は、例えば極低温冷却器である。極低温冷却器は、ヘリウムガス等の圧縮・膨張による熱交換サイクルを利用することによって数10K(K=−273℃)といった極低温を維持する。極低温冷却器は、例えば小型のスターリング型パルス冷却方式を採る冷却器であるとよい。
【0006】
上記構成の通信機では、前記帯域フィルタ2、前記低雑音増幅器3を極低温で冷却することにより、前記帯域フィルタ2及び前記低雑音増幅器3で発生する熱雑音を低減すると共に、前記帯域フィルタ2の挿入損失を低減し、かつ、前記帯域フィルタ2の減衰特性を急峻にすることができる。その結果、図1に示した通信機を用いることにより、例えば、低レベルの受信信号に対しても規定されたC/N(搬送波電力対雑音電力)の受信出力を得ることができる。
【0007】
【発明が解決しようとする課題】
しかしながら、極低温での動作を保証された極低温増幅器は高価であり、また、低雑音増幅器を熱遮蔽容器外に設けた場合、極低温での動作を保証された高価な低雑音増幅器を使用する必要はないが、帯域フィルタと低雑音増幅器とを接続する信号伝送路長が増え、損失が大きくなる。
【0008】
本発明は上記課題を解決することを目的とし、異なる動作温度を有する2以上の電子部品を、異なる温度で冷却することを可能としたものである。
【0009】
【課題を解決するための手段】
本発明の請求項1に係る通信機は、冷却器を備えた熱遮蔽容器にフィルタ、増幅器が収容され、前記フィルタは前記冷却部材に接触して設けられ、前記増幅器は前記冷却部材から離反した状態で設けられると共に、輻射熱を受熱する輻射板に接触して設けられることを特徴とするものである。
【0010】
本発明の請求項2に係る通信機は、請求項1記載の前記フィルタが超伝導材料で構成され、該超伝導材料は冷却器により冷却され超伝導状態であることを特徴とするものである。
【0011】
【発明の実施の形態】
以下、図面を参照しながら本発明の実施の形態を説明する。図1は本発明の一実施形態を示したものである。図1中、図2中で示したものと同一のものには同符号を付し、その説明を省略する。
【0012】
図1において9は輻射板であり、輻射熱を受熱することにより輻射板に接触して設けられた電子部品の温度を高めるものである。
【0013】
前記輻射板9は輻射熱を効果的に受熱できるように、放射率が高く熱伝導率の良いものを用いる。例えば、黒色アルマイト処理を施したアルミニウム製の板が用いられるのが好ましい。
【0014】
図1において、帯域フィルタ2はコールドヘッド4に直接取りつけられているので、該コールドヘッド4を介して冷却器6により極低温に冷却される。
【0015】
ここで、低雑音増幅器3は前記コールドヘッド4に直接取りつけられていないので、前記帯域フィルタ2より高温となる。更に、前記輻射板9に接触して設けられているので、該輻射板9が熱遮蔽容器5の外部から輻射熱を吸収し前記低雑音増幅器3に伝えることにより、前期帯域フィルタ2との温度差を更に大きくするものである。
【0016】
即ち、同一の熱遮蔽容器内で、一系統の冷却手段(前記コールドヘッド4、前記冷却器6)により、帯域フィルタ、低雑音増幅器の動作保証温度に合わせた温度の異なった冷却が行うことが可能となる。
【0017】
ここで、前記低雑音増幅器3の動作保証温度に合わせ冷却温度を調整する手段の1つとして、前記輻射板9の受熱量を調整することが挙げられる。受熱量を調整するには、輻射板9の受熱面積を調整することにより可能となる。一例として、2W77Kの冷却器を使用し、黒アルマイト処理した2500平方mmの輻射板を低雑音増幅器に取り付けた場合、200K程度の温度となることが確認されている。
【0018】
【発明の効果】
以上のように本発明によれば、冷却器を備えた熱遮蔽容器に帯域フィルタ、低雑音増幅器が収容され、前記帯域フィルタはコールドヘッドに接触して設けられ、前記低雑音増幅器は前記冷却部材から離反した状態で設けられると共に、輻射板に接触して設けられることにより、前記低雑音増幅器が過度に冷却されるのを防ぐことができ、さらに前記輻射板の受熱面積を調整することにより、前記低雑音増幅器の動作保証温度に合わせた温度に調整することができる。これによって、低雑音増幅器に高価な極低温増幅器を用いることなく、低雑音増幅器で発生する熱雑音を低減することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す構成例図である。
【図2】従来例を示す構成例図である。
【符号の説明】
1 アンテナ
2 帯域フィルタ
3 低雑音増幅器
4 コールドヘッド
5 熱遮蔽容器
6 冷却器
7 冷却器用電源端子
8 増幅器用電源端子
9 輻射板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electronic component that operates at a low temperature, and more particularly to a communication device that includes two or more electronic components that operate at different temperatures.
[0002]
[Prior art]
Some electronic components operate at a low temperature or an extremely low temperature. By providing two or more electronic components as described above, it is possible to configure a communication device with good performance.
[0003]
FIG. 2 shows an example of a communication device provided with the two or more electronic components, particularly a receiving communication device. 1 is an antenna that receives a signal, 2 is a bandpass filter that selects a signal in a desired band, 3 is a low-noise amplifier that amplifies the signal in the band selected by the bandpass filter to a desired level, Reference numeral 4 denotes a cold head which is a cooling member for bringing the electronic component into a cryogenic state, 5 denotes a heat shielding container which accommodates the electronic component and the cooler and insulates from the outside, and 6 is a cooling for cooling the cold head It is a vessel.
[0004]
Here, the bandpass filter 2 is a superconducting filter having, for example, a superconducting material as a component. The superconducting material is preferably a high temperature superconducting material. The high-temperature superconducting material is, for example, a Bi-based, Ti-based, Pb-based, Y-based copper oxide. The high temperature superconducting filter (HTSF) is, for example, a thin film HTSF having a microstrip structure or a thick film HTSF having a cavity resonator structure. Power for operating the low-noise amplifier 3 is supplied from an external power source via the amplifier power supply terminal 8. Moreover, it is preferable to accommodate in the said heat shielding container 5 for noise reduction. In this case, the low-noise amplifier 3 is preferably a cryogenic amplifier (CLNA: Cryogenic Low Noise Amplifier). The heat shielding container 5 is, for example, a Dewar bottle having a structure that blocks heat entry from the outside by vacuum insulation.
[0005]
The cooler 6 uses the cold head 4 to cool the band filter 2 to a temperature at which the band-pass filter 2 exhibits a superconducting state. Electric power for operating the cooler 6 is supplied from the outside through a cooler power terminal 7. The cooler here is, for example, a cryogenic cooler. The cryogenic cooler maintains a cryogenic temperature of several tens of K (K = −273 ° C.) by using a heat exchange cycle by compression / expansion of helium gas or the like. The cryogenic cooler may be a cooler that employs a small Stirling pulse cooling system, for example.
[0006]
In the communication device configured as described above, the band filter 2 and the low noise amplifier 3 are cooled at a very low temperature, thereby reducing the thermal noise generated in the band filter 2 and the low noise amplifier 3, and the band filter 2. Insertion loss and the attenuation characteristic of the bandpass filter 2 can be made steep. As a result, by using the communication device shown in FIG. 1, for example, a C / N (carrier power versus noise power) reception output can be obtained even for a low level reception signal.
[0007]
[Problems to be solved by the invention]
However, cryogenic amplifiers that are guaranteed to operate at extremely low temperatures are expensive, and when low-noise amplifiers are installed outside the heat shield container, expensive cryogenic amplifiers that are guaranteed to operate at extremely low temperatures are used. There is no need to do this, but the length of the signal transmission path connecting the band-pass filter and the low-noise amplifier increases and the loss increases.
[0008]
An object of the present invention is to solve the above-described problems, and enables two or more electronic components having different operating temperatures to be cooled at different temperatures.
[0009]
[Means for Solving the Problems]
In the communication device according to claim 1 of the present invention, a filter and an amplifier are accommodated in a heat shielding container provided with a cooler, the filter is provided in contact with the cooling member, and the amplifier is separated from the cooling member. In addition to being provided in a state, it is provided in contact with a radiation plate that receives radiant heat.
[0010]
A communication device according to claim 2 of the present invention is characterized in that the filter according to claim 1 is made of a superconducting material, and the superconducting material is cooled by a cooler and is in a superconducting state. .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of the present invention. 1 that are the same as those shown in FIG. 2 are given the same reference numerals, and descriptions thereof are omitted.
[0012]
In FIG. 1, reference numeral 9 denotes a radiation plate which increases the temperature of an electronic component provided in contact with the radiation plate by receiving radiant heat.
[0013]
The radiation plate 9 has a high emissivity and a good thermal conductivity so that it can receive radiant heat effectively. For example, it is preferable to use an aluminum plate subjected to black alumite treatment.
[0014]
In FIG. 1, since the band-pass filter 2 is directly attached to the cold head 4, the band-pass filter 2 is cooled to a cryogenic temperature by the cooler 6 through the cold head 4.
[0015]
Here, since the low noise amplifier 3 is not directly attached to the cold head 4, the temperature becomes higher than that of the band-pass filter 2. Further, since the radiation plate 9 is provided in contact with the radiation plate 9, the radiation plate 9 absorbs radiant heat from the outside of the heat shielding container 5 and transmits it to the low noise amplifier 3. Is further increased.
[0016]
In other words, in the same heat shielding container, cooling can be performed at different temperatures according to the guaranteed operating temperature of the bandpass filter and the low noise amplifier by a single system of cooling means (the cold head 4 and the cooler 6). It becomes possible.
[0017]
Here, as one of means for adjusting the cooling temperature in accordance with the operation guarantee temperature of the low noise amplifier 3, adjusting the amount of heat received by the radiation plate 9 can be mentioned. The amount of heat received can be adjusted by adjusting the heat receiving area of the radiation plate 9. As an example, it has been confirmed that when a 2W77K cooler is used and a 2500 square mm radiation plate treated with black alumite is attached to a low noise amplifier, the temperature is about 200K.
[0018]
【The invention's effect】
As described above, according to the present invention, the bandpass filter and the low noise amplifier are accommodated in the heat shielding container provided with the cooler, the bandpass filter is provided in contact with the cold head, and the low noise amplifier is the cooling member. By being provided in a state separated from the radiation plate, by being provided in contact with the radiation plate, it is possible to prevent the low noise amplifier from being excessively cooled, and further, by adjusting the heat receiving area of the radiation plate, It can be adjusted to a temperature that matches the guaranteed operating temperature of the low noise amplifier. As a result, it is possible to reduce thermal noise generated in the low noise amplifier without using an expensive cryogenic amplifier for the low noise amplifier.
[Brief description of the drawings]
FIG. 1 is a configuration diagram illustrating an embodiment of the present invention.
FIG. 2 is a configuration example diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Antenna 2 Bandpass filter 3 Low noise amplifier 4 Cold head 5 Heat shielding container 6 Cooler 7 Power supply terminal 8 for cooler Power supply terminal 9 for amplifier Radiant plate

Claims (2)

冷却器を備えた熱遮蔽容器にフィルタ、増幅器が収容され、前記フィルタは前記冷却部材に接触して設けられ、前記増幅器は前記冷却部材から離反した状態で設けられると共に、輻射熱を受熱する輻射板に接触して設けられることを特徴とする通信機。A filter and an amplifier are accommodated in a heat shielding container provided with a cooler, the filter is provided in contact with the cooling member, the amplifier is provided in a state of being separated from the cooling member, and receives a radiant heat. A communication device, wherein the communication device is provided in contact with the device. 前記フィルタは超伝導材料で構成され、該超伝導材料は冷却器により冷却され超伝導状態であることを特徴とする請求項1記載の通信機。The communication device according to claim 1, wherein the filter is made of a superconductive material, and the superconductive material is cooled by a cooler and is in a superconductive state.
JP2002034283A 2001-11-07 2002-02-12 Communication equipment Expired - Fee Related JP3916476B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002034283A JP3916476B2 (en) 2002-02-12 2002-02-12 Communication equipment
US10/263,710 US6698224B2 (en) 2001-11-07 2002-10-04 Electronic apparatus having at least two electronic parts operating at different temperatures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002034283A JP3916476B2 (en) 2002-02-12 2002-02-12 Communication equipment

Publications (2)

Publication Number Publication Date
JP2003234660A JP2003234660A (en) 2003-08-22
JP3916476B2 true JP3916476B2 (en) 2007-05-16

Family

ID=27776835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002034283A Expired - Fee Related JP3916476B2 (en) 2001-11-07 2002-02-12 Communication equipment

Country Status (1)

Country Link
JP (1) JP3916476B2 (en)

Also Published As

Publication number Publication date
JP2003234660A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
KR930008003B1 (en) Low temperature thermoelectric refrigerating device using current carrying super conducting mode/nonsuperconducting mode
US6698224B2 (en) Electronic apparatus having at least two electronic parts operating at different temperatures
JP2001174085A (en) Electronic equipment
JPH10335512A (en) Electronic device
KR100838969B1 (en) Cryogenic device with receiver and integrated antenna assembly
US20030024258A1 (en) Cryogenic devices
JP3916476B2 (en) Communication equipment
JP2756551B2 (en) Conduction-cooled superconducting magnet device
JP3592562B2 (en) High sensitivity radio
JP4435468B2 (en) Superconducting magnet device
JP3565464B2 (en) High sensitivity radio
JP2001144635A (en) Wireless receiver
JP2001136083A (en) Radio receiver
JP2003179512A (en) Radio equipment
JPH10247532A (en) Current lead for superconductive device
JP3467913B2 (en) Low temperature device
Uenohara et al. Parametric amplifier with thermoelectric refrigeration
JP3608296B2 (en) Low temperature device
JPH08200864A (en) Small-sized low-temperature device apparatus
JP2003133804A (en) Low temperature circuit device and communication apparatus using the same
JPH06268266A (en) Superconducting device
JPS6246273A (en) Vacuum temperature tester
JPS6450483A (en) Superconducting device
JPH05315130A (en) Superconducting apparatus
JP2000055491A (en) Refrigeration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140216

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees