JP2000257967A - Cooling system of high-temperature superconducting filter system - Google Patents

Cooling system of high-temperature superconducting filter system

Info

Publication number
JP2000257967A
JP2000257967A JP11065890A JP6589099A JP2000257967A JP 2000257967 A JP2000257967 A JP 2000257967A JP 11065890 A JP11065890 A JP 11065890A JP 6589099 A JP6589099 A JP 6589099A JP 2000257967 A JP2000257967 A JP 2000257967A
Authority
JP
Japan
Prior art keywords
temperature
vacuum vessel
cooling
temperature superconducting
superconducting filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11065890A
Other languages
Japanese (ja)
Inventor
Keiji Takizawa
敬次 滝澤
Akito Torii
明人 鳥居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority to JP11065890A priority Critical patent/JP2000257967A/en
Publication of JP2000257967A publication Critical patent/JP2000257967A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a compact cooling system that makes a high-temperature superconducting filter to function. SOLUTION: A chamber 20 is placed on the upper part of a compressor 30, a vacuum container 10, a temperature adjuster (a temperature controller) 40, and a power supply 42 are arranged inside the chamber 20, and the vacuum container 10 can cool an outer wall by cooling water and can cover the outer wall with a heat insulator 12. A high-temperature superconducting filter, that is not illustrated and is used as a center of a system, is accommodated into the vacuum container 10, a pulse pipe-refrigerating machine is arranged in the vacuum container, and the operation fluid in the pulse pipe is flow-tightly interlocked to the compressor 30. By the compression and expansion of the operation fluid due to the compressor, cooling is made down to a prescribed cooling temperature (approximately 70K), and the temperature is maintained, thus allowing the high-temperature superconducting filter arranged near cold storage equipment to show superconductivnity performance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高温超伝導フィル
タシステムを移動体通信の基地局に適用する技術に係わ
り、更に詳しくは、高温超伝導フィルタ、低雑音増幅
器、これらを冷却する小型冷凍機及び薄膜同軸ケーブル
より構成される高温超伝導受信フィルタシステムおい
て、基地局の環境の変化に拘わらず、システムが機能す
るための技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for applying a high-temperature superconducting filter system to a base station for mobile communication, and more particularly, to a high-temperature superconducting filter, a low-noise amplifier, and a small refrigerator for cooling them. And a high-temperature superconducting reception filter system comprising a thin-film coaxial cable and a technique for making the system function irrespective of changes in the environment of the base station.

【0002】[0002]

【従来の技術】高温超伝導受信フィルタシステムを構成
する部品・部材及び要素技術において、先ず、高温超伝
導膜の製造、フィルタ基板の設計・製造・加工等に関す
る技術は概ね完成されている。小型冷凍機に関しては冷
却効率の向上が課題であり、一応の試験結果を得ている
ものの、なお改善工夫の余地が残っている。
2. Description of the Related Art Among components, members and elemental technologies constituting a high-temperature superconducting reception filter system, first, technologies relating to production of a high-temperature superconducting film and design, production and processing of a filter substrate have been almost completed. For small refrigerators, the challenge is to improve the cooling efficiency. Although some experimental results have been obtained, there is still room for improvement.

【0003】高温超伝導フィルタは、超伝導膜材料固有
の臨界温度以下に冷却し、その温度以下に維持されない
と、超伝導の機能を発現しない。YBCO超伝導膜の場
合、臨界温度は93Kであり、超伝導フィルタや低雑音
増幅器は70K程度に冷却された真空容器の中に収納さ
れて稼働する。真空容器は外壁から内部に熱が導入され
ることを回避する目的で使用され、この真空容器内の気
体に対流が生じないように、1/100Pa程度の真空
度に保たれる。さらに、真空容器に通信信号の伝達に伴
って、導線を通じて外部からの熱の侵入が起きないよう
に、断熱的に通信信号が特殊な通信ケーブルを介して、
断熱真空容器内に持ち込まれ、この通信信号が超伝導フ
ィルタにより所定の通信帯域に絞られた後、通過した信
号が増幅器により増幅される。真空容器内に置かれた低
温ほど雑音が少ない低雑音増幅器も高品質の通信をもた
らす効用がある。
[0003] A high-temperature superconducting filter does not exhibit the superconducting function unless it is cooled below the critical temperature inherent in the superconducting film material and is maintained below that critical temperature. In the case of a YBCO superconducting film, the critical temperature is 93K, and the superconducting filter and the low-noise amplifier operate in a vacuum container cooled to about 70K. The vacuum vessel is used for the purpose of preventing heat from being introduced into the inside from the outer wall, and is maintained at a vacuum degree of about 1/100 Pa so that convection does not occur in the gas in the vacuum vessel. Furthermore, with the transmission of the communication signal to the vacuum vessel, the communication signal is adiabatically transmitted through a special communication cable so that heat from the outside does not enter through the conducting wire.
After being brought into an adiabatic vacuum vessel and the communication signal is narrowed down to a predetermined communication band by a superconducting filter, the passed signal is amplified by an amplifier. A low-noise amplifier placed in a vacuum vessel and having less noise at lower temperatures also has the effect of providing high-quality communications.

【0004】真空容器及びこれを冷却する小型冷凍機よ
り構成される高温超伝導受信フィルタシステムは熱管理
の面から完成度の高い技術が要求されている。
A high-temperature superconducting receiving filter system composed of a vacuum vessel and a small refrigerator for cooling the vacuum vessel requires a highly-completed technology from the viewpoint of thermal management.

【0005】[0005]

【発明が解決しようとする課題】ところで、 高温超伝
導受信フィルタシステムは、様々な環境下(氷点下から
60,70℃程度まで)で使用される。
The high-temperature superconducting reception filter system is used in various environments (from below freezing to about 60, 70 ° C.).

【0006】環境温度の影響で真空容器が収容されたチ
ャンバーの温度が上昇すると、真空容器の外壁から容器
内部への熱流入が避けられない。この真空容器は、真空
度が高いので、気体の対流による熱伝達を遮断できてい
るものの、輻射による熱の流入を回避できないから、真
空容器の冷却温度を維持するため、冷凍機の負荷が増大
する。従って、使用環境温度50〜70℃の高温に対し
てまで保証することは、冷凍能力の大きな冷凍機が必要
となる。そうすると、冷凍機が大型化し、システム自体
も、冷凍機が大型化した分、コンパクトにはなり得な
い。
When the temperature of the chamber containing the vacuum container rises due to the influence of the environmental temperature, it is inevitable that heat flows from the outer wall of the vacuum container to the inside of the container. This vacuum vessel has a high degree of vacuum, so it can block heat transfer due to convection of gas, but it cannot avoid the inflow of heat due to radiation.Therefore, the load on the refrigerator increases to maintain the cooling temperature of the vacuum vessel. I do. Therefore, it is necessary to provide a refrigerator having a large refrigerating capacity to guarantee a high temperature of 50 to 70 ° C. in the use environment. Then, the size of the refrigerator is increased, and the system itself cannot be made compact because the size of the refrigerator is increased.

【0007】そこで、本発明は、高温超伝導受信フィル
タシステムのコンパクト化を狙い、熱効率が高く、設備
としても合理的な冷却方式を創ることを課題とする。
Therefore, an object of the present invention is to create a cooling system which is high in thermal efficiency and rational as equipment, aiming at downsizing of a high-temperature superconducting receiving filter system.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
め、真空容器を納めたチャンバの外側に圧縮機を配置
し、放熱を向上させ、放熱促進用の放熱フィンをラック
の一部に設け、フィン表面積を大きくして放熱機能を高
める。この改良により、新たにフィンを設置する設備容
積を低減させ、システム全体をコンパクト化することが
可能となる。
In order to achieve the above object, a compressor is arranged outside a chamber containing a vacuum vessel to improve heat radiation, and a radiation fin for promoting heat radiation is provided in a part of a rack. And increase the fin surface area to enhance the heat dissipation function. With this improvement, it is possible to reduce the equipment volume for newly installing fins and make the entire system compact.

【0009】また、真空容器自体を水冷すること、及び
/又は真空容器外側を断熱材で被覆することにより、輻
射熱に伴う熱負荷を低減させ、冷凍機の小型化を可能と
する。
Further, by cooling the vacuum vessel itself with water and / or covering the outside of the vacuum vessel with a heat insulating material, the heat load accompanying radiant heat can be reduced, and the refrigerator can be downsized.

【0010】同様に、冷凍機自体を水冷等の手段により
冷却すること、或いは、チャンバ自体を水冷することも
外部環境の温度変化を遮断できるため、熱負荷が安定す
る利点があり、システムの冷却方式に有効である。
Similarly, cooling the refrigerator itself by means of water cooling or the like or cooling the chamber itself with water can shut off the temperature change of the external environment, so that there is an advantage that the heat load is stabilized and the cooling of the system. It is effective for the method.

【0011】請求項1に記載の発明は、金属酸化物薄膜
からなる高温超伝導フィルタを真空容器内に置き、該フ
ィルタを機能せしめるための冷凍手段において、真空容
器を納めたチャンバの外側に圧縮機を配置して該圧縮機
からの放熱がチャンバに及ばないようにすると共に、放
熱促進用フィンを該圧縮機の周囲に設け、真空容器外側
を断熱材で被覆することを特徴とする。このような構成
を採ることにより、高温超伝導フィルタシステムをコン
パクト化することが可能となる。
According to the first aspect of the present invention, a high-temperature superconducting filter made of a metal oxide thin film is placed in a vacuum vessel, and refrigeration means for making the filter function is compressed outside the chamber containing the vacuum vessel. A heat dissipating fin is provided around the compressor, and the outside of the vacuum vessel is covered with a heat insulating material. By adopting such a configuration, it is possible to make the high-temperature superconducting filter system compact.

【0012】断熱材としては、従来から多用されている
発泡ポリスチレンの厚いシート被覆材やガラスウール等
の被覆材が有効である。更に、容積をとらずに、効率の
よい断熱材として、輻射熱を反射するか遮蔽する作用を
もつものが使用される。例えば、有機材料からなるシー
ト状物の表面にアルミニウム等の金属を蒸着した赤外線
乃至可視光線を反射する蒸着フィルム遮蔽板による真空
容器の被覆に利用できる。また、例えば、酸化インジウ
ム又は酸化チタン等をガラスや有機フィルム表面にスパ
ッタしてなる半透明膜は、光学厚さに対応した輻射線の
波長によって、反射、吸収、透過挙動が変化するので、
適切な条件を選択できる。
As a heat insulating material, a thick sheet covering material of foamed polystyrene and a covering material such as glass wool, which have been widely used, are effective. Further, a material having an effect of reflecting or blocking radiant heat is used as an efficient heat insulating material without taking up a large volume. For example, the present invention can be used for coating a vacuum vessel with a vapor-deposited film shielding plate that reflects infrared or visible light in which a metal such as aluminum is vapor-deposited on the surface of a sheet made of an organic material. In addition, for example, a translucent film formed by sputtering indium oxide or titanium oxide on the surface of glass or an organic film, because the reflection, absorption, and transmission behavior changes depending on the wavelength of radiation corresponding to the optical thickness,
Appropriate conditions can be selected.

【0013】請求項2に記載の発明は、請求項1の発明
に加えて、真空容器を水冷手段により冷却し、環境温度
の上昇に起因する真空容器自体の冷熱負荷を軽減させる
ものである。
According to a second aspect of the present invention, in addition to the first aspect, the vacuum vessel is cooled by water cooling means to reduce the cooling load of the vacuum vessel itself due to an increase in environmental temperature.

【0014】水冷手段の選択としては、地下水等の低温
の水を利用するほか、通常の冷凍設備によって作られた
冷却水の利用を選択しても差し支えない。但し、冷却水
は本発明システム周囲ではなく、離れた場所で作られ
て、簡便に利用できるものが一層好ましい。真空容器の
水冷は容器を直接的に又は間接的に冷却できる公知の手
段が採用できる。
As for the selection of the water cooling means, in addition to using low-temperature water such as groundwater, use of cooling water produced by ordinary refrigeration equipment may be selected. However, it is more preferable that the cooling water is produced not in the vicinity of the system of the present invention but in a remote place and can be easily used. For the water cooling of the vacuum vessel, a known means capable of directly or indirectly cooling the vessel can be employed.

【0015】請求項3に記載の発明は、請求項1及び/
又は請求項2の発明に加えて、チャンバ自体及び/又は
冷凍機自体を水冷手段により冷却し、環境温度の上昇に
起因する真空容器内にその一部が配置されている冷凍機
の冷熱負荷を軽減させるものである。冷凍機がパルス管
冷凍機である場合、パルス管の先端や蓄冷器の高温端は
高温となるので、冷凍機のこれらの部分(通常放熱器が
置かれる)を水冷することは効果的であり、システム全
体の熱負荷対策にも有効である。
[0015] The invention described in claim 3 is the invention according to claim 1 and / or
Alternatively, in addition to the invention of claim 2, the chamber itself and / or the refrigerator itself is cooled by water cooling means, and the cooling load of the refrigerator partially disposed in a vacuum vessel due to an increase in environmental temperature is reduced. It is to reduce. If the refrigerator is a pulse tube refrigerator, the tip of the pulse tube and the hot end of the regenerator become hot, so it is effective to water-cool these parts of the refrigerator (where the radiator is usually placed). Also, it is effective for heat load measures of the whole system.

【0016】断熱材について補説すると、本発明では輻
射熱を反射するか遮蔽する作用をもつものが利用され
る。例えば、ポリエステルフィルムやポリプロピレンフ
ィルムの表面にアルミニウムを蒸着した赤外線乃至可視
光線を反射する蒸着フィルム遮蔽板による真空容器の被
覆に使用できる。また、例えば酸化インジウム、酸化ジ
ルコニウム或いは酸化チタニウム等をガラスや有機フィ
ルム表面にスパッタしてなる半透明膜(厳密に云えば、
完全酸化物ではなく、例えば酸化チタンでは部分的に還
元状態にあるTiO2-xと表示できる)は、光学厚さ
(屈折率と有効厚さ)に対応した輻射線の波長によっ
て、反射、吸収、透過挙動が変化する。遠赤外線波長と
対応する温度(氷点下〜70℃)の光学厚さとなるよう
に酸化物の被膜の厚さを調整することができる。
As a supplement to the heat insulating material, the present invention utilizes a material having an action of reflecting or blocking radiant heat. For example, it can be used for covering a vacuum container with a vapor-deposited film shielding plate which reflects infrared or visible light in which aluminum is vapor-deposited on the surface of a polyester film or a polypropylene film. In addition, for example, a semi-transparent film (in a strict sense, formed by sputtering indium oxide, zirconium oxide, titanium oxide, or the like on a glass or organic film surface.
For example, titanium oxide can be expressed as partially reduced TiO 2-x instead of complete oxide.) Reflection and absorption depend on the wavelength of radiation corresponding to the optical thickness (refractive index and effective thickness). , The transmission behavior changes. The thickness of the oxide film can be adjusted so as to have an optical thickness at a temperature (below the freezing point to 70 ° C.) corresponding to the far-infrared wavelength.

【0017】このような被覆材で真空容器を被覆する
と、真空容器への輻射熱をカットでき、冷凍機の負荷を
減らすことが可能となる。
When the vacuum vessel is covered with such a covering material, radiant heat to the vacuum vessel can be cut, and the load on the refrigerator can be reduced.

【0018】[0018]

【発明の実施の形態】図面を参照しながら、本発明をさ
らに説明する。
BRIEF DESCRIPTION OF THE DRAWINGS The invention will be further described with reference to the drawings.

【0019】図1は、本発明の実施例であって、高温超
伝導フィルタシステムの冷却とその維持を担う設備の概
略図(正面図)である。図1において、実施例の冷凍シ
ステムは、設備的には圧縮機30が占める下部ラックの
上にチャンバ20(上部のラック)が載置された状態に
あり、チャンバ20の内部には真空容器10、温度調節
器(温調器)40及び電源42が配置されており、真空
容器10は断熱材12によって被覆されている。本冷却
方式の中心となる高温超伝導フィルタ(図示せず)は、
真空容器10の内部に収納されており、該真空容器の中
にはパルス管冷凍機で代表される冷凍機が配置され、パ
ルス管や蓄冷器等の動作流体と圧縮機30のピストン・
シリンダ部分とは流密に連結さている。圧縮機による動
作流体の圧縮・膨張によって、真空容器10内のパルス
管や蓄冷器等は所定の冷却温度(約70K)までに冷却
され、その温度に維持される。その結果、前記蓄冷器の
近傍に配置されている高温超伝導フィルタは超伝導性能
を発現できると言う仕組みである。
FIG. 1 is a schematic view (front view) of an apparatus for cooling and maintaining a high-temperature superconducting filter system according to an embodiment of the present invention. In FIG. 1, the refrigeration system of the embodiment has a facility in which a chamber 20 (upper rack) is mounted on a lower rack occupied by a compressor 30, and a vacuum vessel 10 is provided inside the chamber 20. , A temperature controller (temperature controller) 40 and a power supply 42 are arranged, and the vacuum vessel 10 is covered with a heat insulating material 12. The high-temperature superconducting filter (not shown), which is the center of this cooling system,
It is housed inside the vacuum vessel 10, and a refrigerator represented by a pulse tube refrigerator is arranged in the vacuum vessel, and working fluid such as a pulse tube and a regenerator and a piston /
The cylinder part is fluidly connected. By compressing / expanding the working fluid by the compressor, the pulse tube, the regenerator and the like in the vacuum vessel 10 are cooled to a predetermined cooling temperature (about 70K) and maintained at that temperature. As a result, the high-temperature superconducting filter disposed near the regenerator can exhibit superconducting performance.

【0020】図2は、図1の本実施例であって、側面か
ら観た状況を示したものである。下部の圧縮機30はピ
ストンを駆動するための電導コイルからのジュール熱に
よる発熱があるうえ、動作流体の圧縮等によっても流体
の発熱が生じる。そこで、発熱の大きい圧縮機を冷却す
る必要があり、圧縮機の放熱用にファン32が該圧縮機
側面に設けられている。
FIG. 2 shows the embodiment of FIG. 1 and shows a situation viewed from the side. The lower compressor 30 generates heat due to Joule heat from the conductive coil for driving the piston, and also generates heat of the fluid due to compression of the working fluid. Therefore, it is necessary to cool the compressor which generates a large amount of heat, and the fan 32 is provided on the side of the compressor for heat radiation of the compressor.

【0021】図1の冷却方式を一層効果ならしめるた
め、特に図で示してないものの、真空容器10を直接又
は間接に冷却水により冷却することも可能である、冷却
水による冷却はチューブ等を真空容器外壁に捲く要領
(図示せず)で実施できる。勿論、公知の他の手段も採
用可能である。
In order to make the cooling system of FIG. 1 more effective, it is also possible to directly or indirectly cool the vacuum vessel 10 with cooling water (not shown). It can be implemented by a procedure (not shown) wound around the outer wall of the vacuum vessel. Of course, other known means can be adopted.

【0022】本発明では、先ず、圧縮機をチャンバ外部
に設置することにより、圧縮機の発熱が真空容器に伝達
されることが避けられる。
In the present invention, first, by installing the compressor outside the chamber, the heat generated by the compressor is prevented from being transmitted to the vacuum vessel.

【0023】更に、上述のように、真空容器を直接又は
間接的に水冷して、外部環境からの影響を避ける。水冷
手段は、地下水等の低温の水を利用するほか、冷凍機に
よって作られた冷却水を用いても差し支えない。但し、
冷却水は本発明の冷却装置の周囲ではなく、本発明の装
置から離れた場所で作られて、簡便に利用できるものの
方が好ましい。
Further, as described above, the vacuum vessel is directly or indirectly water-cooled to avoid the influence from the external environment. The water cooling means may use low-temperature water such as groundwater, or may use cooling water generated by a refrigerator. However,
Preferably, the cooling water is produced not at the periphery of the cooling device of the present invention but at a location away from the device of the present invention and can be easily used.

【0024】また、真空容器を覆う断熱材としては、輻
射熱を反射するか遮蔽する作用をもつものが推奨され
る。少なくとも、外部環境温度の変化から遮断される必
要がある。
As the heat insulating material for covering the vacuum vessel, a heat insulating material that reflects or blocks radiant heat is recommended. At least, it is necessary to be shielded from changes in the external environment temperature.

【0025】さらに、冷凍機自体やチャンバ自体を、真
空容器の冷却と同様に、冷却することができる。この場
合も水冷手段は好適であり、地下水等の低温の水を利用
することができる。
Further, the refrigerator and the chamber itself can be cooled in the same manner as the cooling of the vacuum vessel. Also in this case, the water cooling means is suitable, and low-temperature water such as groundwater can be used.

【0026】[0026]

【発明の効果】請求項1の発明では、圧縮機をチャンバ
外部に設置することにより、圧縮機の発熱が真空容器に
伝達されることが避けられ、断熱材として例えば輻射熱
を反射するか遮蔽する機能をもつ材料が選ばれると、真
空容器が外部環境温度変化から遮蔽される効果を奏す
る。
According to the first aspect of the present invention, since the compressor is installed outside the chamber, the heat generated by the compressor is prevented from being transmitted to the vacuum vessel. When a material having a function is selected, there is an effect that the vacuum vessel is shielded from a change in the external environment temperature.

【0027】請求項2の発明では、請求項1の発明の効
果に加えて、真空容器を直接又は間接的に水冷して、外
部環境からの影響を避けることができる。
According to the second aspect of the invention, in addition to the effects of the first aspect, the vacuum vessel can be directly or indirectly water-cooled to avoid the influence from the external environment.

【0028】請求項3の発明でも、請求項1又は請求項
2の発明の効果に加えて、冷凍機自体やチャンバ自体を
冷却して冷却機の熱負荷を抑える効果がある。
The invention of claim 3 also has an effect of suppressing the heat load of the cooler by cooling the refrigerator itself or the chamber itself, in addition to the effect of the invention of claim 1 or 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示す正面図(概略図)であ
る。
FIG. 1 is a front view (schematic diagram) showing an embodiment of the present invention.

【図2】本発明の実施例を示す側面図(概略図)であ
る。
FIG. 2 is a side view (schematic diagram) showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 真空容器 12 断熱材 20 チャンバ(ラック) 30 圧縮機 32 ファン 40 温調器 42 電源 DESCRIPTION OF SYMBOLS 10 Vacuum container 12 Insulation material 20 Chamber (rack) 30 Compressor 32 Fan 40 Temperature controller 42 Power supply

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】金属酸化物薄膜からなる高温超伝導フィル
タを真空容器内に置き、該フィルタを機能せしめるため
の冷凍手段において、 真空容器を納めたチャンバの外側に圧縮機を配置して該
圧縮機からの放熱がチャンバに及ばないようにすると共
に、放熱促進用フィンを該圧縮機の周囲に設け、 真空容器外側を断熱材で被覆することからなる、 高温超伝導フィルタシステムの冷却方式。
1. A refrigeration means for placing a high-temperature superconducting filter made of a metal oxide thin film in a vacuum vessel and arranging a compressor outside a chamber containing the vacuum vessel in the refrigeration means for making the filter function. A cooling system for a high-temperature superconducting filter system, comprising: dissipating heat from a machine to a chamber; providing heat dissipation promoting fins around the compressor; and covering the outside of the vacuum vessel with a heat insulating material.
【請求項2】請求項1に記載のシステムにおいて、真空
容器自体を水冷することを特徴とする高温超伝導フィル
タシステムの冷却方式。
2. A cooling system for a high-temperature superconducting filter system according to claim 1, wherein the vacuum vessel itself is water-cooled.
【請求項3】請求項1に記載のシステムにおいて、冷凍
機自体及び/又はチャンバ自体を水冷することを特徴と
する高温超伝導フィルタシステムの冷却方式。
3. A cooling system for a high-temperature superconducting filter system according to claim 1, wherein the refrigerator and / or the chamber itself is water-cooled.
JP11065890A 1999-03-12 1999-03-12 Cooling system of high-temperature superconducting filter system Pending JP2000257967A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11065890A JP2000257967A (en) 1999-03-12 1999-03-12 Cooling system of high-temperature superconducting filter system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11065890A JP2000257967A (en) 1999-03-12 1999-03-12 Cooling system of high-temperature superconducting filter system

Publications (1)

Publication Number Publication Date
JP2000257967A true JP2000257967A (en) 2000-09-22

Family

ID=13300023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11065890A Pending JP2000257967A (en) 1999-03-12 1999-03-12 Cooling system of high-temperature superconducting filter system

Country Status (1)

Country Link
JP (1) JP2000257967A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065653A1 (en) * 2001-02-13 2002-08-22 Nec Corporation Radio receiver
CN102507725A (en) * 2011-10-28 2012-06-20 北京航空航天大学 Measuring device and measuring method of superconductive AC magnetic susceptibility

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002065653A1 (en) * 2001-02-13 2002-08-22 Nec Corporation Radio receiver
US7206605B2 (en) 2001-02-13 2007-04-17 Nec Corporation Radio receiver
CN102507725A (en) * 2011-10-28 2012-06-20 北京航空航天大学 Measuring device and measuring method of superconductive AC magnetic susceptibility

Similar Documents

Publication Publication Date Title
JPWO2011118198A1 (en) Heating device and refrigerator
CN101720416A (en) Refrigerating plant and the method for keeping that is used for the constant predetermined temperature of its refrigerating chamber
CA2528175A1 (en) Method and apparatus of cryogenic cooling for high temperature superconductor devices
US3473341A (en) Cold-gas refrigeration apparatus
JP5289784B2 (en) Refrigerator integrated cryogenic container
JP2000257967A (en) Cooling system of high-temperature superconducting filter system
CN114136046A (en) Vehicle-mounted efficient heat-insulation Stirling deep low-temperature refrigerator
JP2002048423A (en) Cooling system of superconducting filter facility
CN213069443U (en) Refrigeration camera with heat absorption structure
CN210050932U (en) Closed space refrigerating structure
CN211346470U (en) Temperature-adjusting energy storage device based on radiation cooling
Duband et al. Socool: A 300 K-0.3 K pulse tube/sorption cooler
JP2977809B1 (en) Refrigeration equipment
CN110868823A (en) Housing assembly and electronic device
CN111459251B (en) High-efficiency radiator for CPU heat radiation
CN110567308A (en) Temperature-adjusting energy storage device based on radiation cooling and construction method
JPS63186403A (en) Superconducting magnet
JP2002267328A (en) Refrigerator
JPH07332829A (en) Freezer
JP2010258376A (en) Superconducting magnet device
CN211212619U (en) Electric pressure cooker and cooker body structure thereof
JP2006112639A (en) Refrigerator
JP2006191434A (en) Radio equipment
JP3916476B2 (en) Communication equipment
CN110118404A (en) A kind of refrigerating enclosures structure