JP3592562B2 - High sensitivity radio - Google Patents

High sensitivity radio Download PDF

Info

Publication number
JP3592562B2
JP3592562B2 JP35858198A JP35858198A JP3592562B2 JP 3592562 B2 JP3592562 B2 JP 3592562B2 JP 35858198 A JP35858198 A JP 35858198A JP 35858198 A JP35858198 A JP 35858198A JP 3592562 B2 JP3592562 B2 JP 3592562B2
Authority
JP
Japan
Prior art keywords
reception
filter
bandpass filter
band
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35858198A
Other languages
Japanese (ja)
Other versions
JP2000183772A (en
Inventor
哲也 三村
圭 佐藤
祥一 楢橋
俊雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Priority to JP35858198A priority Critical patent/JP3592562B2/en
Priority to EP99124917A priority patent/EP1014480A3/en
Priority to US09/466,062 priority patent/US6480706B1/en
Publication of JP2000183772A publication Critical patent/JP2000183772A/en
Application granted granted Critical
Publication of JP3592562B2 publication Critical patent/JP3592562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、例えば移動通信システムに用いられる基地局無線機に関し、特に高周波受信部を冷却することによって受信感度の向上を図った、高感度無線機に関するものである。
【0002】
【従来の技術】
従来の高感度無線機の基本構成を図5に示す。この従来の高感度無線受信機は、アンテナ端子1と、アンテナ端子1に入力された信号から所望の受信帯域の信号を選択して通過させ、非超電導材料で構成された第1受信帯域フィルタ2と、第1受信帯域フィルタ2の出力からさらに所望の受信帯域の信号を選択して通過させ、帯域外の入力を除去する超電導材料で構成された第2受信帯域フィルタ3と、第2受信帯域フィルタ3の出力を所望のレベルまで低雑音で増幅する受信低雑音増幅器4と、受信低雑音増幅器4からの出力信号を出力する受信出力端子5とを備えている。また、送信信号入力端子6と、送信信号入力端子6に入力された信号から送信帯域の信号を選択して通過させる送信帯域フィルタ7とを備えている。第1受信帯域フィルタ2と送信帯域フィルタ7は各一端が結合回路8によりアンテナ側へ結合され、第1受信帯域フィルタ2、送信帯域フィルタ7及び結合回路8により送受共用器9が構成されている。第2受信帯域フィルタ3と受信低雑音増幅器4は、熱遮蔽函10に封入され、外部と断熱されるとともに、冷却手段11により冷却部材11aを介して冷却される。さらに、受信低雑音増幅器4に電力を供給するための第1電源端子12と冷却手段11に電力を供給するための第2電源端子13がそれぞれ設けられる。
【0003】
第2受信帯域フィルタ3及び受信低雑音増幅器4は、例えば真空断熱により外部からの熱侵入を遮断する熱遮蔽函10に封入され、冷却手段11により、例えば数10Kといった極めて低い温度を長時間安定して維持できる極低温冷凍機で構成され、これらは市販の製品を利用することができる。
このように、第2受信帯域フィルタ3及び受信低雑音増幅器4を長時間安定して極低温に冷却することにより、第2受信帯域フィルタ3及び受信低雑音増幅器4で発生する熱雑音を極限的に低減するとともに、第2受信帯域フィルタ3の挿入損失を小さくすることができる。その結果、図5に示した受信機の雑音指数は大幅に改善され、受信感度が大幅に改善される。したがって、図5に示した高感度無線機を用いることにより、低いレベルの受信信号に対しても例えば規定されたC/N(搬送波電力/雑音電力)の受信出力を得ることができる、規定されたC/Nの受信出力を得るのに必要な送信側の送信電力が小さくて済む、等の効果を得ることができる。
【0004】
また、第2受信帯域フィルタ3を超電導材料で構成し、冷却手段11により超電導状態とすることにより、非常に急峻な減衰特性を得ることができる。その結果、図5に示した受信機の選択度を高くすることができ、隣接帯域からの電波干渉を大幅に低減することができる。したがって、図5に示した高感度無線機を用いることにより、自帯域信号と隣接帯域信号の周波数間隔(ガードバンド)を狭めても電波干渉は低く抑えられるため、周波数の利用効率を大幅に増大することができるという効果が得られる。
【0005】
第2受信帯域フィルタ3としては、マイクロストリップライン形フィルタ、空洞共振器形フィルタ、誘電体共振器形フィルタ、半同軸形フィルタ等を用いることができ、いずれも電極を超電導材料で構成することにより上記の効果が得られる。
ところで、第2受信帯域フィルタ3を構成する超電導材料は臨界電流以上の電流を流すと超電導性を失うため、第2受信帯域フィルタ3に加えられる電力が大きくなるとフィルタの特性が劣化する。そのため、第2受信帯域フィルタ3を直接結合回路8に結合した場合、アンテナで受信された受信帯域外の強い入力や、送信帯域フィルタを通過した信号が第2受信帯域フィルタ3に加えられてしまい、第2受信帯域フィルタ3の特性が劣化してしまう恐れがある。そこで、図5の高感度無線機では第2受信帯域フィルタ3の入力側で、熱遮蔽函10の外部に第1受信帯域フィルタ2を設け、受信帯域外の高い電力の信号を第2受信帯域フィルタ3の特性が劣化しないレベルまで減衰させている。第1受信帯域フィルタ2としては、マイクロストリップライン形フィルタ、空洞共振器形フィルタ、誘電体共振器形フィルタ、半同軸形フィルタ等が用いられ、これらの電極は例えば金などの金属により構成される。
【0006】
ここで、各フィルタの伝送特性の例を図6に示す。第1受信帯域フィルタ2では受信帯域外の信号を第2受信帯域フィルタ3の特性が劣化しない程度に減衰させればよいため、第1受信帯域フィルタ2のみで所望の減衰特性を得る場合と比べれば挿入損失は低く抑えられる。超電導材料により構成された第2受信帯域フィルタ3に急峻な減衰特性をもたせているため、受信機全体としては急峻な減衰特性が得られる。
【0007】
【発明が解決しようとする課題】
従来の高感度無線機では、第1受信帯域フィルタ2が熱遮蔽函10の外部に設けられているため、第1受信帯域フィルタ2の挿入損失が受信感度に大きな影響を与える。アンテナで受信された受信帯域外の信号や送信信号の電力が比較的低い場合は第1受信帯域フィルタ2による送信帯域の減衰量は小さくてよく、したがって第1受信帯域フィルタ2の減衰特性は緩やかでよいため挿入損失も低く抑えられる。ところが送信信号の電力が例えば数10W〜100Wと高い場合や都市部のように高いレベルの帯域外信号がアンテナから入力される恐れのある場合には第1受信帯域フィルタ2による送信帯域の減衰量を大きくしなければならず、結局所望の減衰特性を得るために挿入損失が大きくなるという問題があった。
【0008】
この発明の目的は、第2受信帯域フィルタ3への過大な入力を防ぐために第1受信帯域フィルタ2を用いた場合でも、高感度な受信が可能な高感度無線機を提供することにある。
【0009】
【課題を解決するための手段】
この発明は、アンテナからの受信信号が入力される第1受信帯域フィルタと、そのアンテナへ出力される送信信号が通される送信帯域フィルタと、これら送信帯域フィルタと第1受信帯域フィルタのアンテナ側の各一端を結合するための結合回路と、上記第1受信帯域フィルタの出力側に接続された第2受信帯域フィルタと、その第2受信帯域フィルタの出力側に接続された受信低雑音増幅器を有し、上記第2受信帯域フィルタ及び上記受信低雑音増幅器は熱遮蔽函に封入されて冷却手段により冷却され、上記第2受信帯域フィルタは超電導材料で構成され、上記冷却手段により超電導状態とされている高感度無線機を前提とする。
【0010】
請求項1の発明では、上記第1受信帯域フィルタは非超電導材料で構成され、一部を上記熱遮蔽函に封入し、上記冷却手段により冷却する。
請求項2の発明では、上記第1受信帯域フィルタは送信帯域周波数で減衰極をもつ部分を有する。
請求項3の発明では、上記第1受信帯域フィルタの被冷却部分は金属薄膜を用いたマイクロストリップ線路で構成し、上記第2受信帯域フィルタは超電導薄膜を用いたマイクロストリップ線路で構成し、これら第1受信帯域フィルタの被冷却部分と第2受信帯域フィルタを同一基板上に形成する。
【0011】
【発明の実施の形態】
図1に1つの提案例を示し、図5と対応する部分に同一番号を付けてある。この提案例では、第1受信帯域フィルタ2が熱遮蔽函10に封入され、冷却手段11により冷却部材11aを介して冷却されている点が図5と異なる。このように第1受信帯域フィルタ2を冷却することにより、そこで発生する熱雑音を極限的に低減することができ、第1受信帯域フィルタ2を用いた場合でも高い受信感度が得られる。
【0012】
図2に請求項1の発明の実施例を示す。この実施例では、第1受信帯域フィルタ2は常温部分2aと被冷却部分2bに分割され、被冷却部分2bが熱遮蔽函10に封入されて冷却手段11により冷却部材11aを介して冷却されている。第1受信帯域フィルタ2に入力される電力が非常に大きい場合、図1のように第1受信帯域フィルタ2全体を冷却すると第1受信帯域フィルタ2での発熱が大きくなり、また結合回路8と第1受信帯域フィルタ2とを接続するケーブルも大電力に耐えられるように太くしなければならず、ケーブルを通して熱遮蔽函10の内部に侵入する熱が大きくなる。そのため冷却手段11の冷却能力を大きくする必要があり装置全体を大型化しなければならない。このような場合には第1受信帯域フィルタ2を挿入損失が無視できる程度の最初の数段(常温部分2a)と、残りの部分(被冷却部分2b)に分割し、被冷却部分2bのみを冷却することにより冷却手段11にかかる負荷を大きくすることなく、図1に示したものと同様の効果が得られる。なお、常温部分2aと被冷却部分2bは例えば一方を誘電体共振器形フィルタ、他方をマイクロストリップライン形フィルタといったように異なる種類のフィルタで構成してもよい。
【0013】
そして被冷却部分2b(図1では第1受信帯域フィルタ2)に、送信帯域周波数で減衰極をもたせている。図3AおよびBに被冷却部分2bの伝送特性の例を示す。送信と受信で1つのアンテナを共用する場合、第1受信帯域フィルタ2では特に送信帯域の信号を大きく減衰させる必要がある。そこで、図3Aに示すように被冷却部分2bを送信帯域周波数で減衰極をもたせて構成することにより、少ない段数で所望の減衰特性が得られ、結果として挿入損失を低く抑えられる。図3Aでは被冷却部分2bに帯域通過特性と極による減衰特性を持たせているが、図3Bのように常温部分2aに帯域通過特性をもたせ、被冷却部分2bに極による減衰特性をもたせる構成としてもよい。また被冷却部分2bではなく常温部分2aに、送信帯域周波数で減衰極をもたせてもよい。
【0014】
請求項の発明では被冷却部分2b及び第2受信帯域フィルタ3を特にマイクロストリップライン形フィルタで構成し、被冷却部分2bを構成する金属材料を用いた回路と、第2受信帯域フィルタ3を構成する超電導材料を用いた回路とを同一基板上に形成している。
図4に回路の製作方法の一例を示し、以下に手順を説明する。(a)まず基板の両面にスパッタリング等により超電導薄膜を成膜する。(b)次にフォトリソグラフィーにより所望の第2受信帯域フィルタ3の回路パターンを作製する。(c)続いて作製した超電導薄膜の回路をフォトレジスト等で保護し、真空蒸着等により被冷却部分2bを構成するための金などの金属材料を成膜する。(d)フォトリソグラフィーにより所望の被冷却部分2bの回路パターンを作製する。(e)不要なフォトレジストを除去する。
【0015】
このように同一基板上に金属材料で構成された被冷却部分2bと第2受信帯域フィルタ3を形成することにより、回路を小形化することが可能となり、被冷却部分2bと第2受信帯域フィルタ3の間の損失を限りなく低減することができる。
【0016】
【発明の効果】
以上延べたようにこの発明によれば、電極を超電導材料で構成した第2受信帯域フィルタへの過大な入力を防ぐために、第2受信帯域フィルタの前に電極を金属材料で構成した第1受信帯域フィルタを設けた場合でも、第1受信帯域フィルタの一部または全部を第2受信帯域フィルタとともに冷却することにより、高い受信感度を保つことができる。また、第1受信帯域フィルタの被冷却部分又は常温部分において、送信帯域周波数で減衰極をもたせることにより第1受信帯域フィルタで必要となるフィルタの段数を小さくでき、より高感度化が可能となる。さらに、第1受信帯域フィルタの被冷却部分と第2受信帯域フィルタをいずれもマイクロストリップラインで同一基板上に形成することにより回路を小形化することができる。
【図面の簡単な説明】
【図1】1つの提案例を示すブロック図。
【図2】請求項1の発明の実施例を示すブロック図。
【図3】請求項の発明におけるフィルタの伝送特性例を示す図。
【図4】請求項の発明の実施例における回路製作方法の一例を示す図。
【図5】従来の高感度無線機の構成を示すブロック図。
【図6】第1受信帯域フィルタおよび第2受信帯域フィルタの伝送特性例を示す図。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a base station radio for use in, for example, a mobile communication system, and more particularly to a high-sensitivity radio in which the reception sensitivity is improved by cooling a high-frequency receiver.
[0002]
[Prior art]
FIG. 5 shows a basic configuration of a conventional high-sensitivity wireless device. This conventional high-sensitivity radio receiver includes an antenna terminal 1, a signal in a desired reception band selected from signals input to the antenna terminal 1 and passed therethrough, and a first reception band filter 2 made of a non-superconducting material. A second reception band filter 3 made of a superconducting material for selecting and passing a signal in a desired reception band from an output of the first reception band filter 2 and removing an input outside the band; A reception low-noise amplifier 4 for amplifying the output of the filter 3 to a desired level with low noise, and a reception output terminal 5 for outputting an output signal from the reception low-noise amplifier 4 are provided. The transmission signal input terminal 6 includes a transmission band filter 7 that selects a signal in a transmission band from signals input to the transmission signal input terminal 6 and passes the signal. One end of each of the first reception band filter 2 and the transmission band filter 7 is coupled to the antenna side by a coupling circuit 8, and a duplexer 9 is configured by the first reception band filter 2, the transmission band filter 7, and the coupling circuit 8. . The second reception bandpass filter 3 and the reception low-noise amplifier 4 are sealed in a heat shielding box 10 and are insulated from the outside, and are cooled by a cooling means 11 via a cooling member 11a. Further, a first power supply terminal 12 for supplying power to the reception low noise amplifier 4 and a second power supply terminal 13 for supplying power to the cooling means 11 are provided.
[0003]
The second reception band-pass filter 3 and the reception low-noise amplifier 4 are sealed in a heat shield box 10 for blocking heat intrusion from the outside by, for example, vacuum insulation, and the cooling means 11 stabilizes an extremely low temperature of, for example, several tens of K for a long time. It is composed of cryogenic refrigerators that can be maintained as such, and these can use commercially available products.
As described above, the second reception band-pass filter 3 and the reception low-noise amplifier 4 are stably cooled to a very low temperature for a long time, so that the thermal noise generated in the second reception band-pass filter 3 and the reception low-noise amplifier 4 is extremely limited. And the insertion loss of the second reception bandpass filter 3 can be reduced. As a result, the noise figure of the receiver shown in FIG. 5 is greatly improved, and the receiving sensitivity is greatly improved. Therefore, by using the high-sensitivity radio shown in FIG. 5, it is possible to obtain, for example, a specified C / N (carrier power / noise power) reception output even for a low-level reception signal. Thus, it is possible to obtain the effect that the transmission power on the transmission side required to obtain the reception output of the C / N is small.
[0004]
Also, by forming the second reception bandpass filter 3 of a superconducting material and setting the superconducting state by the cooling means 11, a very steep attenuation characteristic can be obtained. As a result, the selectivity of the receiver shown in FIG. 5 can be increased, and radio interference from an adjacent band can be significantly reduced. Therefore, by using the high-sensitivity radio shown in FIG. 5, even if the frequency interval (guard band) between the own band signal and the adjacent band signal is narrowed, the radio wave interference can be kept low, and the frequency use efficiency is greatly increased. The effect is obtained.
[0005]
As the second reception bandpass filter 3, a microstrip line type filter, a cavity resonator type filter, a dielectric resonator type filter, a semi-coaxial type filter, or the like can be used, and all of the electrodes are made of a superconducting material. The above effects can be obtained.
By the way, the superconducting material constituting the second reception bandpass filter 3 loses superconductivity when a current higher than the critical current flows, so that when the power applied to the second reception bandpass filter 3 increases, the characteristics of the filter deteriorate. Therefore, when the second reception band filter 3 is directly coupled to the coupling circuit 8, a strong input outside the reception band received by the antenna or a signal passed through the transmission band filter is added to the second reception band filter 3. In addition, the characteristics of the second reception band-pass filter 3 may be deteriorated. Therefore, in the high-sensitivity radio of FIG. 5, the first reception bandpass filter 2 is provided outside the heat shield box 10 on the input side of the second reception bandpass filter 3, and a high power signal outside the reception band is passed through the second reception bandpass filter. The filter 3 is attenuated to a level at which the characteristics do not deteriorate. As the first reception bandpass filter 2, a microstrip line type filter, a cavity resonator type filter, a dielectric resonator type filter, a semi-coaxial type filter or the like is used, and these electrodes are made of metal such as gold. .
[0006]
Here, an example of the transmission characteristics of each filter is shown in FIG. In the first reception band-pass filter 2, signals outside the reception band need only be attenuated to such an extent that the characteristics of the second reception band-pass filter 3 are not deteriorated. Insertion loss can be kept low. Since the second reception bandpass filter 3 made of a superconducting material has a steep attenuation characteristic, a steep attenuation characteristic can be obtained as a whole receiver.
[0007]
[Problems to be solved by the invention]
In the conventional high-sensitivity radio, the first reception band-pass filter 2 is provided outside the heat shielding box 10, so that the insertion loss of the first reception band-pass filter 2 greatly affects the reception sensitivity. When the power of the signal outside the reception band or the transmission signal received by the antenna is relatively low, the attenuation of the transmission band by the first reception band filter 2 may be small, and thus the attenuation characteristic of the first reception band filter 2 is moderate. , The insertion loss can be kept low. However, when the power of the transmission signal is high, for example, several tens of W to 100 W, or when there is a possibility that a high-level out-of-band signal is input from the antenna such as in an urban area, the attenuation of the transmission band by the first reception band filter 2. Must be increased, resulting in a problem that the insertion loss increases in order to obtain a desired attenuation characteristic.
[0008]
An object of the present invention is to provide a high-sensitivity radio capable of performing high-sensitivity reception even when the first reception band filter 2 is used to prevent an excessive input to the second reception band filter 3.
[0009]
[Means for Solving the Problems]
The present invention relates to a first reception band filter to which a reception signal from an antenna is input, a transmission band filter through which a transmission signal output to the antenna passes, and an antenna side of the transmission band filter and the first reception band filter A second receiving bandpass filter connected to the output side of the first receiving bandpass filter, and a receiving low noise amplifier connected to the output side of the second receiving bandpass filter. The second reception bandpass filter and the reception low noise amplifier are sealed in a heat shield box and cooled by cooling means, and the second reception bandpass filter is made of a superconducting material, and is brought into a superconducting state by the cooling means. It is assumed that a high-sensitivity wireless device is used.
[0010]
In the invention of claim 1, said first receiving band-pass filter is constituted by a non-superconductive material, the part enclosed in the heat shield box making, cooled by the cooling means.
In the invention of claim 2, the first reception band filter has a portion having an attenuation pole at a transmission band frequency.
According to the third aspect of the present invention, the portion to be cooled of the first reception bandpass filter is constituted by a microstrip line using a metal thin film, and the second reception bandpass filter is constituted by a microstrip line using a superconducting thin film. The cooled portion of the first reception bandpass filter and the second reception bandpass filter are formed on the same substrate.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows one proposal example, and the same reference numerals are given to portions corresponding to FIG. This proposed example is different from FIG. 5 in that the first reception bandpass filter 2 is sealed in a heat shielding box 10 and cooled by a cooling means 11 via a cooling member 11a. By cooling the first reception bandpass filter 2 in this way, thermal noise generated there can be reduced to the utmost, and high reception sensitivity can be obtained even when the first reception bandpass filter 2 is used.
[0012]
FIG. 2 shows an embodiment of the first aspect of the present invention. In this embodiment, the first receiving bandpass filter 2 is divided into a normal temperature portion 2a and a cooled portion 2b, and the cooled portion 2b is sealed in a heat shielding box 10 and cooled by a cooling means 11 via a cooling member 11a. I have. When the power input to the first reception band-pass filter 2 is very large, when the entire first reception band-pass filter 2 is cooled as shown in FIG. The cable connecting to the first reception bandpass filter 2 must also be thick enough to withstand high power, and the amount of heat that enters the heat shield box 10 through the cable increases. Therefore, the cooling capacity of the cooling means 11 needs to be increased, and the size of the entire apparatus must be increased. In such a case, the first receiving bandpass filter 2 is divided into the first few stages (normal temperature portion 2a) and the remaining portion (cooled portion 2b) of which insertion loss is negligible, and only the cooled portion 2b is divided. By cooling, the same effect as that shown in FIG. 1 can be obtained without increasing the load on the cooling means 11. The room temperature portion 2a and the cooled portion 2b may be formed of different types of filters such as a dielectric resonator type filter on one side and a microstrip line type filter on the other side.
[0013]
The cooled portion 2b (the first reception band filter 2 in FIG. 1) has an attenuation pole at the transmission band frequency. 3A and 3B show examples of transmission characteristics of the cooled portion 2b. When one antenna is used for both transmission and reception, the first reception band-pass filter 2 particularly needs to greatly attenuate signals in the transmission band. Therefore, as shown in FIG. 3A, by forming the cooled portion 2b with an attenuation pole at the transmission band frequency, a desired attenuation characteristic can be obtained with a small number of stages, and as a result, the insertion loss can be suppressed low. In FIG. 3A, the cooled portion 2b has bandpass characteristics and pole attenuation characteristics, but as shown in FIG. 3B, the room temperature portion 2a has bandpass characteristics and the cooled portion 2b has pole attenuation characteristics. It may be. Further, the normal temperature portion 2a may be provided with an attenuation pole at the transmission band frequency instead of the cooled portion 2b.
[0014]
According to the second aspect of the present invention, the cooled portion 2b and the second reception bandpass filter 3 are particularly constituted by a microstrip line type filter, and the circuit using the metal material constituting the cooled portion 2b and the second reception bandpass filter 3 are formed. The circuit using the superconducting material is formed on the same substrate.
FIG. 4 shows an example of a circuit manufacturing method, and the procedure will be described below. (A) First, a superconducting thin film is formed on both surfaces of a substrate by sputtering or the like. (B) Next, a desired circuit pattern of the second reception bandpass filter 3 is formed by photolithography. (C) Subsequently, the circuit of the produced superconducting thin film is protected with a photoresist or the like, and a metal material such as gold for forming the cooled portion 2b is formed by vacuum evaporation or the like. (D) A desired circuit pattern of the portion to be cooled 2b is formed by photolithography. (E) Remove unnecessary photoresist.
[0015]
By forming the cooled portion 2b and the second reception bandpass filter 3 made of a metal material on the same substrate in this way, it is possible to reduce the size of the circuit, and the cooled portion 2b and the second reception bandpass filter are formed. 3 can be reduced as much as possible.
[0016]
【The invention's effect】
As described above, according to the present invention, in order to prevent an excessive input to the second reception bandpass filter in which the electrodes are made of a superconducting material, the first reception band in which the electrodes are made of a metal material before the second reception bandpass filter. Even when a bandpass filter is provided, high reception sensitivity can be maintained by cooling part or all of the first reception bandpass filter together with the second reception bandpass filter. Also, by providing an attenuation pole at the transmission band frequency in the portion to be cooled or the room temperature portion of the first reception band filter, the number of filters required in the first reception band filter can be reduced, and higher sensitivity can be achieved. . Furthermore, the circuit can be miniaturized by forming both the cooled portion of the first reception bandpass filter and the second reception bandpass filter on the same substrate by a microstrip line.
[Brief description of the drawings]
FIG. 1 is a block diagram showing one proposed example.
FIG. 2 is a block diagram showing an embodiment of the invention of claim 1;
FIG. 3 is a diagram showing an example of a transmission characteristic of a filter according to the invention of claim 1 ;
FIG. 4 is a diagram showing an example of a circuit manufacturing method according to the embodiment of the second invention.
FIG. 5 is a block diagram showing a configuration of a conventional high-sensitivity wireless device.
FIG. 6 is a diagram illustrating an example of transmission characteristics of a first reception bandpass filter and a second reception bandpass filter.

Claims (2)

アンテナからの受信信号が入力される第1受信帯域フィルタと、そのアンテナへ出力される送信信号が通される送信帯域フィルタと、これら送信帯域フィルタと第1受信帯域フィルタのアンテナ側の各一端を結合するための結合回路と、上記第1受信帯域フィルタの出力側に接続された第2受信帯域フィルタと、その第2受信帯域フィルタの出力側に接続された受信低雑音増幅器を有し、上記第2受信帯域フィルタ及び上記受信低雑音増幅器は熱遮蔽函に封入されて冷却手段により冷却され、上記第2受信帯域フィルタは超電導材料で構成され、上記冷却手段により超電導状態とされている高感度無線機において、
上記第1受信帯域フィルタは帯域通過特性を有する常温部分と、帯域通過特性と送信帯域周波数で極による減衰特性とを持つ冷却部分とからなり、かつ非超電導材料で構成され、上記冷却部分が上記熱遮蔽函に封入され、上記冷却手段により冷却されることを特徴とする高感度無線機。
A first reception band filter to which a reception signal from the antenna is input, a transmission band filter through which a transmission signal output to the antenna is passed, and one end of each of the transmission band filter and the first reception band filter on the antenna side A coupling circuit for coupling, a second reception bandpass filter connected to an output side of the first reception bandpass filter, and a reception low-noise amplifier connected to an output side of the second reception bandpass filter; The second reception bandpass filter and the reception low-noise amplifier are sealed in a heat shielding box and cooled by cooling means, and the second reception bandpass filter is made of a superconducting material, and is in a superconducting state by the cooling means. In the radio,
It said first receiving band-pass filter consists of a room temperature portion having a bandpass characteristic, a band pass characteristic and the transmission band frequency and a cooling portion having a damping characteristic due to pole, and is composed of a non-superconductive material, said cooling section is above A high-sensitivity wireless device sealed in a heat shielding box and cooled by the cooling means.
請求項1記載の高感度無線機において、
上記第1受信帯域フィルタの被冷却部分は金属薄膜を用いたマイクロストリップ線路で構成され、上記第2受信帯域フィルタは超電導薄膜を用いたマイクロストリップ線路で構成され、これら第1受信帯域フィルタの被冷却部分と第2受信帯域フィルタが同一基板上に形成されたことを特徴とする高感度無線機。
In high sensitivity radio of claim 1 Symbol placement,
The portion to be cooled of the first reception bandpass filter is constituted by a microstrip line using a metal thin film, and the second reception bandpass filter is constituted by a microstrip line using a superconducting thin film. A high-sensitivity radio, wherein the cooling part and the second reception bandpass filter are formed on the same substrate.
JP35858198A 1998-12-17 1998-12-17 High sensitivity radio Expired - Lifetime JP3592562B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP35858198A JP3592562B2 (en) 1998-12-17 1998-12-17 High sensitivity radio
EP99124917A EP1014480A3 (en) 1998-12-17 1999-12-14 High sensitivity radio receiver
US09/466,062 US6480706B1 (en) 1998-12-17 1999-12-17 High sensitivity radio receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35858198A JP3592562B2 (en) 1998-12-17 1998-12-17 High sensitivity radio

Publications (2)

Publication Number Publication Date
JP2000183772A JP2000183772A (en) 2000-06-30
JP3592562B2 true JP3592562B2 (en) 2004-11-24

Family

ID=18460057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35858198A Expired - Lifetime JP3592562B2 (en) 1998-12-17 1998-12-17 High sensitivity radio

Country Status (1)

Country Link
JP (1) JP3592562B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1237731C (en) * 2000-09-29 2006-01-18 株式会社Ntt都科摩 High sensitivity wireless receiving device and high-frequency unit used therefor
US6501353B2 (en) 2001-03-16 2002-12-31 Illinois Superconductor Corporation Duplexed front-end for a radio transceiver system
KR100394010B1 (en) * 2001-05-25 2003-08-09 엘지전자 주식회사 freezing apparatus for cooling down high temperature, superconductor micro-filter system
KR20030052677A (en) * 2001-12-21 2003-06-27 주식회사 엘지이아이 Package of microwave filter and low noise amplifier as a unit, and device for tuning the same
KR100480731B1 (en) * 2003-03-18 2005-04-07 엘지전자 주식회사 High temperature superconductivity filter system in a station for mobile telecomunication
JP6495790B2 (en) * 2015-09-14 2019-04-03 株式会社東芝 Thermal insulation waveguide and wireless communication device

Also Published As

Publication number Publication date
JP2000183772A (en) 2000-06-30

Similar Documents

Publication Publication Date Title
US6480706B1 (en) High sensitivity radio receiver
Hong et al. On the performance of HTS microstrip quasi-elliptic function filters for mobile communications application
US6754510B2 (en) MEMS-based bypass system for use with a HTS RF receiver
US20050164888A1 (en) Systems and methods for signal filtering
JP3895276B2 (en) High frequency unit used for high sensitivity wireless receiver
US20010038320A1 (en) Dual operation mode all temperature filter using superconducting resonators
JP2000236206A (en) High-sensitivity radio receiver
US6711394B2 (en) RF receiver having cascaded filters and an intermediate amplifier stage
US6823201B2 (en) Superconducting microstrip filter having current density reduction parts
JP3592562B2 (en) High sensitivity radio
JP4153118B2 (en) High frequency amplifier and wireless communication system using the same
JP4068521B2 (en) Superconducting duplexer device
JP4149690B2 (en) Superconducting filter
JP3558260B2 (en) High-sensitivity base station radio equipment
JP3558263B2 (en) High sensitivity wireless receiver
JPH10224252A (en) Filter circuit
JP2006136025A (en) Radio transmitter-receiver
JP3483121B2 (en) High sensitivity wireless receiver
Akasegawa et al. 4 GHz band HTS receiving-filters for a compact cryogenic receiver front-end
US20030211947A1 (en) Hybrid superconductor technology filter
JP2001144635A (en) Wireless receiver
Setsune et al. High-T c Superconducting Filters for Power Signal Transmission on Communication Base Station
SETSUNE Microwave Passive Components Frequency Filters for the Base Station of Mobile Telecommunication Systems
KR20030085321A (en) cryo-packaging apparatus for high superconductor filter system

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040611

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080903

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090903

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100903

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110903

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120903

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130903

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term