JP4068521B2 - Superconducting duplexer device - Google Patents

Superconducting duplexer device Download PDF

Info

Publication number
JP4068521B2
JP4068521B2 JP2003192988A JP2003192988A JP4068521B2 JP 4068521 B2 JP4068521 B2 JP 4068521B2 JP 2003192988 A JP2003192988 A JP 2003192988A JP 2003192988 A JP2003192988 A JP 2003192988A JP 4068521 B2 JP4068521 B2 JP 4068521B2
Authority
JP
Japan
Prior art keywords
filter
reception
transmission
superconducting
bandwidth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003192988A
Other languages
Japanese (ja)
Other versions
JP2005033264A (en
Inventor
学 甲斐
一典 山中
輝 中西
章彦 赤瀬川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003192988A priority Critical patent/JP4068521B2/en
Publication of JP2005033264A publication Critical patent/JP2005033264A/en
Application granted granted Critical
Publication of JP4068521B2 publication Critical patent/JP4068521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Transceivers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は超伝導デュプレクサ装置に関し、更に詳しくは、送受信兼用アンテナに接続して高周波の送/受信信号を分離するためのフィルタ回路を備える超伝導デュプレクサ装置に関する。この種のデュプレクサ装置は移動体通信における基地局の送受信部に用いて好適なるものである。
【0002】
【従来の技術】
移動体通信では、送/受信用アンテナを共用する場合が多く、高周波の送/受信信号をフィルタ回路により分離するところのデュプレクサ装置が必要となる。不要な周波数帯の信号を除去し、必要な周波数帯の信号のみを通過させるフィルタ特性は通過特性(S21)が急峻であるほど理想的な特性であり、そのためには、フィルタを構成する共振器の段数nを大きくする必要がある。
【0003】
この点、フィルタを超伝導体で構成すれば、通常の金属よりも導体損失をはるかに小さくでき、例えばn=15でも損失は0.15dBの如く、損失を極めて小さくできるが、しかし、基地局では、送信波から数十W程度のパワーが受信フィルタ側に回り込もうとするため、超伝導体フィルタでは耐電力性に欠けるという欠点がある。
【0004】
係る状況の下、従来は、常温タイプのデュプレクサ20により送/受信波を分離して後、受信側に超伝導フィルタ10を設けるデュプレクサ装置が知られている(特許文献1)。しかし、事前に常温デュプレクサ20や接続ケーブルの損失が加わるため、超伝導フィルタ10による低損失のメリットが失われてしまう。
【0005】
また、従来は、n個の共振器を超伝導マイクロストリップ線路で構成した受信フィルタであって、共有アンテナ側の1又はm個(n>m)の共振器の幅を共有アンテナ側からの送信電力に対して十分な耐性が得られるように太くしたもの、が知られている(特許文献2)。しかし、共有アンテナ側からの送信電力があまり大きくない場合はよいが、例えば基地局における如く、共有アンテナ側から数十W程度の大きな送信電力が回り込む用途には到底耐えられない。
【0006】
また、従来は、高周波信号の所望の帯域に隣接する周波数帯域f1,f2の信号の通過を制限するバンドリジェクションフィルタであって、発熱によって導電率が低下しない非超伝導材料により形成された第1のライン20と、超伝導材料により形成され隣接する周波数に対して共振する共振器用の第2のライン21,22とを有するもの、が知られている(特許文献3)。しかし、非超伝導材料のライン20による損失が常時加わるため、超伝導フィルタ21,22による低損失のメリットが失われてしまう。
【0007】
【特許文献1】
特開2000−252853号公報(要約、図)。
【0008】
【特許文献2】
特開平11−68404号公報(要約、図)。
【0009】
【特許文献3】
特開2000−269754号公報(要約、図9)。
【0010】
【発明が解決しようとする課題】
上記の如く、従来は、超伝導体の耐電力性が低いことに鑑み、特に大きな送信電力が加わる基地局の様な用途では、送・受信フィルタを一体化させて1つの超伝導デュプレクサ装置として構成することは考えられていなかった。
【0011】
本発明は上記従来技術の問題点に鑑みなされたもので、その目的とする所は、超伝導体による送・受信フィルタを一体化させることにより極めて低損失・高性能が得られる超伝導デュプレクサ装置を提供することにある。
【0012】
【課題を解決するための手段】
上記の課題は例えば図1の構成により解決される。即ち、本発明(1)の超伝導デュプレクサ装置は、送受信兼用アンテナ10に接続して高周波の送/受信信号を分離するための超伝導デュプレクサ装置において、背面に接地層22を有する共通の誘電体基板21上に形成された超伝導マイクロストリップ線路によるフィルタ回路であって、所要送信帯域幅の送信信号成分を通過させる送信フィルタ3と、所要受信帯域幅の受信信号成分を通過させる受信フィルタ5と、前記受信フィルタ5の前段に設けられ、前記送信フィルタ3から受信フィルタ5への信号の回り込み成分を抑制すると共に超伝導体で構成された抑制フィルタ4と、これらの全体を臨界温度以下に保持する冷凍機とを、備えたものである。
【0013】
本発明(1)によれば、送信フィルタ3から受信フィルタ5への信号の回り込み成分を抑制するための超伝導体で構成された抑制フィルタ4を、受信フィルタ5の前段に設けたことにより、受信側に比較的大きな送信電力が回り込んでも、これを低い発熱で十分に抑圧できる。従って、受信フィルタ5が超伝導状態を崩すことなく受信フィルタとしての本来の機能を十分に果たせる。また、抑制フィルタ4は超伝導体であるため、受信帯域での損失が極めて小さく、デュプレクサ装置全体としての損失も十分に小さい。
【0014】
本発明(2)では、上記本発明(1)において、例えば図2に示す如く、抑制フィルタ32(図1の4に相当)は、受信ストリップ線上に1又は2以上の平面型共振器32a,32bを介在させた大面積型の帯域通過フィルタ(BPF)よりなり、その通過特性は受信フィルタ33(図1の5に相当)の通過帯域幅よりも広く、かつ緩やかな減衰特性を有するものである。従って、受信側に比較的大きな送信電力が回り込んでも、不要成分を大面積型共振器32a,32bにより電流分散させた状態で十分に反射させることが可能となり、よって不要成分の通過を低い発熱で十分に抑圧できる。
【0015】
本発明(3)では、上記本発明(1)において、例えば図6に示す如く、抑制フィルタ35(図1の4に相当)は、受信ストリップ線に沿って1又は2以上の平面型共振器35a、35bを結合させた大面積型の帯域阻止フィルタ(BRF)よりなり、その阻止帯域幅は前記所要送信帯域幅よりも広いものである。従って、受信側に比較的大きな送信電力が回り込んでも、不要成分を大面積型共振器35a,35bにより電流分散させた状態で十分に吸収することが可能となり、よって不要成分の通過を低い発熱で十分に抑圧できる。
【0016】
【発明の実施の形態】
以下、添付図面に従って本発明に好適なる複数の実施の形態を詳細に説明する。なお 、全図を通して同一符号は同一又は相当部分を示すものとする。また、この超伝導デュプレクサ装置は移動通信システムの基地局装置に適用して好適である。
【0017】
図2は第1の実施の形態による超伝導デュプレクサ装置を説明する図で、単一の誘電体基板上に形成される各超伝導フィルタ回路を帯域通過フィルタ(BPF)で構成した場合を示している。
【0018】
図において、20aは第1の実施の形態による超伝導デュプレクサ装置、10は送受信兼用アンテナ(ANT)、21は酸化マグネシウムMgO等による共通(1枚)の誘電体基板、22はその背面一面に成膜された接地層、24は基板21の表面に形成された超伝導マイクロストリップ線路による伝送線、31は所要送信帯域幅の送信信号成分Txを通過させる送信フィルタ(BPF)、33は所要受信帯域幅の受信信号成分Rxを通過させる受信フィルタ(BPF)、32は受信フィルタ33の前段に設けられ、送信フィルタ31から受信フィルタ33への信号の回り込み成分を抑制するための抑制フィルタ(BPF)、40は超伝導デュプレクサ回路の全体を超伝導の臨界温度(93K)以下に保持するための冷凍機である。
【0019】
例えばMgO(εr=9.7)基板21に、膜厚300〜1000nm程度のYBCO系酸化物超伝導膜をスパッタリング法などにより成膜し、裏面を接地層となし、表面に各種平面回路のフィルタパターンを形成する。
【0020】
一例の送信フィルタ31は、送信ストリップ線路上に円盤(ディスク)型の共振器31a,31b等を介在させた大面積型の帯域通過フィルタ(BPF)よりなっている。送信波Txの電力は最大で50dBm(100W)程度になるが、各共振器31a,31bでは、その大面積により電流密度が十分に分散されるため、動作中に臨界電流や臨界温度を逸脱することはなく、超伝導状態は十分に保たれる。
【0021】
なお、円盤型の共振器31a,31bに代えて、正方形型の共振器31a,31bとしても良い。また、大面積型であるなら、上記以外にも公知の様々な帯域通過フィルタ回路のパターンを採用できる。更にまた、送信フィルタ31の段数も必要な帯域通過特性に応じて様々な段数を選択できる。
【0022】
一例の抑制フィルタ32は、受信ストリップ線上に正方形型の共振器32a,32b等を介在させた大面積型の帯域通過フィルタ(BPF)よりなっている。受信系に回り込む送信電力が数十W程度になっても、各共振器32a,32bでは、その大面積により電流密度が十分に分散されるため、動作中に臨界電流や臨界温度を逸脱することはなく、超伝導状態は十分に保たれる。
【0023】
なお、正方形型の共振器32a,32bに代えて、円盤(ディスク)型の共振器32a,32bとしても良い。また、大面積型であるなら、上記以外にも公知の様々な帯域通過フィルタ回路のパターンを採用できる。また、受信系に回り込む送信電力が送信系に比べて相対的に小さいことを考慮すると、この抑制フィルタ32には、より小さな型の様々な帯域通過フィルタ回路パターンも採用できる。更にまた、抑制フィルタ32の段数も必要な帯域通過特性に応じて様々な段数を選択できるが、本実施の形態では、前段における通過損失をできるだけ小さくするため、2段としている。
【0024】
一例の受信フィルタ33は、受信ストリップ線上にλ/2波長の複数のヘアピン共振器を配列したものよりなっている。図は段数n=9の場合を示しているが、n=15でも損失は0.15dBの如く、損失を極めて小さくできると共に、極めてシャープな帯域通過特性が得られる。ヘアピン共振器33では電流が各共振器中央部分のλ/4波長付近に集中するため、その部分で熱が発生するが、受信波のパワーは最大でも0dBm(1mW)程度と十分に小さいため、超伝導状態が保たれる。なお、受信フィルタ33は、上記ヘアピン型の共振器に限らず、例えばスパイラル形状の小型化した共振器でもよい。
【0025】
図3に第1の実施の形態による超伝導デュプレクサ装置の帯域特性を示す。図において、送信フィルタ31の特性31Cは通過帯域幅fT1〜fT2、抑制フィルタ32の特性32Cは通過帯域幅fR1〜fR2、受信フィルタ33の特性33Cは通過帯域幅fR3〜fR4となっている。好ましくは、抑制フィルタ32の通過帯域幅fR1〜fR2を受信フィルタ33の通過帯域幅fR3〜fR4よりも広く、かつ緩やかな減衰特性を有するように設ける。従って、抑制フィルタ32を少ない段数で構成できると共に、送信波からの回り込みを十分に抑圧できる。
【0026】
このような構成では、送信フィルタ31を通過した送信波が抑制フィルタ32に流れ込もうとするが、fT1〜fT2は抑制フィルタ32からみれば減衰域にあるので、抑制フィルタ32を通過して受信フィルタ33に流れ込むパワーは十分に抑えられる。このとき、抑制フィルタ32は、大面積型の共振器であるので、超伝導状態が崩れることはない。一方、受信フィルタ33は、通過帯域幅をfR3〜fR4としており、この帯域がシステム上の受信帯域である。受信フィルタ33は、小型でフィルタ段数を多くできるヘアピン型としたため、急峻な減衰特性33Cが得られている。
【0027】
図4は第2の実施の形態による超伝導デュプレクサ装置20bを説明する図で、図2の送信フィルタ31に代えて、帯域阻止型の送信フィルタ34を採用した場合を示している。この例の送信フィルタ34は、送信ストリップ線に沿って平面型の共振器34a,34bを各λ/4波長で結合させた大面積型の帯域阻止フィルタ(BJF)よりなっている。送信波Txの電力は最大で100W程度になるが、各共振器34a,34bでは、その大面積により電流密度が十分に分散されるため、動作中に臨界電流や臨界温度を逸脱することはなく、超伝導状態は十分に保たれる。
【0028】
なお、大面積型であるなら、上記以外にも公知の様々な帯域阻止フィルタ回路のパターンを採用できる。通常、送信波Txに含まれる不要波成分は、送信レベルよりも30〜50dB程度小さいので、共振器34a,34bは特に大面積化して電流を分散させる必要もない。また、送信フィルタ34の段数も必要な帯域阻止特性に応じて様々な段数を選択できる。
【0029】
図5に第2の実施の形態による超伝導デュプレクサ装置の帯域特性を示す。図において、送信フィルタ34は共振器素片34a,34bを備えており、共振器34aの帯域阻止特性は34Ca、共振器34bの帯域阻止特性は34Cbとなっている。従って、送信フィルタ34の実質的な通過特性は通過帯域幅fT1〜fT2である。他の抑制フィルタ32と受信フィルタ33の各通過特性は上記図3で述べたものと同様で良い。
【0030】
このような構成では、送信フィルタ34を通過した送信波が抑制フィルタ32に流れ込もうとするが、実質的な通過帯域幅fT1〜fT2は抑制フィルタ32からみれば減衰域にあるので、抑制フィルタ32を通過して受信フィルタ33に流れ込むパワーは十分に抑えられる。このとき、抑制フィルタ32は、大面積型の共振器であるので、超伝導状態が崩れることはない。一方、受信フィルタ33は、小型でフィルタ段数を多くできるヘアピン型としたため、急峻な減衰特性33Cが得られている。
【0031】
図6は第3の実施の形態による超伝導デュプレクサ装置20cを説明する図で、図2の抑制フィルタ32に代えて、帯域阻止型の抑制フィルタ35を採用した場合を示している。この例の抑制フィルタ35は、受信ストリップ線に沿って1又は2以上の平面型共振器35a,35bを結合させた大面積型の帯域阻止フィルタ(BRF)よりなっている。図6の例では、適当な面積のヘヤピン型共振器35a,35bを使用した例を示している。また、抑制フィルタ35の段数も必要な帯域阻止特性に応じて様々な段数を選択できる。
【0032】
なお、この例の抑制フィルタ35は送信波回り込み電力の大部分を抑制する必要があるため、大面積型のものを使用する。但し、大面積型であるなら、上記以外にも公知の様々な帯域阻止フィルタ回路のパターンを採用できる。例えば他の例の帯域阻止フィルタ36を図8に示す。
【0033】
図7に第3の実施の形態による超伝導デュプレクサ装置の帯域特性を示す。図において、抑制フィルタ35の通過特性35Cは阻止帯域幅fT3〜fT4でり、所要の送信帯域幅fT1〜fT2よりも広くなっている。他の送信フィルタ31と受信フィルタ33の各通過特性は上記図3で述べたものと同様で良い。
【0034】
このような構成では、送信フィルタ31を通過した送信波の一部が抑制フィルタ35の側に回り込もうとするが、該回り込み成分は抑制フィルタ35で十分に減衰されるため、受信フィルタ33に流れ込むパワーは十分に抑えられる。このとき、抑制フィルタ35は、大面積型の共振器であるので、超伝導状態が崩れることはない。一方、受信フィルタ33は、小型でフィルタ段数を多くできるヘアピン型としたため、急峻な減衰特性33Cが得られている。
【0035】
なお、上記本発明に好適なる複数の実施の形態を述べたが、本発明思想を逸脱しない範囲内で各部の構成及びこれらの組み合わせの様々な変更が行えることは言うまでも無い。
【0036】
(付記1) 送受信兼用アンテナに接続して高周波の送/受信信号を分離するための超伝導デュプレクサ装置において、背面に接地層を有する共通の誘電体基板上に形成された超伝導マイクロストリップ線路によるフィルタ回路であって、所要送信帯域幅の送信信号成分を通過させる送信フィルタと、所要受信帯域幅の受信信号成分を通過させる受信フィルタと、前記受信フィルタの前段に設けられ、前記送信フィルタから受信フィルタへの信号の回り込み成分を抑制するための抑制フィルタとを備え、これらの全体を臨界温度以下に保持するよう構成したことを特徴とする超伝導デュプレクサ装置。
【0037】
(付記2) 送信フィルタは、送信ストリップ線路上に1又は2以上の平面型共振器を介在させた大面積型の帯域通過フィルタよりなることを特徴とする付記1記載の超伝導デュプレクサ装置。
【0038】
(付記3) 送信フィルタは、送信ストリップ線に沿って複数の平面型共振器を結合させた大面積型の帯域阻止フィルタよりなることを特徴とする付記1記載の超伝導デュプレクサ装置。
【0039】
(付記4) 抑制フィルタは、受信ストリップ線路上に1又は2以上の平面型共振器を介在させた大面積型の帯域通過フィルタよりなり、その通過特性は受信フィルタの通過帯域幅よりも広く、かつ緩やかな減衰特性を有することを特徴とする付記1記載の超伝導デュプレクサ装置。
【0040】
(付記5) 抑制フィルタは、受信ストリップ線に沿って1又は2以上の平面型共振器を結合させた大面積型の帯域阻止フィルタよりなり、その阻止帯域幅は前記所要送信帯域幅よりも広いことを特徴とする付記1記載の超伝導デュプレクサ装置。
【0041】
【発明の効果】
以上述べた如く本発明によれば、超伝導体による送・受信フィルタを一体化させて1つの超伝導デュプレクサ装置として構成することが可能となり、超伝導デュプレクサ装置の性能向上に寄与する所が極めて大きい。
【図面の簡単な説明】
【図1】本発明の原理を説明する図である。
【図2】第1の実施の形態による超伝導デュプレクサ装置を説明する図である。
【図3】第1の実施の形態による超伝導デュプレクサ装置の帯域特性を説明する図である。
【図4】第2の実施の形態による超伝導デュプレクサ装置を説明する図である。
【図5】第2の実施の形態による超伝導デュプレクサ装置の帯域特性を説明する図である。
【図6】第3の実施の形態による超伝導デュプレクサ装置を説明する図である。
【図7】第3の実施の形態による超伝導デュプレクサ装置の帯域特性を説明する図である。
【図8】他の実施の形態による帯域阻止フィルタを説明する図である。
【符号の説明】
20 超伝導デュプレクサ装置
10 送受信兼用アンテナ(ANT)
21 誘電体基板
22 接地層
24 伝送線
31,34 送信フィルタ
33 受信フィルタ
32,35 抑制フィルタ
40 冷凍機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a superconducting duplexer device, and more particularly to a superconducting duplexer device including a filter circuit for separating a high-frequency transmission / reception signal by connecting to a transmission / reception antenna. This type of duplexer apparatus is suitable for use in a transmission / reception unit of a base station in mobile communication.
[0002]
[Prior art]
In mobile communication, a transmission / reception antenna is often shared, and a duplexer device that separates a high-frequency transmission / reception signal by a filter circuit is required. Filter characteristics that remove signals in unnecessary frequency bands and pass only signals in necessary frequency bands are ideal characteristics as the passing characteristics (S 21 ) become steeper, and for that purpose, resonance that constitutes the filter is performed. It is necessary to increase the number of stages n.
[0003]
In this respect, if the filter is made of a superconductor, the conductor loss can be made much smaller than that of a normal metal. For example, even when n = 15, the loss can be extremely small, such as 0.15 dB. Then, since a power of about several tens of watts from the transmission wave tends to go around to the reception filter side, the superconductor filter has a drawback of lacking power resistance.
[0004]
Under such circumstances, conventionally, there is known a duplexer apparatus in which a superconducting filter 10 is provided on the receiving side after a transmission / reception wave is separated by a room temperature type duplexer 20 (Patent Document 1). However, since the loss of the room temperature duplexer 20 and the connection cable is added in advance, the advantage of low loss by the superconducting filter 10 is lost.
[0005]
In addition, in the related art, a reception filter in which n resonators are configured by superconducting microstrip lines, and the width of 1 or m (n> m) resonators on the shared antenna side is transmitted from the shared antenna side. The thing thickened so that sufficient tolerance with respect to electric power may be acquired is known (patent document 2). However, it is good if the transmission power from the shared antenna side is not so high, but it cannot be fully used in applications where a large transmission power of about several tens of watts is circulated from the shared antenna side, for example, in a base station.
[0006]
In addition, a band rejection filter that restricts the passage of signals in the frequency bands f1 and f2 adjacent to a desired band of a high-frequency signal has been conventionally formed by a non-superconducting material that does not lower the conductivity due to heat generation. One having a first line 20 and second lines 21 and 22 for a resonator formed of a superconducting material and resonating with an adjacent frequency is known (Patent Document 3). However, since the loss due to the non-superconducting material line 20 is constantly added, the merit of low loss due to the superconducting filters 21 and 22 is lost.
[0007]
[Patent Document 1]
JP 2000-252853 A (summary, figure).
[0008]
[Patent Document 2]
JP-A-11-68404 (summary, figure).
[0009]
[Patent Document 3]
JP 2000-269754 (summary, FIG. 9).
[0010]
[Problems to be solved by the invention]
As described above, in the past, in view of the low power resistance of superconductors, especially in applications such as base stations where large transmission power is applied, a transmission / reception filter is integrated into one superconducting duplexer device. It was not considered to make up.
[0011]
The present invention has been made in view of the above-mentioned problems of the prior art, and the object of the present invention is to provide a superconducting duplexer device that can achieve extremely low loss and high performance by integrating a superconductor transmitting / receiving filter. Is to provide.
[0012]
[Means for Solving the Problems]
The above problem is solved by the configuration of FIG. That is, the superconducting duplexer device according to the present invention (1) is a common dielectric having a ground layer 22 on the back surface in the superconducting duplexer device for separating a high-frequency transmission / reception signal by connecting to the transmitting / receiving antenna 10. A filter circuit formed of a superconducting microstrip line formed on a substrate 21; a transmission filter 3 that passes a transmission signal component of a required transmission bandwidth; and a reception filter 5 that passes a reception signal component of a required reception bandwidth; provided in front of the reception filter 5, the with suppressing the echo component of the signal from the transmission filter 3 to the reception filter 5 and the suppression filter 4 composed of a superconductor, the critical temperature following a whole these And a refrigerator to be held in the machine .
[0013]
According to the present invention (1), the suppression filter 4 composed of a superconductor for suppressing the sneak component of the signal from the transmission filter 3 to the reception filter 5 is provided in the preceding stage of the reception filter 5, Even if a relatively large transmission power reaches the receiving side, this can be sufficiently suppressed with low heat generation. Therefore, the reception filter 5 can sufficiently perform its original function as a reception filter without destroying the superconducting state. Moreover, since the suppression filter 4 is a superconductor, the loss in the reception band is extremely small, and the loss of the entire duplexer device is sufficiently small.
[0014]
In the present invention (2), in the present invention (1), as shown in FIG. 2, for example, the suppression filter 32 (corresponding to 4 in FIG. 1) includes one or more planar resonators 32a, It is composed of a large-area bandpass filter (BPF) with 32b interposed, and its pass characteristic is wider than that of the reception filter 33 (corresponding to 5 in FIG. 1) and has a gentle attenuation characteristic. is there. Therefore, even if a relatively large transmission power wraps around the receiving side, unnecessary components can be sufficiently reflected in a state where current is dispersed by the large-area resonators 32a and 32b. Can be sufficiently suppressed.
[0015]
In the present invention (3), in the present invention (1), as shown in FIG. 6, for example, the suppression filter 35 (corresponding to 4 in FIG. 1) includes one or more planar resonators along the receiving strip line. The band stop filter (BRF) is a large area type in which 35a and 35b are combined, and the stop bandwidth is wider than the required transmission bandwidth. Therefore, even if a relatively large transmission power wraps around the receiving side, the unnecessary component can be sufficiently absorbed in a state where the current is dispersed by the large area resonators 35a and 35b. Can be sufficiently suppressed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a plurality of preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Note that the same reference numerals denote the same or corresponding parts throughout the drawings. Also, this superconducting duplexer device is suitable for application to a base station device of a mobile communication system.
[0017]
FIG. 2 is a diagram for explaining the superconducting duplexer device according to the first embodiment, showing a case where each superconducting filter circuit formed on a single dielectric substrate is constituted by a band pass filter (BPF). Yes.
[0018]
In the figure, 20a is a superconducting duplexer according to the first embodiment, 10 is a transmission / reception antenna (ANT), 21 is a common (single) dielectric substrate made of magnesium oxide MgO, and 22 is formed on the entire back surface. A grounded layer 24, a superconducting microstrip transmission line formed on the surface of the substrate 21, 31 a transmission filter (BPF) for passing a transmission signal component Tx having a required transmission bandwidth, and 33 a required reception band A reception filter (BPF) 32 that allows the reception signal component Rx having a width to pass therethrough is provided in a preceding stage of the reception filter 33, and a suppression filter (BPF) for suppressing a sneak component of the signal from the transmission filter 31 to the reception filter 33, Reference numeral 40 denotes a refrigerator for maintaining the entire superconducting duplexer circuit at a superconducting critical temperature (93K) or lower.
[0019]
For example, a YBCO-based oxide superconducting film having a film thickness of about 300 to 1000 nm is formed on an MgO (εr = 9.7) substrate 21 by sputtering or the like, the back surface is a ground layer, and various planar circuit filters on the surface. Form a pattern.
[0020]
An example transmission filter 31 is a large-area band-pass filter (BPF) in which disk (disk) type resonators 31a and 31b are interposed on a transmission strip line. The power of the transmission wave Tx is about 50 dBm (100 W) at the maximum, but in each of the resonators 31a and 31b, the current density is sufficiently dispersed due to its large area, and thus deviates from the critical current and critical temperature during operation. The superconducting state is sufficiently maintained.
[0021]
Note that square resonators 31a and 31b may be used instead of the disk resonators 31a and 31b. Moreover, if it is a large area type | mold, the pattern of various well-known band pass filter circuits other than the above can be employ | adopted. Furthermore, the number of stages of the transmission filter 31 can be selected according to the required band pass characteristics.
[0022]
The suppression filter 32 as an example is a large-area band-pass filter (BPF) in which square resonators 32a and 32b are interposed on the reception strip line. Even if the transmission power sneaking into the reception system is about several tens of watts, the current density is sufficiently dispersed by the large area of each of the resonators 32a and 32b. The superconducting state is sufficiently maintained.
[0023]
Instead of the square resonators 32a and 32b, disk (disk) resonators 32a and 32b may be used. Moreover, if it is a large area type | mold, the pattern of various well-known band pass filter circuits other than the above can be employ | adopted. In consideration of the fact that the transmission power that wraps around the reception system is relatively smaller than that of the transmission system, various types of smaller band-pass filter circuit patterns can be adopted as the suppression filter 32. Furthermore, although the number of stages of the suppression filter 32 can be selected in accordance with the required band pass characteristics, in this embodiment, two stages are used in order to minimize the pass loss in the previous stage.
[0024]
The reception filter 33 in the example is configured by arranging a plurality of hairpin resonators having λ / 2 wavelengths on a reception strip line. Although the figure shows the case where the number of stages is n = 9, even when n = 15, the loss can be made extremely small as 0.15 dB, and an extremely sharp band-pass characteristic can be obtained. In the hairpin resonator 33, since the current is concentrated in the vicinity of the λ / 4 wavelength of each resonator central portion, heat is generated in that portion. However, since the power of the received wave is at most about 0 dBm (1 mW), Superconducting state is maintained. The reception filter 33 is not limited to the hairpin resonator, and may be, for example, a spiral resonator having a reduced size.
[0025]
FIG. 3 shows band characteristics of the superconducting duplexer device according to the first embodiment. In the figure, the characteristic 31C of the transmission filter 31 is the pass bandwidth fT1 to fT2, the characteristic 32C of the suppression filter 32 is the pass bandwidth fR1 to fR2, and the characteristic 33C of the reception filter 33 is the pass bandwidth fR3 to fR4. Preferably, the passband widths fR1 to fR2 of the suppression filter 32 are wider than the passband widths fR3 to fR4 of the reception filter 33, and have a gentle attenuation characteristic. Therefore, the suppression filter 32 can be configured with a small number of stages, and the sneak current from the transmission wave can be sufficiently suppressed.
[0026]
In such a configuration, the transmitted wave that has passed through the transmission filter 31 tries to flow into the suppression filter 32. However, since fT1 to fT2 are in the attenuation region when viewed from the suppression filter 32, they pass through the suppression filter 32 and are received. The power flowing into the filter 33 is sufficiently suppressed. At this time, since the suppression filter 32 is a large area type resonator, the superconducting state does not collapse. On the other hand, the reception filter 33 has a pass bandwidth of fR3 to fR4, and this band is a reception band on the system. Since the reception filter 33 is a hairpin type that is small and can increase the number of filter stages, a steep attenuation characteristic 33C is obtained.
[0027]
FIG. 4 is a diagram for explaining the superconducting duplexer device 20b according to the second embodiment, and shows a case where a band rejection type transmission filter 34 is employed instead of the transmission filter 31 of FIG. The transmission filter 34 of this example is a large area type band rejection filter (BJF) in which planar resonators 34a and 34b are coupled at each λ / 4 wavelength along the transmission strip line. Although the power of the transmission wave Tx is about 100 W at the maximum, the current density is sufficiently dispersed by the large area in each of the resonators 34a and 34b, so that the critical current and the critical temperature are not deviated during operation. The superconducting state is sufficiently maintained.
[0028]
In addition, if it is a large area type | mold, the pattern of various well-known band stop filter circuits besides the above can be employ | adopted. Normally, the unnecessary wave component included in the transmission wave Tx is about 30 to 50 dB smaller than the transmission level, so that the resonators 34a and 34b need not have a particularly large area to disperse the current. Also, the number of stages of the transmission filter 34 can be selected according to the required band rejection characteristic.
[0029]
FIG. 5 shows the band characteristics of the superconducting duplexer device according to the second embodiment. In the figure, the transmission filter 34 includes resonator elements 34a and 34b. The band stop characteristic of the resonator 34a is 34Ca, and the band stop characteristic of the resonator 34b is 34Cb. Therefore, the substantial pass characteristic of the transmission filter 34 is the pass bandwidth fT1 to fT2. The pass characteristics of the other suppression filters 32 and reception filters 33 may be the same as those described in FIG.
[0030]
In such a configuration, the transmission wave that has passed through the transmission filter 34 tries to flow into the suppression filter 32. However, since the substantial pass bandwidths fT1 to fT2 are in the attenuation region as viewed from the suppression filter 32, the suppression filter The power that passes through 32 and flows into the reception filter 33 is sufficiently suppressed. At this time, since the suppression filter 32 is a large area type resonator, the superconducting state does not collapse. On the other hand, since the reception filter 33 is a hairpin type that is small and can increase the number of filter stages, a steep attenuation characteristic 33C is obtained.
[0031]
FIG. 6 is a diagram for explaining a superconducting duplexer device 20c according to the third embodiment, and shows a case where a band rejection type suppression filter 35 is employed instead of the suppression filter 32 of FIG. The suppression filter 35 in this example is a large-area band-rejection filter (BRF) in which one or more planar resonators 35a and 35b are coupled along the reception strip line. In the example of FIG. 6, the example using the hairpin type | mold resonators 35a and 35b of a suitable area is shown. Also, the number of stages of the suppression filter 35 can be selected according to the required band rejection characteristics.
[0032]
Note that the suppression filter 35 in this example needs to suppress most of the transmission wave sneak power, and therefore a large-area filter is used. However, in the case of a large area type, various known band elimination filter circuit patterns other than the above can be adopted. For example, another example of the band rejection filter 36 is shown in FIG.
[0033]
FIG. 7 shows band characteristics of the superconducting duplexer device according to the third embodiment. In the figure, the pass characteristic 35C of the suppression filter 35 is the stop bandwidth fT3 to fT4, which is wider than the required transmission bandwidth fT1 to fT2. The pass characteristics of the other transmission filters 31 and reception filters 33 may be the same as those described in FIG.
[0034]
In such a configuration, a part of the transmission wave that has passed through the transmission filter 31 tends to sneak toward the suppression filter 35, but the sneak component is sufficiently attenuated by the suppression filter 35. The power flowing in is sufficiently suppressed. At this time, since the suppression filter 35 is a large-area resonator, the superconducting state does not collapse. On the other hand, since the reception filter 33 is a hairpin type that is small and can increase the number of filter stages, a steep attenuation characteristic 33C is obtained.
[0035]
In addition, although several embodiment suitable for the said invention was described, it cannot be overemphasized that the structure of each part and various changes can be performed within the range which does not deviate from this invention thought.
[0036]
(Supplementary note 1) In a superconducting duplexer device for separating a high-frequency transmission / reception signal by connecting to a transmitting / receiving antenna, a superconducting microstrip line formed on a common dielectric substrate having a ground layer on the back surface A filter circuit that passes a transmission signal component of a required transmission bandwidth, a reception filter that passes a reception signal component of a required reception bandwidth, and is provided in a stage preceding the reception filter and receives from the transmission filter A superconducting duplexer device comprising: a suppression filter for suppressing a sneak component of a signal to the filter, and maintaining the whole of the filter below a critical temperature.
[0037]
(Supplementary note 2) The superconducting duplexer device according to supplementary note 1, wherein the transmission filter comprises a large-area type band-pass filter in which one or more planar resonators are interposed on a transmission strip line.
[0038]
(Supplementary note 3) The superconducting duplexer device according to supplementary note 1, wherein the transmission filter includes a large area type band rejection filter in which a plurality of planar resonators are coupled along a transmission strip line.
[0039]
(Supplementary Note 4) The suppression filter is composed of a large-area bandpass filter in which one or more planar resonators are interposed on the reception strip line, and its pass characteristic is wider than the passband width of the reception filter. The superconducting duplexer device according to appendix 1, wherein the device has a gentle damping characteristic.
[0040]
(Supplementary Note 5) The suppression filter is composed of a large area type band stop filter in which one or more planar resonators are coupled along the reception strip line, and the stop bandwidth is wider than the required transmission bandwidth. The superconducting duplexer device according to Supplementary Note 1, wherein:
[0041]
【The invention's effect】
As described above, according to the present invention, a superconductor transmission / reception filter can be integrated into a single superconducting duplexer device, which contributes significantly to improving the performance of the superconducting duplexer device. large.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the principle of the present invention.
FIG. 2 is a diagram illustrating a superconducting duplexer device according to a first embodiment.
FIG. 3 is a diagram illustrating band characteristics of the superconducting duplexer device according to the first embodiment.
FIG. 4 is a diagram illustrating a superconducting duplexer device according to a second embodiment.
FIG. 5 is a diagram for explaining band characteristics of a superconducting duplexer device according to a second embodiment;
FIG. 6 is a diagram for explaining a superconducting duplexer device according to a third embodiment;
FIG. 7 is a diagram for explaining band characteristics of a superconducting duplexer device according to a third embodiment;
FIG. 8 is a diagram illustrating a band rejection filter according to another embodiment.
[Explanation of symbols]
20 Superconducting duplexer 10 Transmitting and receiving antenna (ANT)
21 Dielectric substrate 22 Ground layer 24 Transmission line 31, 34 Transmission filter 33 Reception filter 32, 35 Suppression filter 40 Refrigerator

Claims (3)

送受信兼用アンテナに接続して高周波の送/受信信号を分離するための超伝導デュプレクサ装置において、
背面に接地層を有する共通の誘電体基板上に形成された超伝導マイクロストリップ線路によるフィルタ回路であって、所要送信帯域幅の送信信号成分を通過させる送信フィルタと、所要受信帯域幅の受信信号成分を通過させる受信フィルタと、前記受信フィルタの前段に設けられ、前記送信フィルタから受信フィルタへの信号の回り込み成分を抑制すると共に超伝導体で構成された抑制フィルタと、これらの全体を臨界温度以下に保持する冷凍機とを、備えたことを特徴とする超伝導デュプレクサ装置。
In a superconducting duplexer device that is connected to a transmission / reception antenna and separates high-frequency transmission / reception signals,
A filter circuit using a superconducting microstrip line formed on a common dielectric substrate having a ground layer on the back, a transmission filter for passing a transmission signal component of a required transmission bandwidth, and a reception signal of a required reception bandwidth a reception filter for passing components, provided in front of the reception filter, a suppression filter which is constituted by a superconductor with suppressing the echo component of the signal to the reception filter from the transmission filter, the total of these A superconducting duplexer apparatus comprising: a refrigerator that is maintained below a critical temperature.
抑制フィルタは、受信ストリップ線上に1又は2以上の平面型共振器を介在させた大面積型の帯域通過フィルタよりなり、その通過特性は受信フィルタの通過帯域幅よりも広く、かつ緩やかな減衰特性を有することを特徴とする請求項1記載の超伝導デュプレクサ装置。  The suppression filter is a large-area type bandpass filter in which one or more planar resonators are interposed on the reception strip line, and its pass characteristic is wider than the passband width of the reception filter and has a gentle attenuation characteristic. The superconducting duplexer device according to claim 1, comprising: 抑制フィルタは、受信ストリップ線に沿って1又は2以上の平面型共振器を結合させた大面積型の帯域阻止フィルタよりなり、その阻止帯域幅は前記所要送信帯域幅よりも広いことを特徴とする請求項1記載の超伝導デュプレクサ装置。  The suppression filter is composed of a large area type band stop filter in which one or more planar resonators are coupled along the reception strip line, and the stop bandwidth is wider than the required transmission bandwidth. The superconducting duplexer device according to claim 1.
JP2003192988A 2003-07-07 2003-07-07 Superconducting duplexer device Expired - Fee Related JP4068521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192988A JP4068521B2 (en) 2003-07-07 2003-07-07 Superconducting duplexer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192988A JP4068521B2 (en) 2003-07-07 2003-07-07 Superconducting duplexer device

Publications (2)

Publication Number Publication Date
JP2005033264A JP2005033264A (en) 2005-02-03
JP4068521B2 true JP4068521B2 (en) 2008-03-26

Family

ID=34204621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192988A Expired - Fee Related JP4068521B2 (en) 2003-07-07 2003-07-07 Superconducting duplexer device

Country Status (1)

Country Link
JP (1) JP4068521B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229304A (en) * 2004-02-12 2005-08-25 Nippon Telegr & Teleph Corp <Ntt> High frequency circuit
JP2008042609A (en) * 2006-08-08 2008-02-21 Toshiba Corp Demultiplexer and radio receiver
JP4264101B2 (en) 2006-12-08 2009-05-13 株式会社東芝 Filter circuit and wireless communication device
JP4711988B2 (en) * 2007-03-15 2011-06-29 富士通株式会社 Superconducting disk resonator, manufacturing method thereof, and evaluation method of dielectric anisotropy
WO2008133010A1 (en) * 2007-04-12 2008-11-06 Nec Corporation Filter circuit element and electronic circuit device
JP5417450B2 (en) 2009-09-18 2014-02-12 株式会社東芝 High frequency filter
JP5596863B2 (en) * 2011-12-09 2014-09-24 株式会社Nttドコモ Antenna duplexer
JP5865782B2 (en) * 2012-05-28 2016-02-17 株式会社東芝 Antenna device
JP5646553B2 (en) * 2012-07-06 2014-12-24 株式会社東芝 Antenna unit
JP6334315B2 (en) * 2014-08-20 2018-05-30 株式会社東芝 Switching device, transmission / reception device, and antenna device
CN108173565B (en) * 2016-12-07 2019-10-11 中国移动通信集团终端有限公司 For determining the method, apparatus and communication equipment of communication device antenna working condition

Also Published As

Publication number Publication date
JP2005033264A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
Sun et al. Compact dual-band microstrip bandpass filter without external feeds
US9985329B2 (en) Narrow-band filter having first and second resonators of different orders with resonant frequencies equal to a center frequency
Chen et al. Design of microstrip bandpass filters with multiorder spurious-mode suppression
JP3310670B2 (en) Directional coupler for wireless devices
Hong et al. On the performance of HTS microstrip quasi-elliptic function filters for mobile communications application
TWI437758B (en) Filtering device and related wireless communication receiver
JP4068521B2 (en) Superconducting duplexer device
WO1998000880A9 (en) Planar radio frequency filter
WO1998000880A1 (en) Planar radio frequency filter
JP4172936B2 (en) Superconducting microstrip filter
US20080037590A1 (en) Multiplexer and wireless receiver
US5731746A (en) Multi-frequency ceramic block filter with resonators in different planes
JP4511478B2 (en) BANDPASS FILTER, HIGH FREQUENCY MODULE, AND RADIO COMMUNICATION DEVICE USING THE SAME
JP2008147959A (en) Filter circuit and radio communication equipment
US7102470B2 (en) Dual-band bandpass filter with stepped-impedance resonators
JP2004260510A (en) Filter circuit
CN1551497B (en) Bandpass filter
Psychogiou et al. Signal-interference bandpass filters with dynamic in-band interference suppression
JP3592562B2 (en) High sensitivity radio
JP4630891B2 (en) Filter circuit and wireless communication device
Chen et al. A miniaturized net-type microstrip bandpass filter using/spl lambda//8 resonators
US20100060378A1 (en) Filter circuit and radio communication device
Deng et al. Microstrip bandpass filters with dissimilar resonators for suppression of spurious responses
KR100335108B1 (en) microwave filter
CN118174674B (en) Filter chip and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070828

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4068521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120118

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130118

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140118

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees