JPH03204995A - Manufacture of ceramic multilayered board - Google Patents

Manufacture of ceramic multilayered board

Info

Publication number
JPH03204995A
JPH03204995A JP28912290A JP28912290A JPH03204995A JP H03204995 A JPH03204995 A JP H03204995A JP 28912290 A JP28912290 A JP 28912290A JP 28912290 A JP28912290 A JP 28912290A JP H03204995 A JPH03204995 A JP H03204995A
Authority
JP
Japan
Prior art keywords
laminate
temperature
amorphous glass
ceramic multilayer
temperature difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28912290A
Other languages
Japanese (ja)
Inventor
Seiji Yamaguchi
盛司 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH03204995A publication Critical patent/JPH03204995A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To lessen the time difference of shrinkage caused by sintering reaction between the front and the rear of a board so as to protect the end of the board against waviness by a method wherein the burning top temperature of a laminated body is made coincident with the crystallization peak point of amorphous glass, the temperature difference of the laminated body between the front and the rear is made lower than a specific temperature within a range between the glass transition point of amorphous glass and the crystallization peak point of the amorphous glass. CONSTITUTION:Conductor layers different in pattern are printed on a green sheet with silver paste or alloy paste of silver and palladium through a screen printing method and then dried up. A required number of the pattern printed green sheets are laminated together and pressed at a pressure of 200kg/cm<2> and at a temperature of 80 deg.C to form a laminate, and then the laminate is burned at a temperature range of 500-900 deg.C not exceeding a burning top temperature of 900 deg.C and keeping the temperature difference between the front and the rear of the laminate lower than 50 deg.C. Therefore, when the sintering reaction of amorphous glass enables the laminate to start shrinking, the temperature difference between the front and the rear of the laminate is kept low, so that waviness can be prevented from occurring and an upper thick film can be improved in workability when it is formed.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、電子回路を構成するセラミック多層基板の
製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a method of manufacturing a ceramic multilayer substrate constituting an electronic circuit.

従来の技術 近年、電子回路の小形化、高密度化の要求に対し、熱伝
導性のよいセラミックを使用したセラミック多層基板が
開発され、実用化が進められている。
BACKGROUND OF THE INVENTION In recent years, ceramic multilayer substrates using ceramics with good thermal conductivity have been developed and put into practical use in response to demands for smaller electronic circuits and higher density.

そして、このセラミック多層基板の製造方法として、セ
ラミック粉末と有機物を混合したスラリでグリーンシー
トを作成して積層一体止するグリンシート積層法が注目
されている。
As a method for manufacturing this ceramic multilayer substrate, a green sheet lamination method is attracting attention, in which green sheets are made from a slurry of ceramic powder and an organic substance and are laminated together.

第4図a ” fは従来の積層体またはセラミック多層
基板の構造を示す平面図と断面図、第5図はセラミック
多層基板の端部のうねり量を示す説明図である。なお、
第4図a、bは焼成前のもの、第4図c、dは焼成後で
あって、上部厚膜3形成前のもの、第4図e、fは焼成
後であって、上部厚膜形成後のものを示している。まだ
、焼成後のもの(第4図C〜f)は焼成前(第4図a、
b)のものと比べ、焼成収縮のため、第4図Cのように
長さrtJだけ収縮される。
Figures 4a and 4f are plan views and cross-sectional views showing the structure of a conventional laminate or ceramic multilayer board, and Figure 5 is an explanatory diagram showing the amount of waviness at the end of the ceramic multilayer board.
Figure 4 a and b are before firing, Figure 4 c and d are after firing and before the formation of the upper thick film 3, and Figure 4 e and f are after firing and the upper thick film Shown after formation. The ones after firing (Fig. 4 C to f) are the ones before firing (Fig. 4 a,
Compared to the case of b), due to firing shrinkage, the length rtJ is shrunk as shown in FIG. 4C.

第4図axf、第5図において、1はグリーンシート、
2は導体ペースト、3は上部厚膜、11は積層体であり
、導電ペースト2を印刷したグリーンシート1を所望枚
数積層したものである。
In Fig. 4 axf and Fig. 5, 1 is a green sheet,
2 is a conductive paste, 3 is an upper thick film, and 11 is a laminate, in which a desired number of green sheets 1 on which conductive paste 2 is printed are laminated.

1aは焼成したグリーンシートから成る絶縁層、2aは
焼成した導体ペースト2から成る導体層、11Aは積層
体11を焼成したセラミック多層基板、11Bは焼成し
たセラミック多層基板11Aに上部厚膜を形成したセラ
ミック基板を示す。
1a is an insulating layer made of a fired green sheet, 2a is a conductor layer made of fired conductive paste 2, 11A is a ceramic multilayer substrate made by firing the laminate 11, and 11B is an upper thick film formed on the fired ceramic multilayer substrate 11A. A ceramic substrate is shown.

そして、Δはセラミック多層基板11Aの端部に発生す
るうねり量を示す。
Further, Δ indicates the amount of waviness generated at the end portion of the ceramic multilayer substrate 11A.

次に、上記従来例のセラミック多層基板の製造方法につ
いて説明する。
Next, a method for manufacturing the conventional ceramic multilayer substrate will be described.

まず、セラミック粉末と有機物を混合したスラリでグリ
ーンシート1を作成する。
First, a green sheet 1 is created using a slurry that is a mixture of ceramic powder and organic matter.

そして、複数のグリーンシート1にそれぞれグイアホー
ルをパンチングして形成し、それぞれ異なるパターンの
導体ペースト2をそれぞれグリーンシート1に印刷した
後、乾燥させる。
Guia holes are formed by punching on each of the plurality of green sheets 1, and conductor pastes 2 of different patterns are printed on each of the green sheets 1, and then dried.

次に、異なるパターンを印刷したグリーンシート1を、
第4図a、bに示すように、所望枚数積層するとともに
、適切な温度、圧力でプレスして積層体11を形成した
後、セラミック多層基板11Aができる。
Next, green sheet 1 with different patterns printed on it,
As shown in FIGS. 4a and 4b, after laminating a desired number of sheets and pressing them at an appropriate temperature and pressure to form a laminate 11, a ceramic multilayer substrate 11A is obtained.

最後に、セラック多層基板11Aに最上層の上部厚膜3
を形成すると、セラミック多層基板11Bが完成する。
Finally, the top thick film 3 of the top layer is placed on the shellac multilayer substrate 11A.
By forming the ceramic multilayer substrate 11B, the ceramic multilayer substrate 11B is completed.

発明が解決しようとする課題 しかしながら、上記従来のセラミック多層基板の製造方
法では、積層体11の焼成工程における昇温時の(積層
体11の)表裏温度差が不適切であったため、第6図に
示すように、セラミック多層基板11Aの端部に発生す
るうねシ量Δが大きく、上部厚膜形成工程に移行できな
いという問題があった。
Problems to be Solved by the Invention However, in the above-described conventional method for manufacturing a ceramic multilayer substrate, the temperature difference between the front and back surfaces (of the laminate 11) during heating in the firing process of the laminate 11 was inappropriate. As shown in FIG. 2, the amount of ridges Δ generated at the end of the ceramic multilayer substrate 11A was large, and there was a problem that it was impossible to proceed to the upper thick film forming step.

この発明は、このような従来の問題を解決するものであ
り、積層体の焼成時に適切なプロファイルを与えること
により、セラミック多層基板の端部に発生するうねシを
防止し、上部厚膜形成時の加工性を向上することのでき
るセラミック多層基板の製造方法を提供することを目的
とするものである0 課題を解決するための手段 この発明は、上記目的を達成するため、積層体の焼成ト
ップ温度を非晶質ガラスの結晶化ピ〜り点とし、昇温時
の積層体の表裏温度差を非晶質ガラスのガラス転移点〜
非晶質ガラスの結晶化ピーク点の間の温度範囲で、50
℃以下となるようにしたものである。
This invention solves these conventional problems, and by providing an appropriate profile during firing of the laminate, prevents ridges from occurring at the edges of a ceramic multilayer substrate and improves the formation of a thick film on the top. An object of the present invention is to provide a method for manufacturing a ceramic multilayer substrate that can improve processability during processing. The top temperature is taken as the crystallization peak point of the amorphous glass, and the temperature difference between the front and back sides of the laminate when the temperature is raised is the glass transition point of the amorphous glass.
In the temperature range between the crystallization peak points of amorphous glass, 50
℃ or less.

作   用 したがって、この発明によれば、積層体の焼成トップ温
度を非晶質ガラスの結晶化ピーク点とし、昇温時の積層
体の表裏温度差を非晶質ガラスのガラス転移点〜非晶質
ガラスの結晶化ピーク点の間の温度範囲で、50 ”C
以下となるようにすることにより、非晶質ガラスの焼結
反応による収縮の表裏時間差が少なくなシ、セラミック
多層基板の端部に発生するりねシを防止することができ
、上部厚膜形成時の加工性を向上させることができる。
Therefore, according to the present invention, the firing top temperature of the laminate is taken as the crystallization peak point of the amorphous glass, and the temperature difference between the front and back surfaces of the laminate when the temperature is raised is determined from the glass transition point of the amorphous glass to the amorphous glass. In the temperature range between the crystallization peak points of quality glass, 50 ”C
By doing the following, it is possible to reduce the time difference between the front and back sides of shrinkage due to the sintering reaction of the amorphous glass, prevent curls occurring at the edges of the ceramic multilayer substrate, and form a thick film on the top. It is possible to improve the processability at the time.

実施例 第1図はこの発明のグリーンシート積層法によるセラミ
ック多層基板の製造方法を示す工程図、第2図はこの発
明のセラミック多層基板及び比較例におけるセラミック
多層基板と端部のうねυ量との関係を示す説明図、第3
図は第2図の特性を示すグラフである。
Example Fig. 1 is a process diagram showing a method for manufacturing a ceramic multilayer board by the green sheet lamination method of the present invention, and Fig. 2 shows the ceramic multilayer board of the present invention and the ceramic multilayer board of a comparative example, and the amount of undulation υ at the end. Explanatory diagram showing the relationship between
The figure is a graph showing the characteristics of FIG.

第2図において、実施例1,2は積層体を焼成トップ温
度5oot 、500″C〜900℃の温度範囲で積層
体の表裏温度差を30℃、50’Cとして焼成したもの
である。
In FIG. 2, in Examples 1 and 2, the laminates were fired at a firing top temperature of 5oot in a temperature range of 500"C to 900C with a temperature difference between the front and back surfaces of the laminate of 30C and 50'C.

そして、比較例1〜4は積層体の焼成トップ温度900
℃を変化させず、50Q℃〜900℃の温度範囲で積層
体の表裏温度差を70℃、90℃。
In Comparative Examples 1 to 4, the firing top temperature of the laminate was 900.
Without changing the temperature, the temperature difference between the front and back surfaces of the laminate was set at 70°C and 90°C within a temperature range of 50Q°C to 900°C.

120℃および100℃として焼成したものである。These were fired at 120°C and 100°C.

次に、上記実施例のセラミック多層基板の製造方法につ
いて説明する。
Next, a method for manufacturing the ceramic multilayer substrate of the above embodiment will be explained.

まス、アルミナ(酸化アルミニウムA1203)と、転
移点TGが500’C,軟化点Tsが800℃。
Masu, alumina (aluminum oxide A1203) has a transition point TG of 500'C and a softening point Ts of 800°C.

結晶化ピーク点が900℃のホウ珪酸素ガス(s 10
2−B203 )を60重量%づつ混合して得たセラミ
ックパウダ100重量部に対し、溶剤としてメチルエチ
ルケトンを50重量部1分割剤としてポリエチレングリ
コールを2重量部、結合剤としてポリビニルブチラール
を1a重量部および可塑剤としてジベンジルフタレート
を4重量部加え、ボールミルで24時間混合して作成し
たスラリでグリーンシートを作成する(ステップ21)
Borosilicate oxygen gas (s 10
To 100 parts by weight of ceramic powder obtained by mixing 60% by weight of 2-B203), 50 parts by weight of methyl ethyl ketone as a solvent, 2 parts by weight of polyethylene glycol as a dividing agent, 1 part by weight of polyvinyl butyral as a binder, and Add 4 parts by weight of dibenzyl phthalate as a plasticizer and mix in a ball mill for 24 hours to create a slurry to create a green sheet (Step 21)
.

そして、複数のグリーンシートにそれぞれグイアホール
をパンチングして形成しくステップ22A〜22C)、
それぞれのグリーンシート上に銀<Aq)iたけ銀とパ
ラジウム(Pd)の合金ペーストをスクリーン印刷で、
第4図a、bに示すように、それぞれ異なるパターンの
導体層を印刷した後(ステップ23A〜23C)、乾燥
させる(ステップ24A〜24C)。
Then, punch and form guaia holes on each of the plurality of green sheets (steps 22A to 22C),
An alloy paste of silver and palladium (Pd) was screen printed on each green sheet,
As shown in FIGS. 4a and 4b, after printing conductor layers with different patterns (steps 23A to 23C), they are dried (steps 24A to 24C).

次に、上記パターンを印刷したクリーンシートを所望枚
数積層するとともに、適切な温度、圧力、例えば80’
Cの温度、 200Ky /(ydの圧力で加圧して積
層体を形成した後(ステップ26)、積層体を、焼成ト
ップ温度900’C、600’C〜900°Cの温度範
囲で積層体の表裏温度差を50°C以下として焼成する
(ステップ26)。
Next, the desired number of clean sheets printed with the above pattern are laminated, and at an appropriate temperature and pressure, for example, 80'
After forming the laminate by pressurizing at a temperature of 200 Ky/(yd) (step 26), the laminate is heated at a temperature range of 600'C to 900°C, with a firing top temperature of 900'C. Firing is performed with a temperature difference between the front and back sides of 50°C or less (step 26).

最後に、焼成したセラミック基板に最上層の厚膜を形成
すると(ステップ27)、セラミック多層基板が完成す
る(ステップ28)。
Finally, a thick film as the uppermost layer is formed on the fired ceramic substrate (step 27), and the ceramic multilayer substrate is completed (step 28).

上述のようにして作成した実施例1,2および比較例1
〜4のセラミック多層基板のうねり量Δ(第6図)は、
第2図、第3図に示す値であった。
Examples 1 and 2 and Comparative Example 1 created as described above
The amount of waviness Δ (Fig. 6) of the ceramic multilayer substrate of ~4 is:
The values were as shown in FIGS. 2 and 3.

したがって、第2図、第3図の特性図から明らかなよう
に、比較例1〜4では、積層体の焼成を500’C〜9
00 ’Cの温度範囲、すなわち非結晶質ガラスの焼結
反応が行われ、積層体の体積変化(収縮)が起こる段階
での積層体の表裏温度差が大き過ぎるため、うねり量が
増大し、最上層の上部厚膜形成工程に移行できなくなる
Therefore, as is clear from the characteristic diagrams in FIGS. 2 and 3, in Comparative Examples 1 to 4, the laminate was fired at 500°C to 90°C.
In the temperature range of 00'C, that is, at the stage where the sintering reaction of the amorphous glass occurs and the volume change (shrinkage) of the laminate occurs, the temperature difference between the front and back surfaces of the laminate is too large, resulting in an increase in the amount of waviness. It becomes impossible to proceed to the step of forming the uppermost thick film.

これに対し、この発明の実施例1,2のように、焼成時
の積層体の表裏温度差を50°C以下に抑えると、うね
υ量が飛躍的に改善され(低下し)、上部厚膜形成工程
への移行がスムーズにできる。
On the other hand, as in Examples 1 and 2 of the present invention, when the temperature difference between the front and back sides of the laminate during firing is suppressed to 50°C or less, the amount of ridges υ is dramatically improved (decreased), and the upper A smooth transition to the thick film formation process is possible.

発明の効果 この発明は、上記実施例よシ明らかなように、積層体の
焼成工程における加熱段階で、非晶質ガラスの焼結反応
が起こって積層体の収縮が起こる際に、積層体の表裏温
度差を低く抑えているので、fjt層体の表裏が収縮す
る時間差が小さくなシ、焼成後のセラミック多層基板の
端部に発生するうねりが防止でき、上部厚膜形成時の加
工性を向上させることができる。
Effects of the Invention As is clear from the above-mentioned embodiments, the present invention has the advantage that when the sintering reaction of the amorphous glass occurs and the laminate shrinks during the heating step in the laminate firing process, the laminate shrinks. Since the temperature difference between the front and back surfaces is kept low, the time difference between the shrinkage of the front and back sides of the FJT layer body is small, and it is possible to prevent waviness that occurs at the edges of the ceramic multilayer substrate after firing, improving workability when forming the upper thick film. can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明のグリーンシート積層法によるセラミ
ック多層基板の製造方法を示す工程図、第2図はこの発
明のセラミック多層基板及び比較例におけるセラミック
多層基板と端部のうねり量の関係を示す説明図、第3図
は第2図の特性を示すグラフ、第4図a −fは従来の
積層体またはセラミック多層基板の構造を示す平面図と
断面図、第6図はセラミック多層基板の端部のうねり量
を示す説明図である。 1・・・・・・グリーンシート、1a・・・・・・焼成
したグリーンシートから成る絶縁層、2・・・・・・導
体ペースト、3・・・・・上部厚膜、11・・・・・・
積層体、11A・・・・・・セラミック多層基板、11
B・・・・・・上部厚膜を形成したセラミック多層基板
Fig. 1 is a process diagram showing a method for manufacturing a ceramic multilayer board using the green sheet lamination method of the present invention, and Fig. 2 shows the relationship between the ceramic multilayer board of the invention and a comparative example, and the amount of waviness at the edge. 3 is a graph showing the characteristics of FIG. 2, FIGS. 4 a - f are plan views and cross-sectional views showing the structure of a conventional laminate or ceramic multilayer substrate, and FIG. 6 is an end view of the ceramic multilayer substrate. FIG. DESCRIPTION OF SYMBOLS 1...Green sheet, 1a...Insulating layer made of fired green sheet, 2...Conductor paste, 3...Top thick film, 11... ...
Laminated body, 11A...Ceramic multilayer substrate, 11
B...Ceramic multilayer substrate with upper thick film formed.

Claims (1)

【特許請求の範囲】[Claims]  結晶質フィラーおよび非晶質ガラスで構成したセラミ
ック絶縁体層と、導体層を交互に重な合わせて積層体と
した後、焼成トップ温度を前記非晶質ガラスの結晶化ピ
ーク点とし、昇温度時の前記積層体の表裏温度差を前記
非晶質ガラスのガラス転移点と前記非晶質ガラスの結晶
化ピーク点の間で、50℃以下として前記積層体を焼成
するセラミック多層基板の製造方法。
After forming a laminate by alternately overlapping ceramic insulating layers composed of a crystalline filler and amorphous glass and conductor layers, the firing top temperature is set as the crystallization peak point of the amorphous glass, and the temperature is increased. A method for producing a ceramic multilayer substrate, wherein the temperature difference between the front and back surfaces of the laminate is set to 50° C. or less between the glass transition point of the amorphous glass and the crystallization peak point of the amorphous glass, and the laminate is fired. .
JP28912290A 1989-10-27 1990-10-25 Manufacture of ceramic multilayered board Pending JPH03204995A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP28093289 1989-10-27
JP1-280932 1989-10-27

Publications (1)

Publication Number Publication Date
JPH03204995A true JPH03204995A (en) 1991-09-06

Family

ID=17631937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28912290A Pending JPH03204995A (en) 1989-10-27 1990-10-25 Manufacture of ceramic multilayered board

Country Status (1)

Country Link
JP (1) JPH03204995A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128899A (en) * 1979-03-23 1980-10-06 Ibm Method of fabricating glass ceramic structure
JPS6112091A (en) * 1984-06-27 1986-01-20 株式会社日立製作所 Multilayer circuit board and method of producing same
JPS62292654A (en) * 1986-06-10 1987-12-19 Asahi Glass Co Ltd Composition for glass ceramics substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55128899A (en) * 1979-03-23 1980-10-06 Ibm Method of fabricating glass ceramic structure
JPS6112091A (en) * 1984-06-27 1986-01-20 株式会社日立製作所 Multilayer circuit board and method of producing same
JPS62292654A (en) * 1986-06-10 1987-12-19 Asahi Glass Co Ltd Composition for glass ceramics substrate

Similar Documents

Publication Publication Date Title
JPH0992983A (en) Manufacture of ceramic multilayer board
JPH09260844A (en) Ceramic multilayered board manufacturing method
JPH03204995A (en) Manufacture of ceramic multilayered board
JP2998476B2 (en) Method of manufacturing green body for multilayer ceramic capacitor
JP2003031948A (en) Method of manufacturing ceramic multilayer board
EP1189495B1 (en) Method of manufacturing multilayer ceramic substrate
JPH0396207A (en) Manufacture of laminated ceramic electronic part
JP2532626B2 (en) Green sheet for laminated porcelain capacitors
JPH0232595A (en) Manufacture of ceramic multilayer interconnection board
JPH06334282A (en) Green sheet for ceramic multilayer substrate
JPS6159653B2 (en)
JPH0878849A (en) Ceramic multilayered circuit board and its manufacture
JPS59177913A (en) Method of producing multilayer ceramic capacitor
JPH11177240A (en) Manufacture of ceramic laminating body
JP2001267743A (en) Method of manufacturing ceramic laminated substrate
JPH04288854A (en) Ceramic substrate for mounting semiconductor and manufacture thereof
JP3918595B2 (en) Manufacturing method of ceramic electronic component
JPH09260202A (en) Laminated capacitor
JPH07202429A (en) Production of multilayer circuit board
JPH09249460A (en) Production of ceramic multilayer board
JP2003224362A (en) Manufacturing method of ceramic multilayer substrate
JPH0561799B2 (en)
JPH06334352A (en) Ceramic circuit board and manufacture thereof
JPH02117117A (en) Manufacture of laminated ceramic capacitor
JPH0485992A (en) Manufacture of ceramic multilayer board