JPH03197346A - Carbon-containing refractory - Google Patents

Carbon-containing refractory

Info

Publication number
JPH03197346A
JPH03197346A JP1335114A JP33511489A JPH03197346A JP H03197346 A JPH03197346 A JP H03197346A JP 1335114 A JP1335114 A JP 1335114A JP 33511489 A JP33511489 A JP 33511489A JP H03197346 A JPH03197346 A JP H03197346A
Authority
JP
Japan
Prior art keywords
refractory
weight
carbon
particle diameter
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1335114A
Other languages
Japanese (ja)
Other versions
JP2747734B2 (en
Inventor
Seiji Aso
誠二 麻生
Seiji Hanagiri
誠司 花桐
Toshiyuki Hokii
利之 保木井
Masahito Tanaka
雅人 田中
Takeyoshi Ito
伊藤 猛義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Ceramic Co Ltd
Nippon Steel Corp
Original Assignee
Harima Ceramic Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18284928&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03197346(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Harima Ceramic Co Ltd, Nippon Steel Corp filed Critical Harima Ceramic Co Ltd
Priority to JP1335114A priority Critical patent/JP2747734B2/en
Publication of JPH03197346A publication Critical patent/JPH03197346A/en
Application granted granted Critical
Publication of JP2747734B2 publication Critical patent/JP2747734B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and oxidation resistance of refractory by compounding a refractory material containing particles having specific particle diameter with a carbonaceous material and one or more materials selected from carbide material, nitride material, metallic material and vitreous material. CONSTITUTION:The objective carbon-containing refractory can be produced by compounding (A) 3-30wt.% of a carbonaceous material having particle diameter of about <0.5mm (e.g. pitch coke), (B) 0.1-20wt.% of one or more materials having particle diameter of about <=0.5mm and selected from carbide material (e.g. SiC), nitride material (e.g. Si3N4), metallic material (e.g. Al) and vitreous material (e.g. borax) and (C) a refractory oxide material (e.g. alumina) containing 10-30wt.% of particles having particle diameter of 1-0.5mm to obtain 100wt.% of a compounded composition, kneading the composition with a organic binder (e.g. phenolic resin) or an inorganic binder (e.g. sodium silicate), compression-molding the kneaded mixture and drying the molded product.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、耐食性、耐酸化性にすぐれた炭素含有耐火物
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a carbon-containing refractory having excellent corrosion resistance and oxidation resistance.

(従来技術) 従来より、溶銑、溶鋼用容器の内張り材として。(Conventional technology) Traditionally used as lining material for containers for hot metal and molten steel.

マグネシア−炭素質あるいは、アルミナ−炭素−炭化珪
素質など、炭素を含有した耐火物が多用されている。
Refractories containing carbon, such as magnesia-carbonaceous or alumina-carbon-silicon carbide, are often used.

炭素はスラグに濡れがたく耐熱衝撃性にすぐれている性
質がありアルミナ、マグネシア等の高融点の耐火性材料
と組合せることで耐用性の高い耐火物が得られている。
Carbon has the properties of not being easily wetted by slag and having excellent thermal shock resistance, and by combining it with refractory materials with high melting points such as alumina and magnesia, highly durable refractories can be obtained.

一方、炭素は酸化消失する欠点があり、上記耐火物にお
いて脱炭層が形成されると強度の低下あるいはスラブの
浸潤により著しく侵食が進行する。
On the other hand, carbon has the disadvantage that it disappears by oxidation, and when a decarburized layer is formed in the above-mentioned refractory, erosion progresses significantly due to a decrease in strength or infiltration of the slab.

したがって、炭素含有耐火物の耐食性、耐酸化性の向上
を図る必要から種々の手段が検討され。
Therefore, various means have been studied to improve the corrosion resistance and oxidation resistance of carbon-containing refractories.

例えば特開昭54−163913号公報には金属を添加
する方法の提示があり、一方特開昭60−157857
号公報ではガラス質成分を添加する方法が提示されてお
り、それぞれ効果が得られているにもかかわらずさらに
次の問題が生じその解決が望まれていた。
For example, JP-A No. 54-163913 proposes a method of adding metals, while JP-A No. 60-157857
The publication proposes a method of adding a vitreous component, and although each method is effective, the following problems have arisen, and a solution to these problems has been desired.

(発明が解決しようとする課題) すなわち、金属を添加する方法は1000℃以上の高温
域では酸化防止の効果が得られるが、それ以下の低温域
では酸素の通過を遮断できるような液相となり難いため
、この低温域では完全に酸化防止を図ることが困難であ
った。
(Problem to be solved by the invention) In other words, in the method of adding metals, the effect of preventing oxidation can be obtained at high temperatures of 1000°C or higher, but at lower temperatures, the metal becomes a liquid phase that can block the passage of oxygen. Therefore, it has been difficult to completely prevent oxidation in this low temperature range.

また、従来の珪酸、゛リン酸を主成分としたガラス質材
料を添加する方法は、低温から高温域にかけてれんが表
面にガラス皮膜を形成するため酸化抑制が可能であるが
、酸化防止効果を得るために多量の添加をすると耐食性
の低下が顕著であった。
In addition, the conventional method of adding glassy materials mainly composed of silicic acid and phosphoric acid can suppress oxidation because it forms a glass film on the brick surface in the low to high temperature range, but it is possible to suppress oxidation. Therefore, when a large amount of Ni was added, the corrosion resistance deteriorated significantly.

したがって、これら添加物を使用する方法は効果がある
ものの十分ではなく、添加物以外の方法で耐食性、耐酸
化性の向上を同時に図ることが必要となった。
Therefore, although the method of using these additives is effective, it is not sufficient, and it has become necessary to simultaneously improve corrosion resistance and oxidation resistance by a method other than using additives.

(課題を解決するための手段) 従来より、一般に炭素含有耐火れんがでは、耐酸化性、
耐食性は気孔率が小さい方が優れているため、粒度構成
のうち粗粒、中粒、微粒を配合させる際になるべく中粒
の添加量を少なくし細密充填させ低気孔化を図っていた
(Means for solving the problem) Conventionally, carbon-containing refractory bricks generally have poor oxidation resistance,
Corrosion resistance is better when the porosity is smaller, so when blending coarse, medium, and fine particles in the particle size structure, the amount of medium particles added is reduced as much as possible to achieve close packing to reduce porosity.

しかし、本発明者は炭素含有耐火物の使用後の稼働面の
顕微鏡w4察を行った結果、耐火物の損耗は骨材がスラ
グ層に突出し炭素を含むマトリックスが先行した状態で
進行していることに着目し、さらに骨材のうち1閣以上
の粒子径のものはスラグに溶出しにくいが骨材の周囲に
隙間が生じスラグが侵入しており、 また骨材の粒子径
0.5■以下の場合は骨材がスラグ中へ溶解しやすいこ
とを見出した。11以上の粒では熱間の膨張量が大きく
冷却したときの粒子とマトリックスの隙間が大きく通気
性が高くなり酸化しやすいと同時にスラグが容易に侵入
するためである。したがって、溶損を抑制するためには
、 1m1以上及び又は0.5−未満の骨材を極力少な
くし、粒子径が1〜0.5mmの耐火性骨材粒子をより
多く配合することにより骨材とマトリックスの隙間を小
さくしかつスラグに溶解しない範囲の大きさで粒子とマ
トリックスの接触面積を多くすることが可能となり、耐
食性、耐酸化性の向上に効果的であることを見出し本発
明を完成させたものである。
However, as a result of microscopic observation of the operating surface of carbon-containing refractories after use, the inventors found that the wear and tear of refractories progresses with the aggregate protruding into the slag layer and the carbon-containing matrix taking precedence. Focusing on this, we also found that aggregates with a particle size of 1 mm or more are difficult to dissolve into slag, but gaps are created around the aggregate, allowing slag to enter. It has been found that aggregate easily dissolves into slag in the following cases. This is because grains of 11 or more have a large amount of thermal expansion and a large gap between the grains and the matrix when cooled, resulting in high air permeability and easy oxidation, as well as easy penetration of slag. Therefore, in order to suppress erosion loss, it is necessary to reduce the amount of aggregate of 1 m1 or more and/or less than 0.5 mm as much as possible, and to mix in more refractory aggregate particles with a particle size of 1 to 0.5 mm. We discovered that it is possible to increase the contact area between the particles and the matrix by reducing the gap between the particles and the matrix while maintaining a size that does not dissolve in the slag, which is effective in improving corrosion resistance and oxidation resistance. It has been completed.

すなわち、炭素質材料を3〜30重量%、残部が耐火性
酸化物材料からなる配合物100重量%において10〜
30重量%が1〜0.5mmの粒子径を有する該耐火性
酸化物材料であることを特徴とする炭素含有耐火物であ
る。
That is, in 100% by weight of a blend consisting of 3% to 30% by weight of carbonaceous material and the remainder being a refractory oxide material, 10% to 30% by weight
A carbon-containing refractory characterized in that 30% by weight is the refractory oxide material having a particle size of 1 to 0.5 mm.

本発明で用いられる・炭素質材料は、天然黒鉛、人造黒
鉛、ピッチコークス、無煙炭、カーボンブラック等であ
り、その添加量を3〜30重量%に限定するのは3重量
%未満では炭素添加の効果が得られず耐スポール性が不
十分であり、30重量%を超えると耐火物としての強度
や耐摩耗性が低下するからである。炭素質材料の粒度は
特に限定するものではないが通常0.5m未満の材料を
使用する。
The carbonaceous materials used in the present invention include natural graphite, artificial graphite, pitch coke, anthracite, carbon black, etc. The addition amount is limited to 3 to 30% by weight. This is because the effect is not obtained and the spall resistance is insufficient, and if it exceeds 30% by weight, the strength and abrasion resistance as a refractory decrease. Although the particle size of the carbonaceous material is not particularly limited, a material having a particle size of less than 0.5 m is usually used.

耐火性酸化物材料としては、アルミナ質、シリカ質、マ
グネシア貿、カルシア質、ジルコニア質、クロム質の各
単一成分あるいは、スピネル質、アルミナ−シリカ質、
ドロマイト貿、ジルコン質等の一種又は二種以上が使用
可能である。耐火性酸化物材料のうち1〜0.5閣の粒
子径を 10〜30重量%に限定する理由は、10重量
%未満では前述したように、11以上、 0.5−未満
の耐火性材料が多くなり1閣以上の粒子径の骨材はスラ
グに溶出しにくいが骨材の周囲にスラグが侵入すると容
易にスラグ中に流出し一気に損耗が進行すること、 ま
た骨材の粒子径がQ、5m未満の場合骨材のスラグへの
溶解が速く進行しれんがマトリックスの損耗が著しく進
行するためである。1〜0.5−の粒子径が30重量%
を超えると充填性が低下し良好な耐食性、強度が得られ
なくなるためである。
Refractory oxide materials include single components such as alumina, silica, magnesia, calcia, zirconia, and chromium, or spinel, alumina-silica,
One or more types of dolomite, zircon, etc. can be used. The reason for limiting the particle size of the refractory oxide material to 10 to 30% by weight is that if it is less than 10% by weight, the particle size of the refractory material is 11 or more and less than 0.5%. Aggregates with a particle size of 1 kaku or larger are difficult to dissolve into the slag, but if slag gets into the surroundings of the aggregate, it easily flows out into the slag and wear and tear progresses all at once. This is because if the distance is less than 5 m, the dissolution of the aggregate into slag progresses rapidly and the wear and tear of the brick matrix progresses significantly. 30% by weight of particle size of 1 to 0.5-
This is because if it exceeds this, the filling properties will be reduced and good corrosion resistance and strength will not be obtained.

結合剤はフェノール樹脂等の有機結合剤、珪酸ソーダ、
燐酸アルミ等の無機結合剤が使用できる。
The binder is an organic binder such as phenol resin, sodium silicate,
Inorganic binders such as aluminum phosphate can be used.

また、炭素の酸化防止を図るため、炭化物材料、窒化物
材料、金属材料、ガラス質材料のうち一種又は二種以上
を0.1〜20重量%を使用可能である。
Further, in order to prevent carbon oxidation, 0.1 to 20% by weight of one or more of carbide materials, nitride materials, metal materials, and glass materials can be used.

炭化物材料としては、炭化珪素、炭化硼素、炭化チタン
、炭化クロム、炭化ジルコニウム等であり、窒化物材料
としては窒化珪素、窒化硼素、窒化チタン、窒化クロム
、窒化ジルコニウム等が適宜用いられる。金属材料とし
ては、シリコン、アルミニウム、マグネシウム、カルシ
ウム、クロミウム、ジルコニウム、鉄、等の単独あるい
は混合、合金が使用できる。
As the carbide material, silicon carbide, boron carbide, titanium carbide, chromium carbide, zirconium carbide, etc. are used, and as the nitride material, silicon nitride, boron nitride, titanium nitride, chromium nitride, zirconium nitride, etc. are used as appropriate. As the metal material, silicon, aluminum, magnesium, calcium, chromium, zirconium, iron, etc. can be used alone or in combination or alloys.

ガラス質材料としでは、硼砂、珪酸ソーダ、燐酸ソーダ
、硼珪酸ソーダ、硼燐酸ソーダ、F、Li、0を含有し
た低離化点の硼燐酸ソーダ等が使用できる。
As the glassy material, borax, sodium silicate, sodium phosphate, sodium borosilicate, sodium borophosphate, sodium borophosphate containing F, Li, and 0 and having a low separation point can be used.

添加量を0.1〜20重量%に限定するのは、0.1%
以下では添加の効果が得られず、 20重量%を超える
と耐食性が低下するためである。
Limiting the amount added to 0.1 to 20% by weight is 0.1%
This is because if the amount is less than 20% by weight, the effect of addition will not be obtained, and if it exceeds 20% by weight, the corrosion resistance will decrease.

炭化物、窒化物、金属、ガラス質材料は粒度は限定しな
いが炭素質材料の酸化防止を目的として添加するため0
.5011以下の微粒が好ましい。
The particle size of carbides, nitrides, metals, and glassy materials is not limited, but is added for the purpose of preventing oxidation of carbonaceous materials.
.. Fine particles of 5011 or less are preferred.

(作用) 前述の通り、炭素質材料を3〜30重量%、残部が耐火
性酸化物材料からなる配合物100重量%において10
〜30重量%が1〜0.5 ■の粒子径を有する該耐火
性酸化物材料であることを特徴とする炭素含有耐火物は
1〜0.5 mの耐火性材料の占める割合゛が多くなり
耐火性材料が一気にスラグ中に流出することがなく、ま
た粒子がスラグ中に溶解しにくくなり耐食性が向上する
特徴を有する。
(Function) As mentioned above, in 100% by weight of a mixture consisting of 3 to 30% by weight of carbonaceous material and the remainder being a refractory oxide material,
The carbon-containing refractory is characterized in that ~30% by weight is the refractory oxide material having a particle size of 1 to 0.5 m, and the carbon-containing refractory has a large proportion of the refractory material with a particle size of 1 to 0.5 m. Therefore, the refractory material does not flow out into the slag all at once, and the particles are less likely to dissolve in the slag, resulting in improved corrosion resistance.

本発明の炭素含有耐火物は、通常不焼成れんがとして使
用するものであるが、焼成しても発明の効果は変わらな
いので焼成れんがとしても使用することができる。また
、不定形耐火物としても不焼成れんがと同様の効果が得
られるので不定形耐火物にも適用することが可能である
ことは言うまでもない。
The carbon-containing refractory of the present invention is normally used as an unfired brick, but since the effects of the invention do not change even if it is fired, it can also be used as a fired brick. It goes without saying that it can also be applied to monolithic refractories since the same effects as unfired bricks can be obtained as monolithic refractories.

(実施例) 以下、実施例について説明する。(Example) Examples will be described below.

実施例1 第1表に示す配合割合により本発明品及び従来品につい
てそれぞれの配合物を混合、混練した後、常法により蛇
形形状にプレス成形したものを250℃で24時間乾燥
し供試体とした。耐食性は、前記の供試体を回転侵食法
により1500℃で5時間、侵食剤(高炉スラグ70%
銑鉄30%)を用いて侵食試験を行い試験後の溶損寸法
を測定した。
Example 1 After mixing and kneading the inventive product and the conventional product according to the compounding ratios shown in Table 1, the products were press-molded into a serpentine shape using a conventional method and dried at 250°C for 24 hours to obtain a specimen. And so. Corrosion resistance was determined by rotary erosion of the above specimen at 1500°C for 5 hours using an eroding agent (70% blast furnace slag).
An erosion test was conducted using 30% pig iron, and the erosion dimensions were measured after the test.

上記の結果から明らかなように本発明品は従来品に比し
耐食性が22〜27%向上した。
As is clear from the above results, the corrosion resistance of the product of the present invention was improved by 22 to 27% compared to the conventional product.

実施例2 第2表に示す配合割合により本発明品及び従来品につい
てそれぞれの配合物を混合、混練した後、常法により蛇
形形状にプレス成形したものを250℃で24時間乾燥
し供試体とした。耐食性は、前記の供試体を回転侵食法
により1650℃で5時間、侵食剤(転炉スラグ70%
、鋼30%)を用いて侵食試験を行い試験後の溶損寸法
を測定した。
Example 2 After mixing and kneading the products of the present invention and the conventional product according to the compounding ratios shown in Table 2, the products were press-formed into a serpentine shape using a conventional method and dried at 250°C for 24 hours to obtain a specimen. And so. Corrosion resistance was determined by rotary erosion of the above specimen at 1650°C for 5 hours using an eroding agent (70% converter slag).
, 30% steel) was used to conduct an erosion test, and the dimensions of the erosion damage after the test were measured.

上記の結果から明らかなように本発明品は従来品に比し
耐食性が18〜27%向上した。
As is clear from the above results, the corrosion resistance of the products of the present invention was improved by 18 to 27% compared to the conventional products.

さらに、本発明品NQIと従来品Na4とを混銑車のス
ラグライン部に半分ずつ張り合わせて使用し、使用後の
m/chの溶損寸法を比較したところ、従来品NQ4は
0.5■/ahであったのに対し、本発明品&1は0.
4■/chと約20%向上した。
Furthermore, when the present invention product NQI and the conventional product Na4 were used by pasting each half on the slag line part of a pig iron mixer car, and the m/ch erosion dimensions after use were compared, the conventional product NQ4 was 0.5 / ah, whereas the invention product &1 had a value of 0.
4■/ch, an improvement of about 20%.

347 (発明の効果) 以上説明したように、本発明品では 1〜0.5閣の耐
火性酸化物材料が多いためれんが中の骨材とマトリック
スの間の隙間が小さくなり炭素質材料の酸化が抑制され
ると同時に骨材の周囲ヘスラグが侵入しにくくなりかつ
骨材とマトリックスの接触の割合が多くなり骨材がスラ
グ中へ流出しにくく、 また0、5m+未満の骨材が少
なくスラグへの溶解が小さくなりれんがの溶損、酸化を
低減することにより炭素含有耐火物の耐用性を格段に高
め、その工業的価値は大きい。
347 (Effect of the invention) As explained above, in the product of the present invention, since there are many refractory oxide materials of 1 to 0.5 degrees, the gap between the aggregate and the matrix in the brick is reduced, and the oxidation of the carbonaceous material is reduced. At the same time, it becomes difficult for the slag to penetrate around the aggregate, and the ratio of contact between the aggregate and the matrix increases, making it difficult for the aggregate to flow into the slag.Also, there are few aggregates below 0.5 m+ that enter the slag. By reducing melting and oxidation of bricks, the durability of carbon-containing refractories is greatly increased, and their industrial value is great.

Claims (2)

【特許請求の範囲】[Claims] (1)炭素質材料を3〜30重量%、残部が耐火性酸化
物材料からなる配合物100重量%において10〜30
重量%が1〜0.5mmの粒子径を有する該耐火性酸化
物材料であることを特徴とする炭素含有耐火物
(1) 10 to 30% by weight of a blend consisting of 3 to 30% by weight of carbonaceous material and the remainder being a refractory oxide material
A carbon-containing refractory characterized in that the refractory oxide material has a particle size of 1 to 0.5 mm in weight%.
(2)炭素質材料を3〜30重量%、炭化物材料、窒化
物材料、金属材料、ガラス質材料のうち一種又は二種以
上を0.1〜20重量%、残部が耐火物材料からなる配
合物100重量%において10〜30重量%が1〜0.
5mmの粒子径を有する該耐火性酸化物材料であること
を特徴とする炭素含有耐火物。
(2) A composition consisting of 3 to 30% by weight of carbonaceous material, 0.1 to 20% by weight of one or more of carbide materials, nitride materials, metal materials, and glassy materials, and the balance being refractory material. In 100% by weight of the product, 10 to 30% by weight is 1 to 0.
A carbon-containing refractory, characterized in that it is the refractory oxide material having a particle size of 5 mm.
JP1335114A 1989-12-26 1989-12-26 Carbon containing refractories Expired - Lifetime JP2747734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335114A JP2747734B2 (en) 1989-12-26 1989-12-26 Carbon containing refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335114A JP2747734B2 (en) 1989-12-26 1989-12-26 Carbon containing refractories

Publications (2)

Publication Number Publication Date
JPH03197346A true JPH03197346A (en) 1991-08-28
JP2747734B2 JP2747734B2 (en) 1998-05-06

Family

ID=18284928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335114A Expired - Lifetime JP2747734B2 (en) 1989-12-26 1989-12-26 Carbon containing refractories

Country Status (1)

Country Link
JP (1) JP2747734B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021544A1 (en) * 1999-09-24 2001-03-29 Shinagawa Refractories Co., Ltd. Carbonaceous refractory with high resistance to spalling and process for producing the same
KR100478143B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Oil injection materials for blast furnace by using spent refractories containing carbon

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301554A (en) * 1988-05-27 1989-12-05 Kawasaki Refract Co Ltd Carbon-containing refractory

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301554A (en) * 1988-05-27 1989-12-05 Kawasaki Refract Co Ltd Carbon-containing refractory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001021544A1 (en) * 1999-09-24 2001-03-29 Shinagawa Refractories Co., Ltd. Carbonaceous refractory with high resistance to spalling and process for producing the same
KR100478143B1 (en) * 2000-12-20 2005-03-22 재단법인 포항산업과학연구원 Oil injection materials for blast furnace by using spent refractories containing carbon

Also Published As

Publication number Publication date
JP2747734B2 (en) 1998-05-06

Similar Documents

Publication Publication Date Title
Lee et al. Evolution of in situ refractories in the 20th century
US5888586A (en) Use of a water-containing fire-resistant ceramic casting material
JPH0753600B2 (en) Molten steel container
JPH03197346A (en) Carbon-containing refractory
JPH0323275A (en) Monolithic refractory for casting
JP3212856B2 (en) Irregular cast refractories and their moldings
JP3751135B2 (en) Indefinite refractory
JPH06144939A (en) Basic castable refractory
JP4347952B2 (en) Basic amorphous refractories using magnesia calcia clinker
JPH0450178A (en) Ladle-lining carbon-containing amorphous refractories
JP2003226583A (en) Unshaped refractory for hot metal
JP2872670B2 (en) Irregular refractories for lining of molten metal containers
JPH03205348A (en) Magnesia-carbon brick
JPH03141152A (en) Carbon-containing unburned refractory brick
JPH03205347A (en) Magnesia-carbon brick
JPH02267150A (en) Carbon-containing refractory for iron melting
EP1179518A1 (en) Carbon-containing aqueous monolithic refractory
JPH03232761A (en) Magnesia-containing refractory material, production thereof and refractory
JPH01197370A (en) Monolithic refractory for lining molten metal vessel
JPH04182362A (en) Basic refractory for casting
JPH07300360A (en) Magnesia refractory
JPH0283250A (en) Production of carbon-containing calcined refractory
JPH02180766A (en) Cast monolithic refractories and refractory aggregate
Ahmadi et al. The effect of graphite addition on corrosion behavior of tar bonded dolomite refractories in steelmaking converter
JPH04164868A (en) Cast refractory