JPH03194975A - Manufacture of photoelectric converter - Google Patents

Manufacture of photoelectric converter

Info

Publication number
JPH03194975A
JPH03194975A JP1333759A JP33375989A JPH03194975A JP H03194975 A JPH03194975 A JP H03194975A JP 1333759 A JP1333759 A JP 1333759A JP 33375989 A JP33375989 A JP 33375989A JP H03194975 A JPH03194975 A JP H03194975A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
electrode
metal film
unit cell
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1333759A
Other languages
Japanese (ja)
Other versions
JP2638235B2 (en
Inventor
Takashi Yoshida
隆 吉田
Kiyoo Saito
齊藤 清雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1333759A priority Critical patent/JP2638235B2/en
Publication of JPH03194975A publication Critical patent/JPH03194975A/en
Application granted granted Critical
Publication of JP2638235B2 publication Critical patent/JP2638235B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To ensure breakdown strengths between adjacent unit cells and between the transparent electrodes of the cells and a rear surface electrode by emitting a laser light through a substrate to remove a metal film together with an amorphous semiconductor layer disposed under the film, separating into respective cells, and emitting the light from the rear electrode side to the light emitted part. CONSTITUTION:When a photoelectric converter composed of unit cells in which transparent electrodes 21, 22, amorphous semiconductor photoelectric conversion layers 31, 32 and rear surface metal electrodes 41, 42 are laminated on a light transmission insulating gold plate 1 is manufactured, the electrodes 21, 22 and the layers 31, 32 of the cells are entirely covered with a metal film 4, a laser light 51 is emitted through the metal 1 to remove the film 4 together with the amorphous semiconductor layer under the film 4 and to separate it into the electrodes 41, 42 of the cells, and then a laser light 52 is emitted from the electrodes 41, 42 side to the emitted part of the light 51. Thus, even if the metal film is not completely removed due to a dust existing on a board and the electrodes are not completely separated, the remaining metal film is removed by the emission of the laser from the electrode sides. Accordingly, the electrodes can be completely separated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、透光性絶縁基板上に成膜された透明導電膜、
非晶質半導体膜および金属膜をそれぞれ分離加工して複
数のユニットセルを形成する光電変換装置の製造方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a transparent conductive film formed on a transparent insulating substrate,
The present invention relates to a method for manufacturing a photoelectric conversion device in which a plurality of unit cells are formed by separately processing an amorphous semiconductor film and a metal film.

〔従来の技術〕[Conventional technology]

太陽光の光エネルギーを非晶質半導体、例えば非晶質シ
リコン(以下a−Slと記す)によって形成される接合
により電気エネルギーに変換する太陽電池のような光電
変換装置において、通常、高い出力電圧を得るために複
数のユニットセルを直列接続した構成が用いられる。各
ユニットセルは、透光性絶縁基板上に透明導電膜からな
る透明電極、a−3illからなる光電変換層および金
属膜からなる裏面電極が積層された構造を有することが
多い。
In a photovoltaic conversion device such as a solar cell that converts the light energy of sunlight into electrical energy by a junction formed by an amorphous semiconductor such as amorphous silicon (hereinafter referred to as a-Sl), a high output voltage is usually required. In order to obtain this, a configuration in which multiple unit cells are connected in series is used. Each unit cell often has a structure in which a transparent electrode made of a transparent conductive film, a photoelectric conversion layer made of A-3ill, and a back electrode made of a metal film are laminated on a transparent insulating substrate.

このような構造を得るため、透明導電膜+  a  S
t膜あるいは金属膜をそれぞれ絶縁基板上に全面成膜し
、各膜を分離加工してユニットセルに分割すると共に、
一つのユニットセルの裏面電極を隣接するユニットセル
の透明電極に接触させる方法が量産性に富むものとして
採用されている。i3明導電膜およびa−3i膜の分離
加工はレーザ照射によって行われるが、金属膜の分離加
工にレーザ照射を用いると、下地のa −51膜もその
影響を受け、低抵抗化してしまう、このような現象を避
けるため、特開昭63−274183号公報で公知のよ
うに、透光性絶縁基板1透明電極を通してYAGレーザ
光を照射し、a−Sl膜を蒸発させると共に、その上の
金属膜を飛散さセる方法がある。
In order to obtain such a structure, a transparent conductive film + a S
A T film or a metal film is formed on the entire surface of an insulating substrate, and each film is separated and divided into unit cells.
A method in which the back electrode of one unit cell is brought into contact with the transparent electrode of an adjacent unit cell has been adopted as a method that facilitates mass production. Separation processing of the i3 bright conductive film and the a-3i film is performed by laser irradiation, but if laser irradiation is used to separate the metal film, the underlying a-51 film will also be affected by it, resulting in lower resistance. In order to avoid such a phenomenon, as known in Japanese Patent Application Laid-Open No. 63-274183, YAG laser light is irradiated through the transparent electrode of the transparent insulating substrate 1 to evaporate the a-Sl film and to There is a method to scatter the metal film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述の透光性絶縁基板からのレーザ光照射により裏面電
極を分層する場合、基板の表面に光の通過を妨げるごみ
が存在すると、隣接するユニットセルの裏面電極に金属
ブリッジが形成され、裏面電極間の短絡が発生するとい
、う問題があった。
When separating the back electrodes by laser light irradiation from the above-mentioned translucent insulating substrate, if there is dust on the surface of the substrate that blocks the passage of light, a metal bridge will be formed on the back electrodes of adjacent unit cells, and the back electrodes will be separated. There was a problem with short circuits occurring between the electrodes.

別の問題として、非晶質半導体層のレーザ光照射により
蒸発した部分に接する側面が加熱により微結晶化し、低
抵抗になるため、裏面電極と透明電極の耐圧が小さくな
ることがあった。
Another problem is that the side surface of the amorphous semiconductor layer in contact with the portion evaporated by laser beam irradiation becomes microcrystalline due to heating and becomes low in resistance, resulting in a decrease in the withstand voltage of the back electrode and the transparent electrode.

本発明の目的は、上述の問題を除去し、隣接ユニットセ
ル間の裏面電極の分離が行われた光電変換装置、さらに
は同一ユニットセルの透明電極と裏面電極の間の耐圧が
保証される光電変換装置の製造方法を提供するものとす
る。
The object of the present invention is to eliminate the above-mentioned problems and to provide a photoelectric conversion device in which back electrodes are separated between adjacent unit cells, and furthermore, a photoelectric conversion device in which breakdown voltage between transparent electrodes and back electrodes of the same unit cell is guaranteed. A method of manufacturing a conversion device is provided.

〔課題を解決するための手段〕[Means to solve the problem]

上述の目的を達成するために、本発明は、透光性絶縁基
板上に透明電極、非晶質半導体光電変換層、裏面金属電
極を積層してなるユニットセルから構成される光電変換
装置の製造方法において、各ユニットセルの透明電極、
光電変換層の上を全面金属膜により被覆し、基板を通し
てレーザ光を照射して金属膜をその下の非晶質半導体層
と共に除去し、各ユニットセルの裏面電極に分離後、前
記レーザ光照射部分に裏面電極側からレーザ光を照射す
るものとする。あるいは、上記の光電変換装置の製造方
法において、各ユニットセルの透明1を橿、光電変換層
の上を全面金属膜により被覆し、基板を通して平行な2
本の線上にレーザ光を照射して金属膜をその下の非晶質
半導体層と共に除去し、各ユニットセルの裏面電極に分
離するものとする。さらにまた、透光性絶縁基板上に透
明電極。
In order to achieve the above-mentioned object, the present invention provides a method for manufacturing a photoelectric conversion device comprising a unit cell formed by laminating a transparent electrode, an amorphous semiconductor photoelectric conversion layer, and a back metal electrode on a transparent insulating substrate. In the method, a transparent electrode of each unit cell;
The entire surface of the photoelectric conversion layer is covered with a metal film, and the metal film is removed together with the amorphous semiconductor layer underneath by irradiating laser light through the substrate. After separating into the back electrode of each unit cell, the laser light irradiation is performed. Assume that the laser beam is irradiated onto the portion from the back electrode side. Alternatively, in the above method for manufacturing a photoelectric conversion device, the transparent 1 of each unit cell is covered with a metal film, the entire surface of the photoelectric conversion layer is covered with a metal film, and the parallel 2
It is assumed that the metal film is removed together with the amorphous semiconductor layer underneath by irradiating a laser beam onto the line, and the back electrodes of each unit cell are separated. Furthermore, a transparent electrode is placed on a translucent insulating substrate.

非晶質半導体光電変換層、裏面金属電極を積層してなる
ユニットセルを、一つのユニットセルの裏面電極の縁を
隣接ユニットセルの透明電極の縁部と接触させることに
よって直列接続する光電変換装置の製造方法において、
各ユニットセルの透明電極、光電変換層の上を全面金属
膜により被覆し、基板を通してレーザ光を照射して金属
膜をその下の非晶質半導体層と共に除去し、各ユニット
セルの裏面電極に分離後、裏面電極の隣接ユニットセル
の透明電極と接触する縁部と反対側の縁部を裏面電極側
からのレーザ光の照射により除去するものとする。
A photoelectric conversion device in which unit cells formed by laminating an amorphous semiconductor photoelectric conversion layer and a back metal electrode are connected in series by bringing the edge of the back electrode of one unit cell into contact with the edge of the transparent electrode of an adjacent unit cell. In the manufacturing method of
The entire surface of the transparent electrode and photoelectric conversion layer of each unit cell is covered with a metal film, and the metal film is removed together with the amorphous semiconductor layer underneath by irradiating laser light through the substrate, and the back electrode of each unit cell is coated with a metal film. After separation, the edge of the back electrode opposite to the edge in contact with the transparent electrode of the adjacent unit cell is removed by irradiation with laser light from the back electrode side.

〔作用〕[Effect]

透光性絶縁基板を通じてのレーザ光の照射により金属膜
を非晶質半導体層と共に除去して裏面電極の分離を行う
際、基板上に存在したごみにより金属膜が完全に除去さ
れないために裏面電極間の分離が完全に行われなくても
、裏面電極側からのレーザ光照射により、残った金属膜
が除去されるので裏面電極の完全な分離が行われる。
When separating the back electrode by removing the metal film together with the amorphous semiconductor layer by laser beam irradiation through the transparent insulating substrate, the metal film was not completely removed due to dust on the substrate, so the back electrode Even if the separation between the two electrodes is not complete, the remaining metal film is removed by laser beam irradiation from the back electrode side, so that the back electrode can be completely separated.

また、透光性絶縁基板を通じてのレーザ光の照射により
、金属膜を平行な2本の線状に除去すれば、両方の除去
部に金属膜が残存して裏面電極の完全な分離が行われな
い確率は低くなる。
In addition, if the metal film is removed in two parallel lines by irradiating a laser beam through a transparent insulating substrate, the metal film will remain in both removed areas and the back electrode will be completely separated. The probability of not being there is low.

透光性絶縁基板を通じてのレーザ光の照射により金属膜
を除去したのち、その除去部の内側で裏面電極の透明電
極と接触しない側の縁部を裏面電極側からのレーザ光の
照射により除去すれば、一つのユニットセルの縁部にお
ける裏面電極と透明電極の距離が長くなるため、レーザ
光の照射による非晶質半導体の微結晶化によって低抵抗
となっても両電橿間の耐圧が保証される。
After removing the metal film by irradiating laser light through the transparent insulating substrate, the edge of the back electrode on the side that does not contact the transparent electrode inside the removed part is removed by irradiating laser light from the back electrode side. For example, since the distance between the back electrode and the transparent electrode at the edge of one unit cell becomes longer, the breakdown voltage between the two electrodes is guaranteed even if the resistance becomes low due to microcrystallization of the amorphous semiconductor due to laser light irradiation. be done.

〔実施例〕〔Example〕

以下図を引用して本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図fal〜telは本発明のうちの一つの実施例の
工程図で、ガラス基板l上に透明導電膜を形成してレー
ザバターニングし、透明電極21.22に分離後、ソノ
上ニp −1−n接合を有す44000〜5000人の
厚さのa−5iMを形成してレーザバターニングし、光
電変換層31.32に分離し、そのあとすなどの金属W
144を全面に被覆した(図8)0次にYAGレーザ光
5光査1ラス基板1を通して照射し、金属膜をa−5t
膜と共に除去して裏面電極41.42に分離した(図b
)、この際、基板上にごみが存在すると、局部的にレー
ザ光51が遮られ、金属ブリッジ43およびその下のa
−5l膜33が残存する。第2図はこの金属ブリッジを
平面図で示す、第2図で斜線を引いた領域61は暢50
nの金属膜除去部である0次いで、第1図(clに示す
ように裏面電極41゜42の間の金属膜除去部に裏面電
極側からレーザ光52を照射し、金属ブリッジ43の部
分の金属膜およびその下のa−3t膜33を除去した。
Figure 1 fal to tel are process diagrams of one embodiment of the present invention, in which a transparent conductive film is formed on a glass substrate l, laser patterning is performed, and after separation into transparent electrodes 21 and 22, A-5iM with a thickness of 44,000 to 5,000 layers having a p-1-n junction is formed and laser patterned, separated into photoelectric conversion layers 31 and 32, and then metal W such as a
144 (Fig. 8) 0-order YAG laser beam is irradiated through 5 beams and 1 lath substrate 1, and the metal film is coated with a-5t.
It was removed together with the membrane and separated into back electrodes 41 and 42 (Figure b
), at this time, if there is dust on the substrate, the laser beam 51 is locally blocked, causing the metal bridge 43 and the a
-5l film 33 remains. FIG. 2 shows this metal bridge in plan view. The shaded area 61 in FIG.
Then, as shown in FIG. The metal film and the a-3t film 33 underneath it were removed.

金m膜のバターニングをレーザ光照射で行うときに、レ
ーザ出力を上げるのが通常であり、その際a −5i1
!lの低抵抗化により裏面電極と透明電極との間の短絡
が発生しやすいが、この場合は金属ブリッジ43による
短絡さえ無くなればよいので、レーザ光52を弱くする
ことができ、a −3t層の微結晶化も防止できる。
When patterning a gold m film by laser light irradiation, it is normal to increase the laser output, and at that time a -5i1
! A short circuit between the back electrode and the transparent electrode is likely to occur due to the lower resistance of l, but in this case, it is only necessary to eliminate the short circuit due to the metal bridge 43, so the laser beam 52 can be weakened, and the a-3t layer Microcrystallization can also be prevented.

第3図(4)〜TO)は本発明のうちの他の一つの実施
例の工程図で、第3図Ta)、(blは第1図Ta)、
(blと同様であるが、第3図(C1においてはレーザ
光52をし一ザ光と同様にガラス基板1を通して照射し
、レーザ光51で除去した領域61と間隔を置いた輻5
〇−の領域62をa−3i層と共に除去した。これによ
って第4図に示すように分#1線100 cs当たりの
短絡個数は、黒丸で示したこの実施例による太陽電池の
場合、白丸で示したレーザ光を1回だけ照射して真面電
極をバターニングした太陽電池の場合より大きく減少し
た。
FIG. 3 (4) to TO) are process diagrams of another embodiment of the present invention; FIG. 3 Ta), (bl is FIG. 1 Ta),
(Similar to BL, but in FIG. 3 (C1), the laser beam 52 is irradiated through the glass substrate 1 in the same way as the laser beam, and the area 61 removed by the laser beam 51 is spaced apart from the area 61.
The region 62 of 0- was removed together with the a-3i layer. As a result, as shown in Fig. 4, the number of short circuits per minute #1 wire 100 cs is as follows: In the case of the solar cell according to this example, which is indicated by a black circle, the number of short circuits per minute #1 line 100 cs is calculated by irradiating the laser beam only once, which is indicated by a white circle, and This was a greater decrease than in the case of buttered solar cells.

第5図(al〜telは本発明のうちのさらに別の一つ
の実施例の工程図を示し、第5図fa)、(blは第1
図(al、(blと同様であるが、第5図(C1におい
てはレーザ光52を裏面電極41.42の間隙の直上か
ら照射せず、ずらして照射することにより、第6図に示
すように基板側からのレーザ光51の照射による金属膜
除去部61に隣接する領域62が除去されるようにした
。この場合もレーザ光52の照射は、真面電極41の金
属ブリッジ43との短絡さえ無くすればよく、金属膜除
去部62に多少金属の残存物が存在してもよいので、レ
ーザ光52を弱←できた。また、最終的には裏面電8i
41と透明電極21の間の沿面距離が長くなるため、多
少a −S+膜の低抵抗化が起きても、裏面電極縁部で
発生しやすい逆耐圧不良が大きく減少した。第7図には
、この実施例によって製造された太陽電池の分離綿10
0 x当たりの短絡発生率と耐圧とをそれぞれ図(al
および図(blに黒丸で示し、ガラス基板側からレーザ
を1回だけ照射して裏面電極とバターニングした従来例
の場合を白丸で示す、10ロフト流した太陽電池で短絡
の発生率が大きく低下し、耐圧が明らかに向上しており
、本発明の有用性が分かる。なお、第5図において、最
初の金属膜除去部61の右側では裏面電極42と透明電
極21が接続されていてその間に逆耐圧は加わらないの
で、2回目の金rl&膜除去をこの側で行うことは無意
味である。
FIG. 5 (al to tel shows the process diagram of yet another embodiment of the present invention, FIG. 5 fa), (bl is the first
Although similar to Figures (al and (bl), in Figure 5 (C1) the laser beam 52 is not irradiated directly above the gap between the back electrodes 41 and 42, but is irradiated in a shifted manner, as shown in Figure 6. The area 62 adjacent to the metal film removal portion 61 is removed by irradiation of the laser beam 51 from the substrate side.In this case as well, the irradiation of the laser beam 52 prevents short-circuiting between the front electrode 41 and the metal bridge 43. The laser beam 52 could be weakened because it was only necessary to eliminate the presence of some metal residue in the metal film removal part 62.Furthermore, in the end, the back surface electrode 8i
Since the creepage distance between 41 and the transparent electrode 21 is increased, even if the resistance of the a-S+ film is lowered to some extent, reverse breakdown voltage defects that tend to occur at the edge of the back electrode are greatly reduced. FIG. 7 shows 10 pieces of separated cotton for the solar cell manufactured according to this example.
The short circuit occurrence rate and withstand voltage per 0 x are shown in the figure (al
and Figure (black circle in BL, white circle shows the case of a conventional example in which the laser is irradiated only once from the glass substrate side and patterned with the back electrode. The incidence of short circuits is greatly reduced in solar cells with a flow of 10 lofts. However, the withstand voltage is clearly improved, which shows the usefulness of the present invention.In addition, in FIG. Since no reverse breakdown voltage is applied, it is meaningless to perform the second gold rl & film removal on this side.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、透光性絶縁基板を通してのレーザ光照
射により金属膜をその下の非晶質半導体層と共に除去し
た後、再度レーザ光の照射を行い、その場合底に金属膜
の除去された部分に裏面電極側から照射するか、その部
分と間隔を置いて平行に金属膜を除去するか、あるいは
その部分に隣接して金属膜のみを除去するかにより、最
初のレーザ光照射時に裏面電極分離部に金属ブリッジの
残存することがあっても隣接裏面電極間の短絡を大幅に
低減することが可能になった。さらに、最初の分離部に
隣接した金属膜を除去した場合は、逆耐圧の加わる両電
極間の沿面距離が長くなり、レーザ光照射により非晶賀
半導体層表面の低抵抗化が起こっても逆耐圧の低下を阻
止することができ、不良品が少なく、逆耐圧が大きく向
上した光電変換装置を得ることができた。
According to the present invention, after the metal film is removed together with the underlying amorphous semiconductor layer by laser light irradiation through the transparent insulating substrate, the laser light is irradiated again, and in this case, the metal film is removed at the bottom. By irradiating the exposed area from the back electrode side, by removing the metal film parallel to the area at a distance, or by removing only the metal film adjacent to the area, the back surface can be Even if a metal bridge remains in the electrode separation part, it is now possible to significantly reduce short circuits between adjacent back electrodes. Furthermore, if the metal film adjacent to the initial separation part is removed, the creepage distance between the two electrodes where the reverse breakdown voltage is applied becomes longer, and even if the resistance of the amorphous semiconductor layer surface is lowered by laser light irradiation, the reverse It was possible to obtain a photoelectric conversion device in which a decrease in breakdown voltage could be prevented, the number of defective products was small, and the reverse breakdown voltage was greatly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一つの本発明一実施例の工程を(al、 (b
)。 (C1の順に示す断面図、第2図は透光性絶縁基板を通
じてのレーザ照射の際に裏面電極間に生ずる欠陥を示す
平面図、第3ri!Jは他の本発明の一実施例の工程を
ial、 (bl、 TCIの順に示す断面図、第4図
は第3図に示した実施例と従来方法による太陽電池のロ
フト毎の短絡発生個数を示す線図、第5図はさらに別の
本発明の一実施例の工程を(al、 (b)、 (C1
の順に示す断面図、第6図は第5図による太陽電池の裏
面電極間の部分の平面図、第7図は第6図に示した実施
例と従来方法による太陽電池の比較で、そのうち(Ml
はロフト毎の短絡発生個数を示す線図、偽)は両電極間
の耐圧の分布を示す線図である。 第2図 第1図 第 5 図 ] 0ット舎号 第 図 第 図
FIG. 1 shows the steps of one embodiment of the present invention (al, (b)
). (A cross-sectional view shown in the order of C1, FIG. 2 is a plan view showing a defect that occurs between the back electrodes during laser irradiation through a transparent insulating substrate, and No. 3ri!J is a process of another embodiment of the present invention. ial, (bl, TCI), FIG. 4 is a diagram showing the number of short circuits for each loft of solar cells according to the example shown in FIG. 3 and the conventional method, and FIG. 5 is a diagram showing another short circuit. The steps of one embodiment of the present invention are (al, (b), (C1
6 is a plan view of the part between the back electrodes of the solar cell shown in FIG. 5, and FIG. 7 is a comparison of the solar cell according to the embodiment shown in FIG. Ml
is a diagram showing the number of short circuits occurring for each loft, and (false) is a diagram showing the distribution of withstand voltage between both electrodes. Figure 2 Figure 1 Figure 5]

Claims (1)

【特許請求の範囲】 1)透光性絶縁基板上に透明電極、非晶質半導体光電変
換層、裏面金属電極を積層してなるユニットセルから構
成される光電変換装置の製造方法において、各ユニット
セルの透明電極、光電変換層の上を全面金属膜により被
覆し、基板を通してレーザ光を照射して金属膜をその下
の非晶質半導体層と共に除去し、各ユニットセルの裏面
電極に分離後、前記レーザ光照射部分に裏面電極側から
レーザ光を照射することを特徴とする光電変換装置の製
造方法。 2)透光性絶縁基板上に透明電極、非晶質半導体光電変
換層、裏面金属電極を積層してなるユニットセルから構
成される光電変換装置の製造方法において、各ユニット
セルの透明電極、光電変換層の上を全面金属膜により被
覆し、基板を通して平行な2本の線上にレーザ光を照射
して金属膜をその下の非晶質半導体層と共に除去し、各
ユニットセルの裏面電極に分離することを特徴とする光
電変換装置の製造方法。 3)透光性絶縁基板上に透明電極、非晶質半導体光電変
換層、裏面金属電極を積層してなるユニットセルを、一
つのユニットセルの裏面電極の縁を隣接ユニットセルの
透明電極の縁部と接触させることによって直列接続する
光電変換装置の製造方法において、各ユニットセルの透
明電極、光電変換層の上を全面金属膜により被覆し、基
板を通してレーザ光を照射して金属膜をその下の非晶質
半導体層と共に除去し、各ユニットセルの裏面電極に分
離後、裏面電極の隣接ユニットセルの透明電極と接触す
る縁部と反対側の縁部を裏面電極側からのレーザ光の照
射により除去することを特徴とする光電変換装置の製造
方法。
[Scope of Claims] 1) In a method for manufacturing a photoelectric conversion device comprising a unit cell formed by laminating a transparent electrode, an amorphous semiconductor photoelectric conversion layer, and a back metal electrode on a transparent insulating substrate, each unit The entire transparent electrode and photoelectric conversion layer of the cell are covered with a metal film, and the metal film is removed together with the amorphous semiconductor layer underneath by irradiating a laser beam through the substrate. After separating into the back electrode of each unit cell. . A method for manufacturing a photoelectric conversion device, characterized in that the laser beam irradiation portion is irradiated with a laser beam from the back electrode side. 2) In a method for manufacturing a photoelectric conversion device consisting of a unit cell formed by laminating a transparent electrode, an amorphous semiconductor photoelectric conversion layer, and a back metal electrode on a transparent insulating substrate, the transparent electrode of each unit cell, the photoelectric conversion layer The entire surface of the conversion layer is covered with a metal film, and laser light is irradiated on two parallel lines through the substrate to remove the metal film along with the amorphous semiconductor layer underneath, and separate the back electrodes of each unit cell. A method for manufacturing a photoelectric conversion device, characterized by: 3) A unit cell is formed by laminating a transparent electrode, an amorphous semiconductor photoelectric conversion layer, and a back metal electrode on a transparent insulating substrate, and the edge of the back electrode of one unit cell is connected to the edge of the transparent electrode of an adjacent unit cell. In a method for manufacturing photoelectric conversion devices that are connected in series by contacting the unit cells, the transparent electrode and photoelectric conversion layer of each unit cell are entirely covered with a metal film, and a laser beam is irradiated through the substrate to cover the metal film underneath. After removing the amorphous semiconductor layer along with the back electrode of each unit cell, the edge of the back electrode opposite to the edge that contacts the transparent electrode of the adjacent unit cell is irradiated with laser light from the back electrode side. 1. A method for manufacturing a photoelectric conversion device, characterized in that removal is performed by.
JP1333759A 1989-12-22 1989-12-22 Method for manufacturing photoelectric conversion device Expired - Lifetime JP2638235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1333759A JP2638235B2 (en) 1989-12-22 1989-12-22 Method for manufacturing photoelectric conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1333759A JP2638235B2 (en) 1989-12-22 1989-12-22 Method for manufacturing photoelectric conversion device

Publications (2)

Publication Number Publication Date
JPH03194975A true JPH03194975A (en) 1991-08-26
JP2638235B2 JP2638235B2 (en) 1997-08-06

Family

ID=18269642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1333759A Expired - Lifetime JP2638235B2 (en) 1989-12-22 1989-12-22 Method for manufacturing photoelectric conversion device

Country Status (1)

Country Link
JP (1) JP2638235B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274183A (en) * 1987-05-06 1988-11-11 Fuji Electric Corp Res & Dev Ltd Patterning method for metal film on transparent substrate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274183A (en) * 1987-05-06 1988-11-11 Fuji Electric Corp Res & Dev Ltd Patterning method for metal film on transparent substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274446A (en) * 2000-03-23 2001-10-05 Kanegafuchi Chem Ind Co Ltd Method of manufacturing integrated hybrid thin film solar battery

Also Published As

Publication number Publication date
JP2638235B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
AU2004204637B8 (en) Transparent thin-film solar cell module and its manufacturing method
US4808242A (en) Photovoltaic device and a method of manufacturing thereof
JPH053151B2 (en)
JPS6154756A (en) Contact type image sensor
JPH03194975A (en) Manufacture of photoelectric converter
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JPH07105511B2 (en) Photovoltaic device manufacturing method
JPH0815223B2 (en) Photovoltaic device manufacturing method
JPH0243776A (en) Manufacture of thin film solar cell
JP2883370B2 (en) Photovoltaic device
JPS61280680A (en) Manufacture of semiconductor device
JPH0443432B2 (en)
JPS61164274A (en) Manufacture of photovoltaic device
JPS63258077A (en) Manufacture of photovoltaic device
JPS6265480A (en) Thin film solar battery
JPS62145781A (en) Manufacture of semiconductor device
JPS61210681A (en) Manufacture of photovoltaic device
JPH0560273B2 (en)
JPH04320380A (en) Manufacture of solar cell
JPS593981A (en) Manufacture of thin film semiconductor device
JPH053150B2 (en)
JPS61234574A (en) Photocell unit and manufacture thereof
JPS59208790A (en) Solar cell
JPH0464473B2 (en)
JPS63283077A (en) Manufacture of solar cell