JPH0464473B2 - - Google Patents

Info

Publication number
JPH0464473B2
JPH0464473B2 JP61035596A JP3559686A JPH0464473B2 JP H0464473 B2 JPH0464473 B2 JP H0464473B2 JP 61035596 A JP61035596 A JP 61035596A JP 3559686 A JP3559686 A JP 3559686A JP H0464473 B2 JPH0464473 B2 JP H0464473B2
Authority
JP
Japan
Prior art keywords
electrode film
photoelectric conversion
film
conversion element
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61035596A
Other languages
Japanese (ja)
Other versions
JPS61210683A (en
Inventor
Seiichi Kyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP61035596A priority Critical patent/JPS61210683A/en
Publication of JPS61210683A publication Critical patent/JPS61210683A/en
Publication of JPH0464473B2 publication Critical patent/JPH0464473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は半導体膜を光活性層とする集積型光起
電力装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to an integrated photovoltaic device using a semiconductor film as a photoactive layer.

(ロ) 従来の技術 第2図は既に実用化されている太陽電池の基本
構造を示し、1はガラス、耐熱プラスチツク等の
絶縁性且つ透光性を有する基板、2a,2b,2
c…は基板1上に一定間隔で被着された透明導電
膜、3a,3b,3c…は各透明導電膜上に重畳
被着された非晶質シリコン等の非晶質半導体膜、
4a,4b,4c…は各非晶質半導体膜上に重畳
被着され、かつ各右隣りの透明導電膜2b,2c
…に部分的に重畳せる裏面電極膜である。
(b) Conventional technology Figure 2 shows the basic structure of a solar cell that has already been put into practical use. 1 is an insulating and transparent substrate made of glass, heat-resistant plastic, etc.; 2a, 2b, 2;
c... are transparent conductive films deposited on the substrate 1 at regular intervals; 3a, 3b, 3c... are amorphous semiconductor films such as amorphous silicon deposited on each transparent conductive film,
4a, 4b, 4c... are superimposed and deposited on each amorphous semiconductor film, and the transparent conductive films 2b, 2c on the right side of each
It is a back electrode film that can be partially overlapped with...

各非晶質半導体膜3a,3b,3c…は、その
内部に例えば膜面に平行なPIN接合を含み、従つ
て透光性基板1及び透明導電膜2a,2b,2c
…を順次介して光入射があると、光起電力を発生
する。各非晶質半導体膜3a,3b,3c…内で
発生した光起電力は裏面電極膜4a,4b,4c
での接続により直列的に相加される。
Each amorphous semiconductor film 3a, 3b, 3c... includes, for example, a PIN junction parallel to the film surface inside thereof, and therefore the transparent substrate 1 and the transparent conductive film 2a, 2b, 2c...
When light is incident sequentially through..., a photovoltaic force is generated. The photovoltaic force generated within each amorphous semiconductor film 3a, 3b, 3c... is the back electrode film 4a, 4b, 4c.
are added in series by the connection at .

この様な装置において、光利用効率を左右する
一つの要因は、装置全体の受光面積(即ち、基板
面積)に対し、実際に発電に寄与する非晶質半導
体膜3a,3b,3c…の総面積の占める割合い
である。然るに、各非晶質半導体膜3a,3b,
3c…の隣接間に必然的に存在する非晶質半導体
のない領域(図中符号NONで示す領域)は上記
面積割合いを低下させる。
In such a device, one factor that affects the light utilization efficiency is the total light receiving area (i.e., substrate area) of the entire device versus the total amount of amorphous semiconductor films 3a, 3b, 3c, etc. that actually contribute to power generation. It is the proportion of the area. However, each amorphous semiconductor film 3a, 3b,
A region without an amorphous semiconductor (a region indicated by the symbol NON in the figure) that inevitably exists between adjacent regions 3c... reduces the above-mentioned area ratio.

従つて光利用効率を向上するには、まず透明導
電膜2a,2b,2c…の隣接間隔を小さくし、
そして非晶質半導体膜3a,3b,3c…の隣接
間隔を小さくせねばならない。この様な間隔縮小
は各膜の加工精度で決まり、従つて、従来は細密
加工性に優れている写真蝕刻技術が用いられてい
る。この技術による場合、基板1上全面への透明
導電膜の被着工程と、フオトレジスト及びエツチ
ングによる各個別の透明導電膜2a,2b,2c
…の分離、即ち、各透明導電膜2a,2b,2c
…の隣接間隔部分の除去工程と、これら各透明導
電膜上を含む基板1上全面への非晶質導体膜の被
着工程と、フオトレジスト及びエツチングによる
各個別の非晶質半導体膜3a,3b,3c…の分
離、即ち、各非晶質半導体膜3a,3b,3c…
の隣接間隔部分の除去工程とを順次経ることにな
る。
Therefore, in order to improve the light utilization efficiency, first, the distance between adjacent transparent conductive films 2a, 2b, 2c, etc. is reduced,
Then, the distance between adjacent amorphous semiconductor films 3a, 3b, 3c, . . . must be reduced. Such a reduction in spacing is determined by the processing accuracy of each film, and therefore, conventionally, photo-etching technology, which has excellent precision processing properties, has been used. In the case of this technique, a step of depositing a transparent conductive film on the entire surface of the substrate 1, and each individual transparent conductive film 2a, 2b, 2c by photoresist and etching are performed.
Separation of..., that is, each transparent conductive film 2a, 2b, 2c
..., the step of depositing an amorphous conductor film on the entire surface of the substrate 1 including on each of these transparent conductive films, and the step of removing each individual amorphous semiconductor film 3a, by photoresist and etching. 3b, 3c..., that is, each amorphous semiconductor film 3a, 3b, 3c...
The step of removing the adjacent spaced portions is sequentially performed.

しかし乍ら、写真蝕刻技術は細密加工の上で優
れてはいるが、蝕刻パターンを規定するフオトレ
ジストのピンホールや周縁での剥れにより非晶質
半導体膜に欠陥を生じさせやすい。
However, although photo-etching technology is excellent in terms of fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示された先行技術
は、レーザビームの照射による膜の焼き切りで上
記隣接間隔を設けるものであり、写真蝕刻技術で
必要なフオトレジスト、即ちウエツトプロセスを
一切使わず細密加工性に富むその技法は上記の課
題を解決する上で極めて有効である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 12568/1985 creates the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use any photoresist, that is, a wet process, which is necessary for photolithography. This technique, which has excellent precision processing properties, is extremely effective in solving the above problems.

一方、第3図に示す如く、各光電変換素子5
a,5b…に連続して被着された非晶質半導体膜
3を各素子5a,5b…毎に分割するに先立つて
直ちに裏面電極膜41を上記各半導体膜3上全面
に予め積層被着する工程を含む製造方法が提案さ
れた。即ち、非晶質半導体膜3を分割せしめる工
程後裏面電極膜を被着せしめたのでは両者の接合
界面に塵埃や、写真蝕刻時使用した水分等が介在
することがあり、斯る介在物を原因として発生し
ていた裏面電極膜4a,4bの剥離や腐蝕自己を
抑圧することができる。
On the other hand, as shown in FIG.
Immediately before dividing the amorphous semiconductor film 3 successively deposited on the semiconductor films 3 into each element 5a, 5b, etc., a back electrode film 41 is preliminarily deposited on the entire surface of each of the semiconductor films 3. A manufacturing method including a process was proposed. That is, if the back electrode film is deposited after the step of dividing the amorphous semiconductor film 3, dust or moisture from photo-etching may be present at the bonding interface between the two, and such inclusions may be removed. It is possible to suppress the peeling and corrosion of the back electrode films 4a and 4b, which were caused by this.

この様に、レーザビームを使用してパターニン
グを行なうことにより、光電変換に寄与しない無
効領域の減少は図れるものの、斯る無効領域の減
少が図られた透明導電膜2a,2b,2c…の分
割溝7,7…内に第2図に示す如く左隣りの光電
変換素子5a,5b…の裏面電極膜4a,4bが
右隣りの光電変換素子5b,5c…と電気的に結
合すべく延在し位置すると、隣接せる透明導電膜
2a,2b、2b,2c、…の絶縁間隔W1は上
記裏面電極膜4a,4b…の埋入により、この裏
面電極膜4a,4b、…と一方の透明導電膜2
a,2b、…との間隔であるW2を極めて縮小す
ることになる。斯る絶縁間隔の縮小は両透明導電
膜2a,2b、2b,2c、…間にリーク電流が
発生する原因となる。
In this way, by patterning using a laser beam, it is possible to reduce the ineffective area that does not contribute to photoelectric conversion, but the division of the transparent conductive films 2a, 2b, 2c, etc. in which the ineffective area is reduced is achieved. As shown in FIG. 2, the back electrode films 4a, 4b of the photoelectric conversion elements 5a, 5b on the left extend into the grooves 7, 7, . When positioned, the insulation interval W 1 between the adjacent transparent conductive films 2a, 2b, 2b, 2c,... is increased by the embedding of the back electrode films 4a, 4b... Conductive film 2
The distance W 2 between a, 2b, . . . is extremely reduced. Such a reduction in the insulation interval causes leakage current to occur between the transparent conductive films 2a, 2b, 2b, 2c, . . . .

一方、隣接せる光電変換素子5a,5b,5c
…同士を電気的に直列接続すべく透明導電膜2
b,2c…を露出せしめる工程、即ち少なくとも
半導体膜3を除去する工程にレーザビームを使用
した場合、半導体膜3を幅狭く除去し、透明導電
膜2b,2c…を露出せしめることができ無効領
域の減少が図れる。
On the other hand, adjacent photoelectric conversion elements 5a, 5b, 5c
...Transparent conductive film 2 to electrically connect them in series
When a laser beam is used in the step of exposing the semiconductor film 3, that is, the step of removing at least the semiconductor film 3, the semiconductor film 3 can be narrowly removed and the transparent conductive films 2b, 2c, etc. can be exposed. can be reduced.

しかし、この透明導電膜2b,2c…の露出部
分は、上述の如く隣接せる光電変換素子5a,5
b,5c…同士の接続に利用される部分であり、
この露出長が狭くなると、斯る接続部分に於ける
直列抵抗成分の増加を招くために所定の露出長が
必要となる。従つて、除去幅の縮幅が図れるレー
ザビームを使用すると所定の露出長を得るために
多数回走査しなければならないこともあり、その
場合作業性が低下する。
However, as described above, the exposed portions of the transparent conductive films 2b, 2c...
b, 5c... It is a part used for connecting with each other,
If this exposed length becomes narrower, a predetermined exposed length is required because the series resistance component in such a connection portion increases. Therefore, if a laser beam capable of reducing the removal width is used, it may be necessary to perform multiple scans in order to obtain a predetermined exposure length, which reduces work efficiency.

(ハ) 発明が解決しようとする問題点 本発明は上記レーザビームやその他電子ビーム
等のエネルギビームを使用してパターニングした
光起電力装置に於いて、基板側に設けられた透明
導電膜の如き第1電極膜間の絶縁間隔の縮小によ
るリーク電流の発生と、作業性の欠如を解決しよ
うとするものである。
(c) Problems to be Solved by the Invention The present invention is directed to a photovoltaic device patterned using the above-mentioned laser beam or other energy beam such as an electron beam, such as a transparent conductive film provided on the substrate side. This is intended to solve the problem of leakage current caused by a reduction in the insulation interval between the first electrode films and the lack of workability.

(ニ) 問題点を解決するための手段 本発明は上記問題点を解決するために、基板の
一主面上に於ける複数の領域に第1電極膜、半導
体膜及び第2電極膜をこの順序で積層した光電変
換素子を分割配置し、それら光電変換素子を当該
素子間の隣接間隔部で、隣接する一方の光電変換
素子の第2電極膜と他方の光電変換素子の第1電
極膜とを第3電極膜を介して直列接続せしめた集
積型光起電力装置であつて、複数領域に分割配置
された第1電極膜と、隣接した一方の光電変換素
子の第1電極膜上から第1電極膜間の分割溝を埋
めて他方の光電変換素子の第1電極膜上にまで延
在するように積層されているとともに、上記他方
の光電変換素子の第1電極膜上に於いてエネルギ
ービームの照射により分割されている半導体膜
と、半導体膜上に積層され、該半導体膜とともに
上記他方の光電変換素子の第1電極膜上に於いて
エネルギービームの照射により分割されている第
2電極膜と、上記一方の光電変換素子の第2電極
膜と連なり、上記エネルギービームの照射による
半導体膜の分割により露出せしめられた他方の光
電変換素子の第1電極膜部分まで延在するととも
に、上記他方の光電変換素子の第1の電極膜上に
於いて分割されている第3電極膜とを備えている
ことを特徴とする。
(d) Means for Solving the Problems In order to solve the above problems, the present invention provides a first electrode film, a semiconductor film, and a second electrode film in a plurality of regions on one main surface of a substrate. The photoelectric conversion elements laminated in order are divided and arranged, and the photoelectric conversion elements are separated into a second electrode film of one adjacent photoelectric conversion element and a first electrode film of the other photoelectric conversion element at the adjacent spacing between the elements. are connected in series through a third electrode film, the first electrode film is divided into a plurality of regions, and the first electrode film of one adjacent photoelectric conversion element is connected in series through a third electrode film. The layers are stacked so as to fill the dividing groove between one electrode film and extend onto the first electrode film of the other photoelectric conversion element. a semiconductor film that is divided by beam irradiation; and a second electrode that is laminated on the semiconductor film and that is separated by energy beam irradiation on the first electrode film of the other photoelectric conversion element together with the semiconductor film. The film is continuous with the second electrode film of one of the photoelectric conversion elements, and extends to the first electrode film of the other photoelectric conversion element exposed by the division of the semiconductor film by irradiation with the energy beam, and It is characterized by comprising a third electrode film that is divided on the first electrode film of the other photoelectric conversion element.

(ホ) 作用 上述の如く第1電極膜間の分割溝を埋める半導
体膜は、上記第1電極膜間の絶縁間隔に導電体が
侵入し絶縁間隔を縮小せしめる危惧を回避し得る
と共に、エネルギビームの照射部分は隣接光電変
換素子の電気的接続箇所の第1電極膜上であり、
露出せしめられた部分を有効に上記電気的接続に
利用することができる。
(E) Effect As described above, the semiconductor film that fills the dividing groove between the first electrode films can avoid the risk of the conductor intruding into the insulation gap between the first electrode films and reduce the insulation gap, and can also prevent the energy beam from entering the insulation gap. The irradiated part is on the first electrode film at the electrical connection point of the adjacent photoelectric conversion element,
The exposed portion can be effectively used for the electrical connection.

(ヘ) 実施例 第1図は本発明集積型光起電力装置の要部拡大
断面図であつて、2つの光電変換素子5a,5b
を電気的に直列接続する隣接間隔部6を中心に描
いてある。即ち、絶縁性且つ透光性を有する基板
1の一主面上に於ける複数の領域に、第1電極膜
を司どる透明導電膜2a,2b…と、膜面に平行
なPIN接合を備えた非晶質半導体膜3a,3b…
と、第2電極膜を司どる第1裏面電極膜41a,
41b…とをこの順序で積層した光電変換素子5
a,5b…が分割配置されていると共に、それら
光電変換素子5a,5b…は当該素子5a,5b
間の隣接間隔部6に於いて電気的に直列接続され
ている。斯る光電変換素子5a,5b…の電気的
直列接続形態は、第1図から明らかな如く基板1
の一主面上に於いて各光電変換素子5a,5b…
毎に絶縁間隔W1を有する分割溝7…を隔てて酸
化スズ、酸化インジウムスズ等の単層或いは積層
構造からなる透明導電膜2a,2b…が分割配置
され、この透明導電膜2a,2b…間の上記分割
溝7…を、一方(左隣り)の光電変換素子5aを
構成する半導体膜3aが埋めて、他方(右隣り)
の透明導電膜2b上にまで延び、そしてレーザビ
ームの如きエネルギビームの照射により露出せし
められた上記他方の透明導電膜2b上に、上記一
方の光電変換素子5aの半導体膜3aと第1裏面
電極膜41aの積層体を越えて第1裏面電極膜4
1aと共に裏面電極膜4aを構成し第3電極膜を
司どる第2裏面電極膜42aが延在することによ
つて実現している。
(F) Embodiment FIG. 1 is an enlarged sectional view of the main parts of the integrated photovoltaic device of the present invention, showing two photoelectric conversion elements 5a and 5b.
The drawing is centered around the adjacent spaced portions 6 that electrically connect the two in series. That is, a plurality of regions on one main surface of the substrate 1 having insulating and light-transmitting properties are provided with transparent conductive films 2a, 2b, etc., which control the first electrode film, and PIN junctions parallel to the film surfaces. The amorphous semiconductor films 3a, 3b...
and a first back electrode film 41a that controls the second electrode film,
A photoelectric conversion element 5 in which 41b... are laminated in this order.
a, 5b... are arranged in a divided manner, and these photoelectric conversion elements 5a, 5b... are arranged separately.
They are electrically connected in series at adjacent spacings 6 between them. As is clear from FIG. 1, the photoelectric conversion elements 5a, 5b... are electrically connected in series.
Each photoelectric conversion element 5a, 5b...
Transparent conductive films 2a, 2b, etc. made of a single layer or a laminated structure of tin oxide, indium tin oxide, etc. are divided and arranged across dividing grooves 7, which have an insulating interval W1 for each. The semiconductor film 3a constituting the photoelectric conversion element 5a on one side (adjacent on the left) fills the dividing groove 7 between...
The semiconductor film 3a of the one photoelectric conversion element 5a and the first back electrode are placed on the other transparent conductive film 2b which is exposed by irradiation with an energy beam such as a laser beam. The first back electrode film 4 extends beyond the stack of films 41a.
This is realized by extending the second back electrode film 42a, which together with 1a constitutes the back electrode film 4a and controls the third electrode film.

斯る透明導電膜2a,2bの分割溝7に一方の
光電変換素子5aを構成する半導体膜3aを埋入
せしめ、他方の光電変換素子5bの透明導電膜2
b上にまで至る光起電力装置の好適な製造方法を
第3図乃至第6図を参照して詳述すると、第4図
の工程以前にあつては従来と同じ第3図の工程が
施される。即ち、第3図の工程では既に絶縁性且
つ透光性を有する基板1の一主面上に於いて各光
電変換素子5a,5b…毎に分割された酸化ス
ズ、酸化インジウムスズ等の単層或いは積層構造
から成る透明導電膜2a,2b…を連続的に覆う
如く非晶質シリコン系の非晶質半導体膜3及び第
1裏面電極膜41が被着される。より詳しくは非
晶質半導体膜3が水素化非晶質シリコンであつ
て、光入射側から膜面に平行なPIN接合を備えて
いる場合、先ずシリコン化合物雰囲気例えばシラ
ン(SiH4)ガス雰囲気にP型決定不純物を含む
ジボラン(B2H6)を添加しグロー放電を生起せ
しめることにより膜厚50Å〜200Å程度のP型層
を形成し、次いで順次SiH4ガスのみにより膜厚
4000〜6000Å程度の真性(I型)層とSiH4ガス
にN型決定不純物を含むホスフイン(PH3)を添
加し膜厚100Å〜500Å程度のN型層とが積層被着
される。斯る非晶質半導体膜3形成後該半導体膜
3上への塵埃の付着等を防止すべく2000Å〜1μm
程度のアルミニウム(Al)から成る第1の裏面
電極膜41が直ちに蒸着される。
The semiconductor film 3a constituting one photoelectric conversion element 5a is embedded in the dividing groove 7 of the transparent conductive films 2a and 2b, and the transparent conductive film 2 of the other photoelectric conversion element 5b is
A preferred method for manufacturing a photovoltaic device up to the top of the photovoltaic device will be described in detail with reference to FIGS. 3 to 6. Before the step in FIG. 4, the steps in FIG. be done. That is, in the process shown in FIG. 3, a single layer of tin oxide, indium tin oxide, etc., which has been divided into each photoelectric conversion element 5a, 5b, etc., is already formed on one main surface of the insulating and transparent substrate 1. Alternatively, the amorphous silicon-based amorphous semiconductor film 3 and the first back electrode film 41 are deposited so as to continuously cover the transparent conductive films 2a, 2b, . . . having a laminated structure. More specifically, when the amorphous semiconductor film 3 is made of hydrogenated amorphous silicon and has a PIN junction parallel to the film surface from the light incident side, it is first exposed to a silicon compound atmosphere, for example, a silane (SiH 4 ) gas atmosphere. A P-type layer with a thickness of about 50 Å to 200 Å is formed by adding diborane (B 2 H 6 ) containing a P-type determining impurity and causing a glow discharge, and then sequentially increasing the thickness using only SiH 4 gas.
An intrinsic (I-type) layer with a thickness of about 4000 to 6000 Å and an N-type layer with a thickness of about 100 to 500 Å made by adding phosphine (PH 3 ) containing an N-type determining impurity to SiH 4 gas are deposited. After forming the amorphous semiconductor film 3, the thickness is 2000 Å to 1 μm to prevent dust from adhering to the semiconductor film 3.
A first back electrode film 41 made of aluminum (Al) of about 100 mL is immediately deposited.

第4図の工程では、隣接光電変換素子5a,5
b…の直列接続が行なわれる隣接間隔部6…の非
晶質半導体膜3′…及び第1裏面電極膜41′が矢
印で示す如き基板1の他方の主面側からレーザビ
ームの照射により除去されて、個別の各非晶質半
導体膜3a,3b…及び第1裏面電極膜41a,
41b…が各光電変換素子5a,5b…毎に分割
形成される。使用されるレーザは例えば波長
1.06μm、パルス周波数3KHzのNd:YAGレーザ
であり、そのエネルギ密度は2×107W/cm2にな
るべくレーザビーム径が調整されている。このレ
ーザビームの照射により隣接間隔部6の距離
(L1)は約300μm〜500μmに設定される。
In the process shown in FIG. 4, adjacent photoelectric conversion elements 5a, 5
The amorphous semiconductor film 3'... and the first back electrode film 41' of the adjacent interval part 6 where the series connection of b... is performed are removed by laser beam irradiation from the other main surface side of the substrate 1 as indicated by the arrow. Then, each individual amorphous semiconductor film 3a, 3b... and the first back electrode film 41a,
41b... are formed separately for each photoelectric conversion element 5a, 5b.... The wavelength of the laser used is e.g.
It is a Nd:YAG laser with a pulse frequency of 1.06 μm and a pulse frequency of 3 KHz, and the laser beam diameter is adjusted to have an energy density of 2×10 7 W/cm 2 . By irradiating this laser beam, the distance (L 1 ) between the adjacent spacing parts 6 is set to approximately 300 μm to 500 μm.

斯るレーザビームの照射はレーザビームの照射
方向が除去すべき隣接間隔部6…の露出面側、即
ち第1裏面電極膜41′側からではなく透明導電
膜2a,2b…との被着界面側である非晶質半導
体膜3′…側からなるべく基板1の他方の主面側
から為されている。そして、レーザビームは、透
明導電膜2a,2bの分割溝7に一方の光電変換
素子5aの半導体膜3aを埋入せしめると共に、
その終端を他方の透明導電膜2b上にまで延在せ
しめるべく、隣接間隔部6に位置する透明導電膜
2b上の非晶質半導体膜3′に対して照射される。
The irradiation direction of the laser beam is not from the exposed surface side of the adjacent gap portions 6 to be removed, that is, from the first back electrode film 41' side, but from the adhesion interface with the transparent conductive films 2a, 2b, etc. The amorphous semiconductor film 3' . . . side is preferably formed from the other main surface side of the substrate 1. Then, the laser beam embeds the semiconductor film 3a of one photoelectric conversion element 5a in the dividing groove 7 of the transparent conductive films 2a and 2b, and
In order to extend the terminal end onto the other transparent conductive film 2b, the amorphous semiconductor film 3' on the transparent conductive film 2b located at the adjacent interval 6 is irradiated.

続く第5図の工程では、基板1の他方の主面側
からのレーザビームの照射により隣接間隔部6が
除去された複数の光電変換素子5a,5b…毎に
分割された第1裏面電極膜41a,41b…上及
び隣接間隔部6に於いて露出状態にある透明導電
膜2a,2b…を連続的に覆うべく、膜厚数1000
Å程度のチタン(Ti)或いはチタン銀(TiAg)
と、膜厚数1000ÅのAlと、更に膜厚数1000Å〜
5000ÅのTi或いはTiAgの三層構造の第2裏面電
極膜42が重畳被着される。上記一層目、三層目
のTi或いはTiAgは下層のAlの水分による腐食を
防止すると共に、次工程に於けるレーザ加工を容
易ならしめるものであり、また第2裏面電極膜4
2に於けるAl層は直列抵抗を低減せしめるもの
である。
In the subsequent step shown in FIG. 5, the first back electrode film is divided into a plurality of photoelectric conversion elements 5a, 5b, . 41a, 41b... In order to continuously cover the exposed transparent conductive films 2a, 2b... in the upper and adjacent spacing parts 6, the film thickness is 1000.
Titanium (Ti) or titanium silver (TiAg) of approximately Å
, Al with a thickness of several 1000 Å, and an Al with a thickness of several 1000 Å ~
A second back electrode film 42 having a three-layer structure of Ti or TiAg having a thickness of 5000 Å is deposited in an overlapping manner. The first and third layers of Ti or TiAg prevent corrosion of the underlying Al layer due to moisture, and also facilitate laser processing in the next process.
The Al layer in No. 2 reduces series resistance.

第6図の最終工程では、隣接間隔部6′がレー
ザビームの照射により除去されて、個別の各第裏
面電極膜42a,42b…が形成される。その結
果、各光電変換素子5a,5b…が電気的に直列
接続される。上記レーザビームの照射は除去すべ
き隣接間隔部6′が透明導電膜2a,2b…上に
位置する場合、半導体膜3及び第1裏面電極膜4
1の照射と同じく基板1の他方の主面側から施さ
れる。使用されるレーザはNd:YAGレーザであ
り、その時のエネルギ密度は約3×107W/cm2
ある。
In the final step shown in FIG. 6, the adjacent spacing portions 6' are removed by laser beam irradiation to form individual back electrode films 42a, 42b, . . . . As a result, the photoelectric conversion elements 5a, 5b, . . . are electrically connected in series. When the adjacent interval portions 6' to be removed are located on the transparent conductive films 2a, 2b..., the laser beam irradiation is applied to the semiconductor film 3 and the first back electrode film 4.
Similar to the irradiation in step 1, the irradiation is performed from the other main surface side of the substrate 1. The laser used is a Nd:YAG laser, with an energy density of approximately 3×10 7 W/cm 2 .

(ト) 発明の効果 本発明集積型光起電力装置は以上の説明から明
らかな如く、隣接した一方の光電変換素子を構成
する半導体膜を、第1電極膜間の分割溝を埋めて
他方の光電変換素子の第1電極膜上にまで延在せ
しめたので、上記分割溝内に導電体が侵入し絶縁
間隔を縮小せしめる危惧を確実に回避し得、斯る
第1電極膜間のリーク電流を減少せしめることが
できる。
(G) Effects of the Invention As is clear from the above description, the integrated photovoltaic device of the present invention can separate the semiconductor films constituting one adjacent photoelectric conversion element from the other by filling the dividing groove between the first electrode films. Since it extends over the first electrode film of the photoelectric conversion element, it is possible to reliably avoid the risk of the conductor entering into the dividing groove and reducing the insulation interval, and the leakage current between the first electrode film can be avoided. can be reduced.

また、半導体膜及び第2電極膜の積層体がエネ
ルギビームの照射により除去される部分は隣接間
隔部に於ける隣接光電変換素子の電気的接続箇所
の第1電極膜上であるので、上記エネルギビーム
の照射により除去され露出せしめられた部分は有
効に上記電気的接続に利用することができ、その
結果無駄な箇所へのエネルギビームの照射はなく
エネルギビームの走査回数も最小限に済ませるこ
とができる。従つて、作業性の向上が図れる。
Furthermore, since the portion of the stacked body of the semiconductor film and the second electrode film that is removed by the energy beam irradiation is on the first electrode film at the electrical connection point of the adjacent photoelectric conversion elements in the adjacent spacing, the energy beam is removed. The parts removed and exposed by the beam irradiation can be effectively used for the above-mentioned electrical connections, and as a result, the energy beam is not irradiated to unnecessary areas and the number of times the energy beam is scanned can be minimized. can. Therefore, work efficiency can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明集積型光起電力装置の一実施例
を示す要部拡大断面図、第2図は従来装置の断面
図、第3図乃至第6図は本発明集積型光起電力装
置の製造工程を工程別に示す要部拡大断面図、を
夫々示している。 1……基板、2a,2b,2c……透明導電
膜、3,3a,3b,3c……半導体膜、41,
41a,41b……第1裏面電極膜、42,42
a,42b……第2裏面電極膜、5a,5b,5
c……光電変換素子。
FIG. 1 is an enlarged cross-sectional view of essential parts showing an embodiment of the integrated photovoltaic device of the present invention, FIG. 2 is a cross-sectional view of a conventional device, and FIGS. 3 to 6 are the integrated photovoltaic device of the present invention. 2A and 2B are enlarged cross-sectional views of main parts showing the manufacturing process for each step. 1... Substrate, 2a, 2b, 2c... Transparent conductive film, 3, 3a, 3b, 3c... Semiconductor film, 41,
41a, 41b...first back electrode film, 42, 42
a, 42b...second back electrode film, 5a, 5b, 5
c...Photoelectric conversion element.

Claims (1)

【特許請求の範囲】 1 基板の一主面上に於ける複数の領域に第1電
極膜、半導体膜及び第2電極膜をこの順序で積層
した光電変換素子を分割配置し、それら光電変換
素子を当該素子間の隣接間隔部で、隣接する一方
の光電変換素子の第2電極膜と他方の光電変換素
子の第1電極膜とを第3電極膜を介して直列接続
せしめた集積型光起電力装置であつて、 複数領域に分割配置された第1電極膜と、 隣接した一方の光電変換素子の第1電極膜上か
ら第1電極膜間の分割溝を埋めて他方の光電変換
素子の第1電極膜上にまで延在するように積層さ
れているとともに、上記他方の光電変換素子の第
1電極膜上に於いてエネルギービームの照射によ
り分割されている半導体膜と、 半導体膜上に積層され、該半導体膜とともに上
記他方の光電変換素子の第1電極膜上に於いてエ
ネルギービームの照射により分割されている第2
電極膜と、 上記一方の光電変換素子の第2電極膜と連な
り、上記エネルギービームの照射による半導体膜
の分割により露出せしめられた他方の光電変換素
子の第1電極膜部分まで延在するとともに、上記
他方の光電変換素子の第1の電極膜上に於いて分
割されている第3電極膜とを備えていることを特
徴とする集積型光起電力装置。
[Claims] 1. A photoelectric conversion element in which a first electrode film, a semiconductor film, and a second electrode film are laminated in this order is divided and arranged in a plurality of regions on one main surface of a substrate, and these photoelectric conversion elements is an integrated photovoltaic device in which the second electrode film of one adjacent photoelectric conversion element and the first electrode film of the other photoelectric conversion element are connected in series via a third electrode film at an adjacent interval between the elements. A power device comprising: a first electrode film divided into a plurality of regions; and a dividing groove between the first electrode films from above the first electrode film of one adjacent photoelectric conversion element to fill the dividing groove between the first electrode films of the other photoelectric conversion element. a semiconductor film that is stacked so as to extend onto the first electrode film and is divided by irradiation with an energy beam on the first electrode film of the other photoelectric conversion element; A second electrode film which is stacked and separated by energy beam irradiation on the first electrode film of the other photoelectric conversion element together with the semiconductor film.
The electrode film is continuous with the second electrode film of the one photoelectric conversion element, and extends to the first electrode film portion of the other photoelectric conversion element exposed by the division of the semiconductor film by the irradiation with the energy beam; An integrated photovoltaic device comprising: a third electrode film divided on the first electrode film of the other photoelectric conversion element.
JP61035596A 1986-02-20 1986-02-20 Photovoltaic device Granted JPS61210683A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61035596A JPS61210683A (en) 1986-02-20 1986-02-20 Photovoltaic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61035596A JPS61210683A (en) 1986-02-20 1986-02-20 Photovoltaic device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP59126918A Division JPS616828A (en) 1984-06-20 1984-06-20 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS61210683A JPS61210683A (en) 1986-09-18
JPH0464473B2 true JPH0464473B2 (en) 1992-10-15

Family

ID=12446184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61035596A Granted JPS61210683A (en) 1986-02-20 1986-02-20 Photovoltaic device

Country Status (1)

Country Link
JP (1) JPS61210683A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254972A (en) * 1988-08-19 1990-02-23 Sanyo Electric Co Ltd Photovoltaic device

Also Published As

Publication number Publication date
JPS61210683A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
US6468828B1 (en) Method of manufacturing lightweight, high efficiency photovoltaic module
US4808242A (en) Photovoltaic device and a method of manufacturing thereof
JPH04276665A (en) Integrated solar battery
EP1583155A1 (en) Transparent thin-film solar cell module and its manufacturing method
EP0641487A1 (en) Monolithic, parallel connected photovoltaic array and method for its manufacture
JP2986875B2 (en) Integrated solar cell
JPH053151B2 (en)
JPH0419713B2 (en)
JPH0464473B2 (en)
JPH053752B2 (en)
JPH0464472B2 (en)
JPS6213829B2 (en)
JP2798772B2 (en) Method for manufacturing photovoltaic device
JP2598967B2 (en) Method for manufacturing photovoltaic device
JPH07105511B2 (en) Photovoltaic device manufacturing method
JP2883370B2 (en) Photovoltaic device
JPS59220978A (en) Manufacture of photovoltaic device
JPH0815223B2 (en) Photovoltaic device manufacturing method
JPH053150B2 (en)
JP2680709B2 (en) Method of forming photovoltaic device
JPH0582816A (en) Photovoltaic device and its manufacture
JP2771653B2 (en) Method for manufacturing photovoltaic device
JPS61164274A (en) Manufacture of photovoltaic device
JP2638235B2 (en) Method for manufacturing photoelectric conversion device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term