JPS62145781A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62145781A
JPS62145781A JP60286502A JP28650285A JPS62145781A JP S62145781 A JPS62145781 A JP S62145781A JP 60286502 A JP60286502 A JP 60286502A JP 28650285 A JP28650285 A JP 28650285A JP S62145781 A JPS62145781 A JP S62145781A
Authority
JP
Japan
Prior art keywords
film
electrode film
energy
laser beam
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60286502A
Other languages
Japanese (ja)
Other versions
JPH067600B2 (en
Inventor
Keisho Yamamoto
山本 恵章
Seiichi Kiyama
木山 精一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP60286502A priority Critical patent/JPH067600B2/en
Publication of JPS62145781A publication Critical patent/JPS62145781A/en
Publication of JPH067600B2 publication Critical patent/JPH067600B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To simplify the steps of manufacturing a semiconductor device and to provide an inexpensive manufacturing method by emitting first energy beam on a second electrode film to fusion-bond a first electrode film to the second film, and patterning the second film with second energy beam. CONSTITUTION:A laser beam LB emitted from the same laser source is guided to a beam splitter BS, which splits the beam to a first laser beam LB1 passing the splitter BS and a reflecting second laser beam LB2. The beams are regulated to energy densities necessary to alloy for series connection and to selective removal for electrically dividing second electrodes 13a, 13b... by a focus lens FL, and simultaneously emitted to adjacent working portions.

Description

【発明の詳細な説明】 利用した半導体装置の製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing a semiconductor device using the present invention.

(口l 従来技術 半導体膜を光活性層とする半導体装置として太陽電池や
一次元光センサ等が存在する。
(1) Prior Art There are solar cells, one-dimensional optical sensors, and the like as semiconductor devices that use a semiconductor film as a photoactive layer.

第1図は米国特許第4,281,208号に開示されて
いると共に、既に実用化されている太陽電池の基本構造
を示し、(1)はガラス、耐熱プラスチック等の絶縁性
且つ透光性を有する基板、(2a)(2’b)(2Q)
・・・は基板(1)上に一定間隔で被着された透明電極
膜、(3a)(3’b)(3G)・・・は各透明電極膜
上に重畳被着された非晶質シリコン等の非晶質半導体膜
、(4a)(4b)(4o)・・・は各非晶質半導体膜
上に重畳被着され、かつ各右隣りの透明電極膜(2b)
(2c)・・・に部分的に重畳せる裏面電極膜で、斯る
透明電極膜(2a)(2b)(2o)・・・乃至裏面電
極膜(4a)(4b)(4o)・・・の各積層体により
光電変換領域(5a)(5b)(50)・・・が構成さ
れている。
Figure 1 shows the basic structure of a solar cell that is disclosed in U.S. Patent No. 4,281,208 and has already been put into practical use. A substrate having (2a) (2'b) (2Q)
... is a transparent electrode film deposited at regular intervals on the substrate (1), (3a) (3'b) (3G) ... is an amorphous material deposited in a superimposed manner on each transparent electrode film. Amorphous semiconductor films such as silicon (4a), (4b), (4o), etc. are superimposed and deposited on each amorphous semiconductor film, and the transparent electrode film (2b) on the right side of each film is superimposed on each amorphous semiconductor film.
(2c) A back electrode film that can be partially overlapped with the transparent electrode film (2a) (2b) (2o)... or the back electrode film (4a) (4b) (4o)... The photoelectric conversion regions (5a), (5b), (50), etc. are constituted by the respective laminates.

各非晶質半導体膜(3a)(3b)(3o)・・・は、
その内部に例えば膜面に平行なP工N接合を含み、従っ
て透光性基板(1)及び透明電極膜(2a)(2’t)
)(2C)・・・を順次介して光入射があると、光起電
力を発生する。各非晶質半導体膜(3a)(3b)(3
(3)・・・内で発生した光起電力は裏面電極膜(4a
)(4’b)(4C)・・・での接続により直列的に相
加される。
Each amorphous semiconductor film (3a) (3b) (3o)... is
It contains, for example, a P-N junction parallel to the film surface, and therefore the transparent substrate (1) and the transparent electrode film (2a) (2't)
) (2C)... When light is incident sequentially, a photovoltaic force is generated. Each amorphous semiconductor film (3a) (3b) (3
(3)... The photovoltaic force generated within the back electrode film (4a
)(4'b)(4C)... are added in series.

通常、斯る構成の太陽電池にあっては細密加工性に優れ
ている写真蝕刻技術が用いられている。
Photo-etching technology, which has excellent precision machinability, is usually used in solar cells with such a configuration.

この技術による場合、基板(1)上全面への透明電極膜
の被着工程と、フォトレジスト及びエツチングによる各
個別の透明電極膜(2a)(2b)(2o)・・・の分
離、即ち、各透明電極膜(2a)(1)(20)・・・
の隣接間隔部分の除去工程と、これら各透明電極膜上を
含む基板(1)上全面への非晶質半導体膜の被着工程と
、フォトレジスト及びエツチングによる各個別の非晶質
半導体膜(3a)(3’b)(3o)・・・の分離、即
ち、各非晶質半導体膜(3a) (3’b)(30)・
・・の隣接間隔部分の除去工程とを順次経ることになる
In the case of this technique, the process of depositing a transparent electrode film on the entire surface of the substrate (1), and the separation of each individual transparent electrode film (2a) (2b) (2o)... by photoresist and etching, that is, Each transparent electrode film (2a) (1) (20)...
, a step of depositing an amorphous semiconductor film on the entire surface of the substrate (1) including on each of these transparent electrode films, and a step of removing each individual amorphous semiconductor film by photoresist and etching ( 3a) (3'b) (3o)..., that is, each amorphous semiconductor film (3a) (3'b) (30).
. . . and the removal process of the adjacent spaced portions are sequentially performed.

然し乍ら、写真蝕刻技術は細密加工の上で優れてはいる
が、蝕刻パターンを規定するフォトレジストのピンホー
ルや周縁での剥れにより非晶質半導体膜に欠陥を生じさ
せやすい。
However, although photo-etching technology is excellent in terms of fine processing, it tends to cause defects in the amorphous semiconductor film due to pinholes or peeling at the periphery of the photoresist that defines the etching pattern.

特開昭57−12568号公報に開示された先行技術は
、レーザビームの照射による膜の焼き切りで上記隣接間
隔を設けるものであり、写真蝕刻技術で必要なフォトレ
ジスト、即ちウェットプロセスを一切使わず細密加工性
に富むその技法は上記の課題を解決する上で極めて有効
である。
The prior art disclosed in Japanese Unexamined Patent Publication No. 57-12568 provides the above-mentioned adjacent spacing by burning out the film by laser beam irradiation, and does not use any photoresist, that is, a wet process, which is required in photoetching technology. This technique, which is highly capable of fine processing, is extremely effective in solving the above problems.

レーザ使用の際に留意すべきことは、斯るレーザ加工は
本質的に熱加工であり、加工せんとする膜部分の下に他
の膜が存在しておれば、それに損傷を与えないことであ
る。さもなければ、目的の膜部分を焼き切った上、必要
としない下の膜まで焼き切ってしまったり、或いは焼き
切らないまでも熱的なダメージを与えてしまう。上記先
行技術は、この要求を満たすために、レーザ出力やパフ
レス周波数を各膜に対して選択することを提案している
When using a laser, it should be kept in mind that such laser processing is essentially thermal processing, and if there is another film under the film to be processed, it is necessary to avoid damaging it. be. Otherwise, not only the desired film portion but also the unnecessary lower film may be burned off, or thermal damage may occur even if the film is not burnt out. The above prior art proposes selecting the laser power and puffless frequency for each film to meet this requirement.

然し乍ら、上記先行技術の第1の欠点は、上記先行技術
では、非晶質半導体膜形成後、膜表面を露出のまま、第
2のレーザスクライブを行うためほこりやちりの膜表面
への付着、膜の飛散物の再付着があり、シャント抵抗を
増大させ、膜特性の劣化を招くことになる。また、空気
中の湿気やほこりによりはく離事故など信頼性の点で問
題が生じる。
However, the first drawback of the above prior art is that after the amorphous semiconductor film is formed, the second laser scribe is performed with the film surface exposed, so that dust and dirt may adhere to the film surface. There is re-deposition of scattered particles on the membrane, which increases shunt resistance and causes deterioration of membrane properties. Additionally, moisture and dust in the air may cause reliability problems such as peeling accidents.

さらに第2の欠点は、上記先行技術では、非晶質半導体
膜形成後、一度空気中に露出するため、裏面電極膜形成
のため、もう一度真空に引く工程が必要であり、さらに
上記裏面電極のバターヱングのため、第3のレーザスク
ライブを行なうことが必要となり工程が煩雑となる点で
ある。
A second drawback is that in the above-mentioned prior art, after the amorphous semiconductor film is formed, it is exposed to the air once, so another vacuum step is required to form the back electrode film, and furthermore, the back electrode film is exposed to air once. Because of buttering, it is necessary to perform a third laser scribe, which complicates the process.

(ハ)発明が解決しようとする問題点 本発明は、半導体膜単独のスクライブ工程を省き、工程
を簡略化し、簡単に第1電極膜と第2電極膜を接続し、
同時に第2電極膜を半導体膜と選択パターニングする方
法を提供するものである。
(c) Problems to be Solved by the Invention The present invention simplifies the process by omitting the step of scribing the semiconductor film alone, and easily connects the first electrode film and the second electrode film.
The present invention provides a method for selectively patterning a second electrode film and a semiconductor film at the same time.

さらに半導体膜のスクライブ時に半導体層上面へのほこ
りやちりあるいは飛散物等の付着によるシャント抵抗の
増大や、湿気等による膜質の劣化を防ぐことにある。
Furthermore, when scribing the semiconductor film, it is possible to prevent an increase in shunt resistance due to adhesion of dirt, dust, or flying objects to the upper surface of the semiconductor layer, and to prevent deterioration of film quality due to moisture or the like.

に)問題点を解決するための手段 本発明製造方法は上述の問題点を解決するために、基板
の絶縁表面上の複数の領域に分割配置された複数の第1
電極膜を連続的に覆うべく半導体膜及び第2電極膜を重
畳被着した後、上記複数の領域に於いて第2電極膜及び
半導体膜をIJlのエネルギビームの照射により溶融し
、この溶融物を介して領域の異なる第1電極膜と第2電
極膜を電気的に接続すると共に、上記半導体膜上の第2
電極膜に対して上記第1のエネルギビームよりエネルギ
密質の弱い第2のエネルギビームを、上記第1のエネル
ギビームの照射と同一工程に於いて照射して照射された
第2電極膜を上記半導体膜上から選択的に除去し、第2
電極膜を複数の領域毎に電気的に分割したことを特徴と
する。
B) Means for Solving the Problems In order to solve the above-mentioned problems, the manufacturing method of the present invention uses a plurality of first
After the semiconductor film and the second electrode film are deposited in an overlapping manner to continuously cover the electrode film, the second electrode film and the semiconductor film are melted in the plurality of regions by irradiation with an IJl energy beam, and the melt is The first electrode film and the second electrode film in different regions are electrically connected via the second electrode film on the semiconductor film.
The electrode film is irradiated with a second energy beam having a lower energy density than the first energy beam in the same process as the first energy beam, and the irradiated second electrode film is irradiated with the irradiated second energy beam. Selectively remove from above the semiconductor film and remove the second
It is characterized in that the electrode film is electrically divided into a plurality of regions.

(ホ)作 用 上述の如く半導体膜単独での分割工程を省略することに
よって、半導体膜と第2電極膜との界面状態を改善し、
同時に第2電極膜のパターン形成を行ない製造工程の大
幅な削減が図れる。
(E) Effect As mentioned above, by omitting the step of dividing the semiconductor film alone, the interface state between the semiconductor film and the second electrode film is improved,
At the same time, the pattern of the second electrode film is formed, and the number of manufacturing steps can be significantly reduced.

(へ)実施例 以下第2図乃至第8図を参照して、本発明製造方法を太
陽電池の製造方法に適用した実施例につき詳述する。
(f) Examples Hereinafter, examples in which the manufacturing method of the present invention is applied to a solar cell manufacturing method will be described in detail with reference to FIGS. 2 to 8.

第2図乃至第6図は本発明を実施せる太陽電池の製造方
法が工程別に示されている。第2図の工程では、厚さ1
w1〜3關面積10α×10α〜406M×40C11
程度の透明なガラス等の基板ai上全全面、厚さ200
0人〜5000人の酸化錫(Sn02)から成る透明電
極膜αηが被着される。
FIGS. 2 to 6 show step by step a method for manufacturing a solar cell in which the present invention can be implemented. In the process shown in Figure 2, the thickness is 1
w1~3 area 10α×10α~406M×40C11
The entire surface of the substrate AI, such as transparent glass, with a thickness of 200 mm
A transparent electrode film αη consisting of 0 to 5000 tin oxide (Sn02) is deposited.

第3図の工程では、隣接間隔部(111がレーザビーム
(LB)の照射により除去されて、個別の各透明電極膜
(lla) (llb) (IIG)・・・が分離形成
される。
In the process shown in FIG. 3, the adjacent spacing portions (111) are removed by irradiation with a laser beam (LB), and individual transparent electrode films (lla) (llb) (IIG), . . . are formed separately.

使用されるレーザ装置は基板αGにほとんど吸収される
ことのない波長が適当であり上記ガラスに対しては0.
35μm〜2,5μmの波長のパルス出力型が好ましい
。斯る好適な実施例は、波長約1.06μmエネルギ密
度I S J / tm” 、パルス繰返し周波数3K
HzのQスイッチ付きNd : YAGレーザであり、
隣接間隔部(111’の間隔は約100μmに設定され
る。
The laser device used is suitable for a wavelength that is hardly absorbed by the substrate αG, and for the glass mentioned above, the wavelength is 0.0.
A pulse output type with a wavelength of 35 μm to 2.5 μm is preferred. Such a preferred embodiment has a wavelength of about 1.06 μm, an energy density I S J /tm” and a pulse repetition frequency of 3K.
Nd:YAG laser with Hz Q-switch,
The interval between adjacent interval parts (111') is set to about 100 μm.

第4図の工程では、各透明電極膜(lla)(ITo)
(110)・・・の表面を含んで基板叩上全面に光電変
換に有効に寄与する厚さ5000人〜7000人の非晶
質シリコン(a−8i、)等の非晶質半導体膜α2が被
着される。斯る半導体膜O2はその内部に膜面に平行な
PIN接合を含み、従ってより具体的には、シリコン化
合物雰囲気中でのグロー放電によりP型の非晶質シリコ
ンか一バイトが被着され、次いで1型及びN型の非晶質
シリコンが順次積層被着される。
In the process shown in FIG. 4, each transparent electrode film (lla) (ITo)
An amorphous semiconductor film α2 such as amorphous silicon (a-8i, ) with a thickness of 5,000 to 7,000 thick, which effectively contributes to photoelectric conversion, is spread over the entire surface of the substrate, including the surface of (110)... be coated. Such a semiconductor film O2 includes a PIN junction parallel to the film surface inside thereof, and therefore, more specifically, P-type amorphous silicon or one byte is deposited by glow discharge in a silicon compound atmosphere, Next, type 1 and type N amorphous silicon are sequentially deposited in layers.

第5図の工程では、半導体膜α2・・・及び透明電極膜
(lla) (llb) (llo )・・・の各露出
部分を含んで基板αG上全全面4000A〜2μm程度
の厚さのアルミニウム単層構造、或いは該アルミニウム
にチタン(T1)又はチタン銀合金(TiAg)を1:
責層した二層構造、更には斯る二層構造を二重に積み重
ねた裏面電極膜(13が被着される。この工程により、
半導体膜α2が形成された直後、その全面に裏面電極α
3が被着されるため、該半導体膜(12面上にほこりが
付着すること、スクラ、イブ時の飛散物の再付着するこ
とによるシート抵抗の増大を防ぐことができ、さらに半
導体膜α2の酸化空気中の湿気などによる膜特性の劣化
を防ぐことができる。
In the process shown in FIG. 5, an aluminum film with a thickness of about 4000A to 2μm is formed over the entire surface of the substrate αG, including the exposed parts of the semiconductor film α2... and the transparent electrode films (lla) (llb) (llo)... Single layer structure, or titanium (T1) or titanium silver alloy (TiAg) in 1 part of the aluminum
The double-layered structure and the back electrode film (13) in which such a double-layered structure is stacked doubly are deposited. Through this process,
Immediately after the semiconductor film α2 is formed, a back electrode α is formed on the entire surface thereof.
3 is deposited on the semiconductor film (12), it is possible to prevent an increase in sheet resistance due to dust adhering to the surface of the semiconductor film (12) and redeposition of scattered materials during scrubbing and ebbing. Deterioration of film properties due to moisture in oxidizing air can be prevented.

第6図の最終工程では、同一工程で相隣り合う光電変換
領域(14a) (ttb) (140) ノ直列接続
部及び隣接間隔部0秒′が裏面電極膜ajの分割がエネ
ルギ密度の異なる第1・第2のエネルギビーム(LBl
)(LB2)の照射により形成される。ここでの長所は
加工閾値エネルギ密度が膜厚依存性をもたないことであ
る。例えば第7図は波長1.06μmのレーザビームを
アルミニウム単層構造からなる裏面電極膜α3に照射し
たときの膜厚依存性を吸収牢固及び反射率向について解
析したものである。
In the final step of FIG. 6, in the same step, the series connection portions of the adjacent photoelectric conversion regions (14a) (ttb) (140) and the adjacent interval portions of 0 seconds' are divided into sections with different energy densities. 1.Second energy beam (LBl
) (LB2). The advantage here is that the processing threshold energy density does not depend on the film thickness. For example, FIG. 7 shows an analysis of the film thickness dependence in terms of absorption density and reflectance when a laser beam with a wavelength of 1.06 μm is irradiated onto the back electrode film α3 having a single-layer aluminum structure.

この解析結果から、アルミニウム単層構造の裏面電極膜
α3の波長1.06μmのレーザビームに対する吸収牢
固は10哄未満と低率であるにも拘らず膜厚依存性がな
いことが判る。即ち、直列接続部に第1のレーザビーム
(LBl)litめのパワーで照射し裏面電極膜α3と
半導体膜α2を同時に溶かしてそれらの溶融物である導
電性のシリサイド合金膜aSを得、その合金膜a9を介
して第1のレーザビーム(’LBI)の照射位置に存在
し分割配置されていた透明電極膜(4th)(no)・
・・と裏面電極膜ajとを電気的に接続する。
From the results of this analysis, it can be seen that the absorption capacity of the back electrode film α3 having a single-layer aluminum structure for a laser beam with a wavelength of 1.06 μm is low, less than 10 μm, but does not depend on the film thickness. That is, the series connection part is irradiated with the first laser beam (LBl) with a power of 1 lit to melt the back electrode film α3 and the semiconductor film α2 at the same time to obtain a conductive silicide alloy film aS, which is a melt thereof. The transparent electrode film (4th) (no) which existed at the irradiation position of the first laser beam ('LBI) and was arranged through the alloy film a9 was separated.
... and the back electrode film aj are electrically connected.

斯る第1のレーザビーム(LBI)の走査工程と同時に
エネルギ密度を低減させた第2のレーザビーム(LB2
)を用いて裏面電極膜03を個別の光電変換領域(14
a) (141)) (14Q )・・・毎に分割する
At the same time as the scanning process of the first laser beam (LBI), a second laser beam (LB2) with reduced energy density is applied.
) to separate the back electrode film 03 into individual photoelectric conversion regions (14
a) Divide into (141)) (14Q)...

第1・第2のレーザビーム(LBl)(LB2)のエネ
ルギ密度の変化は第1・第2のレーザビーム(LB 1
 ) (LB2 )のスポット径を調整するフォーカス
位置の変化やアヅテネータにより簡単に行なうことがで
きる。この様に、裏面電極膜(13a) (13b) 
、、、と透明電極膜(111)) (110) ・・・
との電気的接続工程と、同一工程で裏面電極膜0(至)
の隣接間隔部aスがレーザビーム(LB2)の照射によ
り除去されて、個別の各裏面電極膜(13a)(13b
)(13(1)・・・が形成される。その結果、相隣り
合う光電変換領域(14a) (141:+) (14
Q) 、、、の裏面電極膜(13a)(13b)−・・
と透明電極膜(llb) (110) ”’(!:が隣
接間隔部に於いて結合し、上記光電変換領域(14a)
 (141)) (14Q)・・・は上記合金膜(15
1を介して電気的に直列接続される。
The change in energy density of the first and second laser beams (LB1) (LB2) is
) (LB2) This can be easily done by changing the focus position or using an adtenator to adjust the spot diameter. In this way, the back electrode film (13a) (13b)
,,, transparent electrode film (111)) (110)...
Back electrode film 0 (to) in the same process as the electrical connection process with
The adjacent spaced parts a are removed by irradiation with the laser beam (LB2), and the individual back electrode films (13a) (13b) are removed.
)(13(1)... are formed. As a result, adjacent photoelectric conversion regions (14a) (141:+) (14
Q) Back electrode films (13a) (13b)...
and the transparent electrode film (llb) (110) ``'(!: are combined in the adjacent interval part, and the photoelectric conversion region (14a)
(141)) (14Q)... is the alloy film (15)
They are electrically connected in series via 1.

上gE[1−第2(2)L/−fビーム(LE 1 )
 (LB2)は同一のレーザ源から発せられた1本のレ
ーザビーム(LB)をエネルギ密度の異なる2本に分割
する方式と、夫々個別のレーザ源を用いる方式が採用可
能であるが、分割方式について第8図を用いて若干の補
足説明を加える。
Upper gE [1-2nd (2) L/-f beam (LE 1 )
For (LB2), it is possible to adopt a method in which one laser beam (LB) emitted from the same laser source is divided into two beams with different energy densities, or a method in which each laser beam is used as an individual laser source. We will add some supplementary explanation using Figure 8.

同一のレーザ源から発せられたレーザビーム(LB)は
ビームスプリッタ(BS)に導かれ、そ二で該ビームス
プリッタ(BS )を透過する第1のレーザビーム(L
Bl)と反射する第2のレーザビーム(LB2)に2分
割される。このとき第1のレーザビーム(LBl)と第
2のレーザビーム(LB2)とは裏面電極膜(13a)
 (13’b) ノ膜厚、材質等によって決定される強
賓比に基づいて例えばIilのエネルギビーム(I、B
1)の強度を1としたとき、第2のエネルギビーム(L
B2)の強度は0.5〜0.8程度の範囲に設定され、
ビームスプリッタ(BS)を透過した第1のエネルギビ
ーム(LBl)は直接集光レンズ(PL)に至り、第2
のエネルギビーム(LB2)は2個のミラー(Ml )
(M2)を介して集光レンズ(PL)に到達する。そし
て集光レンズ(FL)によって直列接続のための合金化
及びIJ2電極(13a)(131))・・・の電気的
な分割のための選択的除去に必要なエネルギ密度に調整
され、同時に相隣り合う加工部分に照射される。この第
1・第2のレーザビーム(LBl )(LB2)の照射
の際、斯るレーザビーム(LB 1 ) (LB2 )
を走査しても良いが、被加工体を載置するステージが移
動する構成の方が大型サイズの加工に適しているために
、通常被加工体側が移動する構成となっている。
Laser beams (LB) emitted from the same laser source are guided to a beam splitter (BS), where a first laser beam (L) passes through the beam splitter (BS).
The laser beam is divided into two: a reflected second laser beam (LB2) and a reflected second laser beam (LB2). At this time, the first laser beam (LBl) and the second laser beam (LB2) are connected to the back electrode film (13a).
(13'b) For example, the energy beam of Iil (I, B
When the intensity of 1) is 1, the second energy beam (L
The intensity of B2) is set in a range of about 0.5 to 0.8,
The first energy beam (LBl) transmitted through the beam splitter (BS) directly reaches the condensing lens (PL), and the second energy beam (LBl) passes through the beam splitter (BS).
The energy beam (LB2) of is connected to two mirrors (Ml).
(M2) and reaches the condenser lens (PL). The condensing lens (FL) adjusts the energy density necessary for alloying for series connection and selective removal for electrical division of IJ2 electrodes (13a, (131)), and at the same time Adjacent machining parts are irradiated. When irradiating the first and second laser beams (LBl) (LB2), the laser beams (LB1) (LB2)
However, since a structure in which the stage on which the workpiece is placed moves is more suitable for large-sized processing, the structure in which the workpiece side moves is usually used.

(ト)  発明の効果 本発明製造方法は以上の説明から明らかな如く、分割配
置された第1電極膜上に半導体膜を全面に形成させた直
後に第2電極膜を形成し、隣接する半導体膜を電気的に
接続させる手段として、強い第1のエネルギビームを用
いて、第2電極膜上に照射して第2電極膜及び半導体膜
を溶融させて第1電極膜と第2電極膜を溶着させると共
に、同一工程に於いて弱い第2のエネルギビームを用い
て第2電極膜のパターニングを行なったので、工程が簡
略化し、安価な製造法を提供することができると共に、
半導体膜表面が直接露出するバターニング工程がないの
で半導体膜と第2電極膜との界面状態を改善することが
できる。
(g) Effects of the Invention As is clear from the above description, the manufacturing method of the present invention forms a second electrode film immediately after forming a semiconductor film on the entire surface of the divided first electrode film, and As a means for electrically connecting the films, a strong first energy beam is used to irradiate the second electrode film onto the second electrode film to melt the second electrode film and the semiconductor film, thereby bonding the first electrode film and the second electrode film. At the same time as welding, the second electrode film was patterned using a weak second energy beam in the same process, which simplified the process and provided an inexpensive manufacturing method.
Since there is no patterning step in which the surface of the semiconductor film is directly exposed, the interface state between the semiconductor film and the second electrode film can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は太陽電池の典型例を示す断面図、第2図乃至第
6図は、本発明方法を適用した実施例である太陽電池の
製造工程を工程別に示した断面図、j1!7図は裏面電
極膜に於ける光学的特性の裏面電極膜の膜厚依存性を示
す特性図、第8図は、レーザビームの分割方法に関する
実施例の概要図、を夫々示している。 11−m板、(lla) (jlb) (IIQ) −
・・透明電極膜、(12) (ua) (12’b) 
Cl2a ) ・a −S i、系半導体膜、(13)
 la) (ls’b) (13o) ・・・裏面電極
膜、(14a)(14’b)(14Q)・・・光電変換
領域、a51s・・・シリサイド合金膜、(BS)・・
・ビームスプリッタ、(’LB1)(LB2)・・・第
1−In2のレーザビーム。
Figure 1 is a cross-sectional view showing a typical example of a solar cell, Figures 2 to 6 are cross-sectional views showing each step of the manufacturing process of a solar cell which is an example of applying the method of the present invention, Figure j1!7 8 shows a characteristic diagram showing the dependence of the optical characteristics of the back electrode film on the film thickness of the back electrode film, and FIG. 8 shows a schematic diagram of an embodiment regarding a laser beam splitting method. 11-m board, (lla) (jlb) (IIQ) -
...Transparent electrode film, (12) (ua) (12'b)
Cl2a) ・a-S i, based semiconductor film, (13)
la) (ls'b) (13o)... Back electrode film, (14a) (14'b) (14Q)... Photoelectric conversion region, a51s... Silicide alloy film, (BS)...
- Beam splitter, ('LB1) (LB2)...1st-In2 laser beam.

Claims (3)

【特許請求の範囲】[Claims] (1)基板の絶縁表面上の複数の領域に分割配置された
複数の第1電極膜を連続的に覆うべく半導体膜及び第2
電極膜を重畳被着した後、上記複数の領域に於いて第2
電極膜及び半導体膜を第1のエネルギビームの照射によ
り溶融し、この溶融物を介して領域の異なる第1電極膜
と第2電極膜を電気的に接続すると共に、上記半導体膜
上の第2電極膜に対して上記第1のエネルギビームより
エネルギ密度の弱い第2のエネルギビームを、上記第1
のエネルギビームの照射と同一工程に於いて照射して照
射された第2電極膜を上記半導体膜上から選択的に除去
し、第2電極膜を複数の領域毎に電気的に分割したこと
を特徴とする半導体装置の製造方法。
(1) To continuously cover the plurality of first electrode films divided into a plurality of regions on the insulating surface of the substrate,
After superimposing the electrode films, a second layer is applied in the plurality of regions.
The electrode film and the semiconductor film are melted by irradiation with a first energy beam, the first electrode film and the second electrode film in different regions are electrically connected via this melt, and the second electrode film on the semiconductor film is A second energy beam having a lower energy density than the first energy beam is applied to the electrode film.
In the same step as the energy beam irradiation, the irradiated second electrode film is selectively removed from above the semiconductor film, and the second electrode film is electrically divided into a plurality of regions. A method for manufacturing a featured semiconductor device.
(2)上記第1・第2のエネルギビームは同一のエネル
ギ源から発せられるエネルギビームを分割して形成した
ことを特徴とする特許請求の範囲第4項記載の半導体装
置の製造方法。
(2) The method of manufacturing a semiconductor device according to claim 4, wherein the first and second energy beams are formed by dividing energy beams emitted from the same energy source.
(3)上記第1・第2のエネルギビームは夫々個別のエ
ネルギ源から発せられることを特徴とした特許請求の範
囲第1項記載の半導体装置の製造方法。
(3) The method of manufacturing a semiconductor device according to claim 1, wherein the first and second energy beams are each emitted from separate energy sources.
JP60286502A 1985-12-19 1985-12-19 Method for manufacturing semiconductor device Expired - Lifetime JPH067600B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60286502A JPH067600B2 (en) 1985-12-19 1985-12-19 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60286502A JPH067600B2 (en) 1985-12-19 1985-12-19 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS62145781A true JPS62145781A (en) 1987-06-29
JPH067600B2 JPH067600B2 (en) 1994-01-26

Family

ID=17705233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60286502A Expired - Lifetime JPH067600B2 (en) 1985-12-19 1985-12-19 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH067600B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101879387B1 (en) * 2017-03-27 2018-07-18 고상걸 Calibration method for gaze direction tracking results

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6454769A (en) * 1987-08-26 1989-03-02 Fuji Electric Res Manufacture of amorphous silicon solar cell

Also Published As

Publication number Publication date
JPH067600B2 (en) 1994-01-26

Similar Documents

Publication Publication Date Title
US4542578A (en) Method of manufacturing photovoltaic device
JP3436858B2 (en) Manufacturing method of thin film solar cell
US20060112987A1 (en) Transparent thin-film solar cell module and its manufacturing method
JPH0560674B2 (en)
JPH053151B2 (en)
JP2680582B2 (en) Method for manufacturing photovoltaic device
JP3676202B2 (en) Method for manufacturing photovoltaic device
JPS62145781A (en) Manufacture of semiconductor device
JPS6233477A (en) Manufacture of photovoltaic device
JPH0519991B2 (en)
JP3521268B2 (en) Method for manufacturing photovoltaic device
JPH0243776A (en) Manufacture of thin film solar cell
JPS61164274A (en) Manufacture of photovoltaic device
JPH0650781B2 (en) Method for manufacturing semiconductor device
JPH053150B2 (en)
JPS63258077A (en) Manufacture of photovoltaic device
JP2517226B2 (en) Method for manufacturing semiconductor device
JPS61210681A (en) Manufacture of photovoltaic device
JPH0560273B2 (en)
JPS59220979A (en) Manufacture of photovoltaic device
JPH0558676B2 (en)
JPS6031258A (en) Manufacture of photovoltaic device
JPH03194975A (en) Manufacture of photoelectric converter
JPH05299679A (en) Manufacture of photoelectromotive device
JPH03151673A (en) Manufacture of photovoltaic device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term