JPS593981A - Manufacture of thin film semiconductor device - Google Patents

Manufacture of thin film semiconductor device

Info

Publication number
JPS593981A
JPS593981A JP57112663A JP11266382A JPS593981A JP S593981 A JPS593981 A JP S593981A JP 57112663 A JP57112663 A JP 57112663A JP 11266382 A JP11266382 A JP 11266382A JP S593981 A JPS593981 A JP S593981A
Authority
JP
Japan
Prior art keywords
thin film
film semiconductor
semiconductor device
layer
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57112663A
Other languages
Japanese (ja)
Inventor
Noboru Hanioka
埴岡 登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP57112663A priority Critical patent/JPS593981A/en
Publication of JPS593981A publication Critical patent/JPS593981A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To obtain a thin film semiconductor device with less defect parts by removing failure parts by a method wherein defect parts contained in a thin film semiconductor layer are separated from a thin film semiconductor region which serves as a base. CONSTITUTION:An amorphous Si layer 2 having junctions such as P-I-N and P-N is formed to film on a conductive substrate 1 of a large area, and then a clear electrode film 3 is laminated. The large area amorphous Si film is separated into small area amorphous Si regions by means of a chemical or physical method. The electrical performance test for each amorphous Si solar battery separated is performed, and then only normal ones are so connected as to obtain a desired output. An electrode terminal 6 is laminated on each segment, collector wires 7 are adhered by utilizing spaces unnecessitated due to separation, and then the electrode terminal 6 formed on non-defective segment is connected to the collector wire 7. The electrode terminal 6 of a defective segment is not connected.

Description

【発明の詳細な説明】 本光明は薄膜半導体装置の製造方法:こ関すbもび)で
欲桿。
DETAILED DESCRIPTION OF THE INVENTION This invention describes a method for manufacturing a thin film semiconductor device.

近年、′アモルファスシリコンをはじめとする非晶質、
微結晶質または多結晶質を用いた薄膜半導体装置の開発
が活発に行われている0特にこの種の薄膜半導体層を利
用した光応答性を有する半導体装置の1つとして太陽電
池がある。
In recent years, amorphous materials such as amorphous silicon,
2. Description of the Related Art Thin film semiconductor devices using microcrystalline or polycrystalline materials are being actively developed. In particular, solar cells are one type of semiconductor device having photoresponsiveness that utilizes this type of thin film semiconductor layer.

薄膜半導体装置は、従来の単結晶シリコンを利用した半
導体装置とは異なり、基板上にグロー放電やCVD等の
薄膜作成技術によって半導体層を成膜させることができ
、容易に大面積のものを得ることができるようになって
きた。しかし半導体層が極めて薄いため基板の表面状態
や半導体層の成膜工程等で生じる些細な欠陥のために太
陽電池などの薄膜半導体装置が不良品となることは少な
くない。特に電力用太陽電池のように大面積が要求され
る半導体装置においては、面積が大きくなればなるほど
欠陥部の存在は性能に大きく影響し、経済性の悪いもの
になるという問題があった。
Unlike conventional semiconductor devices using single-crystal silicon, thin-film semiconductor devices allow semiconductor layers to be formed on a substrate using thin-film production techniques such as glow discharge and CVD, making it easy to obtain large-area devices. I'm starting to be able to do that. However, since the semiconductor layer is extremely thin, thin film semiconductor devices such as solar cells are often rejected due to trivial defects that occur in the surface condition of the substrate or in the process of forming the semiconductor layer. Particularly in semiconductor devices that require a large area, such as power solar cells, there is a problem in that the larger the area, the more the presence of defective parts will have a greater effect on performance, making the device less economical.

第1図は従来から開発されてい、るアキルファス太陽電
池の断面図で、絶縁板の表面に導電膜を被着””−S>
’!!に’ンレススチール等からなる導電性基板1上に
アモルファスシリコン薄膜2及び透明電極膜3が順次積
層されている。上記アモルファスシリコン薄膜2はp−
n、p−1−n等の接合が形成され、光4が照射される
ことによって光起電力を発生し、基板1と透明電極膜3
との間で電力が取り出せる。
Figure 1 is a cross-sectional view of a conventionally developed Akylphus solar cell, in which a conductive film is coated on the surface of an insulating plate.
'! ! An amorphous silicon thin film 2 and a transparent electrode film 3 are sequentially laminated on a conductive substrate 1 made of non-woven steel or the like. The amorphous silicon thin film 2 is p-
Junctions such as n, p-1-n, etc. are formed, and when the light 4 is irradiated, a photovoltaic force is generated, and the substrate 1 and the transparent electrode film 3
Electricity can be extracted between the

ここで上記導電性基板1上にアモルファスシリコン薄膜
2及び透明電極膜3を積層した太陽電池1.は、実際の
断面構造においては、第1図に示すように例えば基板表
面の欠陥5−+9るいはアモルファスシリコン薄膜の欠
陥5−2が含まれることがしばしばある。このような欠
陥部分5−1.5−2では電気的に短絡状態となり、入
射光4によって生じた光起電力が出力として取り出せな
かったり、出力を著しく低下させる原因になっていた。
Here, a solar cell 1 is constructed by laminating an amorphous silicon thin film 2 and a transparent electrode film 3 on the conductive substrate 1. In the actual cross-sectional structure, for example, defects 5-+9 on the substrate surface or defects 5-2 in the amorphous silicon thin film are often included, as shown in FIG. Such defective portions 5-1, 5-2 are electrically short-circuited, causing the photoelectromotive force generated by the incident light 4 to be unable to be extracted as output or causing a significant decrease in output.

上記のような欠陥は、注意深く選択された基板を用い、
厳密な管理下におかれた製造プロセスを経ても完全に避
けることはできないものである。
Defects such as those mentioned above can be avoided using carefully selected substrates.
Even through a strictly controlled manufacturing process, it cannot be completely avoided.

理されるわけであるが、最近の順向として、太陽電池な
どでは同一工程で大面積基板を用いて作成するよう−な
大面積化の方向にあるため、これらの欠陥は性能を低下
させるだけでなくコスト的な影響力も大きいものがある
However, as the recent trend is toward larger areas such as solar cells, which use large-area substrates in the same process, these defects only reduce performance. However, there are some that have a large impact in terms of cost.

本発明は上記従来の問題点に鑑みてなされたもので、薄
膜半導体層に含まれた欠陥部をベースとなる薄膜半導体
領域から分離することにより、不良部を除去して欠陥部
の少ない薄膜半導体装置を得るための製造方法を提供す
るものである。次にアモルファスシリコン太陽電池を実
施例に挙げて詳細に説明する。
The present invention has been made in view of the above-mentioned conventional problems, and by separating the defective portions included in the thin film semiconductor layer from the thin film semiconductor region serving as the base, the defective portions are removed and the thin film semiconductor with fewer defects is produced. A manufacturing method for obtaining the device is provided. Next, an amorphous silicon solar cell will be described in detail as an example.

本実施例においても、上述の従来方法と同様に大面積の
導電性基板1上にp−1−n、p−n等の接合を有した
アモルファスシリコン層2が成膜され、続いて透明電極
膜3が積層されている。導電性基板10表面に成膜され
た大面積のアモルファスシリコン層2は、次に小面積の
領域にセグメント化されへ一第2図(a)はセグメント
化された太陽電池を光の゛只射方向力起−らみた平面図
で、図中斜線領域′はセグメント化された太陽電池領域
であり、各小領域を隔てている間隙は分離のための領域
である。
In this example, as in the conventional method described above, an amorphous silicon layer 2 having p-1-n, p-n, etc. junctions is formed on a large-area conductive substrate 1, and then transparent electrodes are formed. Membranes 3 are laminated. The large-area amorphous silicon layer 2 deposited on the surface of the conductive substrate 10 is then segmented into small-area regions, and as shown in FIG. 2(a), the segmented solar cell is exposed to light. In the plan view when viewed from the perspective of a directional force, the shaded region' in the figure is a segmented solar cell region, and the gaps separating each small region are regions for separation.

第2図(b) 、 (c)は上記第2図(a)に対応す
る断面図である。上記大面積のアモルファスシリコン層
2をセグメントに分離する形態としては、第2図(b)
に示すように該当部分の透明電極膜3のみならず、アモ
ルファスシリコツ層2をも除去する場合と、第2図(c
)に示すように透明電極膜3のみを除去する場合とかあ
る。後者ではアモルファスシリコン層が残留することに
なるが、アモルファスシリコン層は極く薄い膜であるた
め面方向の電気抵抗が非常に大きく、従ってアモルファ
スシリコン層2が残留していても実質的には隣接した透
明電極膜で被われた領域とは分離されることになり、大
面積の太陽電池は小面積の太陽電池群に分離セグメント
化され、アモルファスシリコン層を取り除いた前者と同
等の機能を奏する。
FIGS. 2(b) and 2(c) are cross-sectional views corresponding to the above-mentioned FIG. 2(a). As a form of dividing the large-area amorphous silicon layer 2 into segments, the method shown in FIG. 2(b) is as follows.
As shown in FIG.
), there are cases where only the transparent electrode film 3 is removed. In the latter case, the amorphous silicon layer will remain, but since the amorphous silicon layer is an extremely thin film, the electric resistance in the in-plane direction is very large, so even if the amorphous silicon layer 2 remains, it is practically not adjacent to the amorphous silicon layer. The large-area solar cells are separated from the area covered by the transparent electrode film, and the large-area solar cells are segmented into small-area solar cells, which perform the same function as the former without the amorphous silicon layer.

上記大面積アモルファスシリコン膜を小面積アモルファ
スシリコン領域に分離する方法として次の方法がある。
The following method can be used to separate the large-area amorphous silicon film into small-area amorphous silicon regions.

1)アモルファスシリコン膜を除去しない部分にレジス
ト剤を塗布した後、化学処理を行いレジスト剤を塗布し
ていない部分の透明電極膜3のみまたはアモルファスシ
リコン膜を含めてエツチングによって除去し、その後不
要になったレジスト剤を除去する方法。
1) After applying a resist agent to the areas where the amorphous silicon film is not to be removed, chemical treatment is performed to remove only the transparent electrode film 3 or the amorphous silicon film in the areas where the resist agent is not applied by etching, and then it becomes unnecessary. How to remove the resist agent.

2)アモルファスシリコン膜又は透明電極膜の除去が必
要になる部分にインク等の化学剤を塗布した後、該化学
剤上を含めてアモルファスシリコン膜又は透明電極膜全
積層し、その後化学処理を行って上記塗布した化学剤と
共に除去したい部分のアモルファスシリコン膜又は透明
電極膜をリフトオフする方法。
2) After applying a chemical agent such as ink to the part where the amorphous silicon film or transparent electrode film needs to be removed, the entire amorphous silicon film or transparent electrode film is laminated, including on the chemical agent, and then chemical treatment is performed. A method of lifting off the portion of the amorphous silicon film or transparent electrode film that is to be removed together with the applied chemical agent.

3)除去したいアモルファスシリコン膜部分に電子ビー
ム、光レーザ、集光された光ビームを照射し熱的に除去
する方法。
3) A method of thermally removing the amorphous silicon film by irradiating the part of the amorphous silicon film to be removed with an electron beam, optical laser, or focused light beam.

4)除去したいアモルファスシリコン膜部分を鋭利な機
械部品で引掻いて除去す石方法。
4) A stone method in which the part of the amorphous silicon film to be removed is scratched with a sharp mechanical part.

5)除去したいアモルファスシリコン膜部分に、水#*
:A々“・ど、のジェット噴流を当て機械的に除去する
方法。
5) Sprinkle water #* on the amorphous silicon film part you want to remove.
:Mechanical removal method by applying a jet stream.

上述の化学的又は物理的な方法を用いた分離工程はいず
れも技術的に実現可能なものである。
Any separation process using chemical or physical methods described above is technically feasible.

次に、上記方法により分離セグメンi・化された複数個
の太陽電池は、出力を取り出すために電気的接続される
。即ち、分離された各小面積のアモルファスシリコン太
陽電池は電気的な性能試験が行われ各太陽電池毎に正常
なものと欠陥部を含むものとに弁別される。選び出され
た正常なもののみが所望の出力全導出し得るように互い
に直、並列に結線される。電気的接続は第2図(a)に
示す各セグメント上に電極端子6を積層し、さらに第2
図(d)に示す集電極線7を分離のために不要になった
空間を利用して貼付する。上記弁別の結果にもとづいて
、良品のセグメントに形成された電極端子6が集電極線
7に結線されるが、不良セグメントの電極端子6は集電
極線7に結線されない。第2図(d)にこれらの結線が
行われない状態8−1.8−2を示す。
Next, the plurality of solar cells separated into i-segments by the above method are electrically connected in order to extract output. That is, each separated small-area amorphous silicon solar cell is subjected to an electrical performance test, and each solar cell is determined to be normal or defective. Only the selected normal ones are connected in series and parallel to each other so that the desired total output can be derived. Electrical connections are made by laminating electrode terminals 6 on each segment shown in FIG.
The collector wire 7 shown in Figure (d) is pasted using the space that is no longer needed for separation. Based on the result of the above discrimination, the electrode terminals 6 formed on the good segments are connected to the collector wire 7, but the electrode terminals 6 of the defective segments are not connected to the collector wire 7. FIG. 2(d) shows a state 8-1.8-2 in which these connections are not made.

上記、4繕(’jpは、良品、不良品の弁別結果にもと
づき選竺的に結線を行なったが、一方、分離された全て
の小面積太陽電池に対して一旦結線をあらかじめ施した
後、不良品の接続部を切断して形成する方法も可能であ
る。
In the above-mentioned 4 repair ('jp), wires were selectively connected based on the results of discrimination between non-defective and defective products, but on the other hand, once all the separated small-area solar cells were connected in advance, It is also possible to form the connection part of a defective product by cutting it.

上記実施例はアモルファスシリコン太陽電池を挙げて説
明したが、基板上に半導体層を薄膜技術により成膜して
半導体装置を作製する薄膜半導体装置の製造方法に適用
することかできる。
Although the above embodiments have been described using an amorphous silicon solar cell, the present invention can also be applied to a method of manufacturing a thin film semiconductor device in which a semiconductor device is manufactured by forming a semiconductor layer on a substrate using a thin film technique.

以上述べたように本発明によれば、大面積の薄膜半導体
層を小面積の領域に分離するため、欠陥を含む不良領域
を除いて正常な領域を用いて半導体装置を構成すること
ができ、無駄を省いて半導体層の有効的な利用を図るこ
とができ、経済性にすぐれた薄膜半導体装置を得ること
ができる。
As described above, according to the present invention, since a large-area thin film semiconductor layer is separated into small-area regions, a semiconductor device can be constructed using normal regions except for defective regions containing defects. It is possible to eliminate waste and effectively utilize the semiconductor layer, and it is possible to obtain a thin film semiconductor device that is highly economical.

本発明は特に大面積の太陽電池に対し有用であり、その
コストダウンへの寄与は大きいものがある0また一般に
本発明によれば、不良毎グメントも良品セグメントも外
観上何ら顕著な差を伴うことがなく、接続部の微小部分
の差異を除けば不良セグメ、とエトが意識されることは
少く意匠性を損うことがないという効果も奏する。
The present invention is particularly useful for large-area solar cells, and its contribution to cost reduction is significant.In general, according to the present invention, there is no noticeable difference in appearance between the defective segment and the non-defective segment. This also has the effect that, except for minute differences in the connection parts, there is little awareness of defective segments and the design is not compromised.

さらに上述した大面積薄膜半導体層を小面積にセグメン
ト化して不良部分を除く方法の他に、薄膜半導体層中の
欠陥部があらかじめ特定できる場合には゛、欠陥部分の
みを、欠陥の位置及び占有面積等にかかわらずベースと
なる薄膜半導体層から分離し、残された正常な半導体領
域を利用して実施することもでき、この場合には正常領
域からなる広い面積の半導体膜となっているため前述の
実施例で説明した結線が必要でなくなるという応用効果
もある。
Furthermore, in addition to the above-mentioned method of segmenting a large-area thin film semiconductor layer into small areas and removing defective parts, if the defective part in the thin-film semiconductor layer can be identified in advance, it is possible to identify only the defective part, including the location and occupied area of the defect. It is also possible to separate it from the base thin film semiconductor layer and use the remaining normal semiconductor region regardless of the situation. Another advantageous effect is that the wiring described in the embodiment is no longer necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は薄膜半導体装置の構造を示す断面図、第2図(
a)〜(d)は本発明による方法の実施例を示す平面図
及び断面図である。 1、’itE性基板 2アモルファスシリコン薄膜3透
明電極膜 4人射光 5.欠陥部 6電極端子7集電極
線 8結線断線部
Figure 1 is a cross-sectional view showing the structure of a thin film semiconductor device, and Figure 2 (
a) to (d) are plan views and cross-sectional views showing embodiments of the method according to the invention; 1.'itE substrate 2. Amorphous silicon thin film 3. Transparent electrode film 4. Human radiation 5. Defect part 6 Electrode terminal 7 Collection electrode wire 8 Connection disconnection part

Claims (1)

【特許請求の範囲】 1)少なくとも表面か導電性を有する基板上にp−1−
n、p−n等の接合を備えた薄膜半導体層を形成する工
程と、該薄膜半導体層を電気的((独立させた複数の領
域に分離する工程と、分離された各薄膜半導体領域から
電気的正常領域を弁別する工程と、抽出された正常薄膜
半導体領域を互い(て電気的接続する工程とからなるこ
とを特徴とする薄膜半導体装置の製造方法。 2J  イ1記薄膜半導体層の分離工程は、化学エッヂ
/り、リノ[・オフなどの化学的方法によってなさ、t
’Lることを特徴とする請ポf〕範囲第1項記載グツ薄
膜半導体装置の製造方法っ 3ノ 前記薄膜′1″導体層の分離工程:・寸、電子ビ
ーノ・尤レーザ、集光された光ビームなどの熱的方法4
)前記薄膜十m体層の分離二「ゼ、゛げ、鋭利′ff機
(戒部品による引掻、ジェット噴流など機械的方法によ
ってなさIしることを特徴とする請求の範囲第1項記載
の薄膜半導体装置の製造方法。 5)前記薄膜半導体層の分離工程は、薄膜半導体層の厚
さ方向の一部を除去して分離されることを特徴とする請
求の範囲第2項、第3項又:寸第4項記載の薄膜半導体
装置の製造方法。 6)前記正常薄膜半導体領域の接続は、分離さ几た各薄
膜半導体領域の弁別後、選択的:′Cなさhることを特
徴とする請求の範囲第1項内[2載の薄膜半導体装置の
製造方法。 7)前記正常薄膜半導体領域の接続は、全ての分離さ7
%だ薄膜半導体領域の接続後、不良部を角む薄膜半導体
領域の接続部を切断してなさ!1乙ことを特徴とする請
求の範囲第1項記載5)薄膜半導体装置の製造方法。
[Claims] 1) p-1- on a substrate whose surface at least has conductivity;
A step of forming a thin film semiconductor layer with junctions such as n, p-n, etc., a step of separating the thin film semiconductor layer into a plurality of independent regions, and a step of separating the thin film semiconductor layer into a plurality of independent regions; A method for manufacturing a thin film semiconductor device, comprising a step of discriminating a normal thin film semiconductor region, and a step of electrically connecting the extracted normal thin film semiconductor regions to each other. is done by chemical methods such as chemical edge/removal, lino[off], etc.
3. Separation step of the thin film 1'' conductor layer: 1) A method for manufacturing a thin film semiconductor device as described in 1. Thermal methods such as light beams 4
) The separation of the thin film layer is carried out by a mechanical method such as scratching with a sharp machine, scratching with a sharp tool, or a jet stream. 5) The thin film semiconductor layer is separated by removing a part of the thin film semiconductor layer in the thickness direction. The method for manufacturing a thin film semiconductor device according to item 4. 6) The connection of the normal thin film semiconductor regions is selectively performed after discrimination of each separated thin film semiconductor region. Within the scope of claim 1 [method for manufacturing a thin film semiconductor device according to item 2].
% After connecting the thin film semiconductor area, do not cut the connection part of the thin film semiconductor area that corners the defective part! 1 B) A method for manufacturing a thin film semiconductor device as described in claim 1.
JP57112663A 1982-06-29 1982-06-29 Manufacture of thin film semiconductor device Pending JPS593981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57112663A JPS593981A (en) 1982-06-29 1982-06-29 Manufacture of thin film semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57112663A JPS593981A (en) 1982-06-29 1982-06-29 Manufacture of thin film semiconductor device

Publications (1)

Publication Number Publication Date
JPS593981A true JPS593981A (en) 1984-01-10

Family

ID=14592360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57112663A Pending JPS593981A (en) 1982-06-29 1982-06-29 Manufacture of thin film semiconductor device

Country Status (1)

Country Link
JP (1) JPS593981A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US9214587B2 (en) 2010-08-19 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion module and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US9214587B2 (en) 2010-08-19 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US7498508B2 (en) High voltage solar cell and solar cell module
WO2009107517A1 (en) Thin film solar battery and method for manufacturing the same
JP3414738B2 (en) Integrated laser patterning method for thin film solar cells
US4542578A (en) Method of manufacturing photovoltaic device
JPH0472392B2 (en)
WO2004064167A1 (en) Transparent thin-film solar cell module and its manufacturing method
US4948740A (en) Method for the integrated series-interconnection of thick-film solar cells and method for the manufacture of tandem solar cells
CN102239571B (en) Method for manufacturing thin-film photoelectric conversion device
JPH10233517A (en) Photoelectric conversion device and its manufacturing method
JP4987191B2 (en) Method for manufacturing integrated thin film solar cell
US11646387B2 (en) Laser assisted metallization process for solar cell circuit formation
JP2001274447A (en) Method of manufacturing integrated thin film solar battery
JPH0494174A (en) Compound thin film solar cell and its production
JPS593981A (en) Manufacture of thin film semiconductor device
US6239474B1 (en) Integration type photovoltaic apparatus and method of fabricating the same
JP2002280580A (en) Integrated photovoltaic device and manufacturing method therefor
JP2001119048A (en) Method for manufacturing integrated thin-film solar cell
JPS6213829B2 (en)
JP4201457B2 (en) Manufacturing method of integrated photovoltaic device
JPH0243776A (en) Manufacture of thin film solar cell
JP2638235B2 (en) Method for manufacturing photoelectric conversion device
JP2001127319A (en) Solar cell module and method of manufacturing the same
JPH0555612A (en) Manufacture of integrated amorphous solar battery
JPS59208792A (en) Manufacture of semiconductor thin film solar cell
JPH0560273B2 (en)