JPH03193841A - Aluminum alloy for cold forming having excellent work hardenability - Google Patents

Aluminum alloy for cold forming having excellent work hardenability

Info

Publication number
JPH03193841A
JPH03193841A JP33325689A JP33325689A JPH03193841A JP H03193841 A JPH03193841 A JP H03193841A JP 33325689 A JP33325689 A JP 33325689A JP 33325689 A JP33325689 A JP 33325689A JP H03193841 A JPH03193841 A JP H03193841A
Authority
JP
Japan
Prior art keywords
aluminum alloy
cold forming
alloy
cold
dislocations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33325689A
Other languages
Japanese (ja)
Inventor
Masahiro Yanagawa
政洋 柳川
Shojiro Oya
大家 正二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP33325689A priority Critical patent/JPH03193841A/en
Publication of JPH03193841A publication Critical patent/JPH03193841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

PURPOSE:To manufacture the Al alloy for cold forming having excellent work hardenability by preparing an Al alloy contg. a specified total ratio of Mg and Cu and having a structure in which dislocations are arranged into a linear shape without including a cell structure after cold forming. CONSTITUTION:An Al alloy contg., by weight, 7 to 10% Mg+Cu, furthermore contg., at need, one or more kinds selected from 0.5 to 1.5% Zn, 0.05 to 0.5% Mn, 0.05 to 0.3% Cr and 0.05 to 0.3% Zr and the balance Al with inevitable impurities is manufactured by executing normal melting, casting, homogenizing treatment, hot rolling and cold rolling and thereafter executing final refining treatment of T4 treatment. The Al alloy manufactured in the above-mentioned manner has a structure in which dislocations are arranged into a linear shape without including a cell structure after cold forming, so that it has excellent work hardenability and has excellent properties in a balance of strength-ductility as an Al alloy for automobile bodies.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は加工硬化能が優れた冷間成形加工用アルミニウ
ム合金に関し、さらに詳しくは、主に自動車ボディ用ア
ルミニウム合金として、強度および延性のバランスが良
好な加工硬化能が優れた冷間成形加工用アルミニウム合
金に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an aluminum alloy for cold forming with excellent work hardenability. The present invention relates to an aluminum alloy for cold forming which has good work hardenability.

[従来技術] 従来より、自動車ボディ用アルミニウム合金としては、
例えば、特公昭56−031858号公報および特公昭
56−031860号公報により提案されている。
[Prior art] Traditionally, aluminum alloys for automobile bodies include:
For example, it has been proposed in Japanese Patent Publication No. 56-031858 and Japanese Patent Publication No. 56-031860.

そして、特公昭56−031858号号公報に提案され
ているアルミニウム合金は、Mg 15〜5.5wt%
、Zn OJ 〜1.2wt%、Cu 0.3〜1.2
wt%を含有し、残部Alおよび不可避不純物からなる
ものである。
The aluminum alloy proposed in Japanese Patent Publication No. 56-031858 contains 15 to 5.5 wt% Mg.
, Zn OJ ~1.2wt%, Cu 0.3~1.2
wt%, and the remainder consists of Al and unavoidable impurities.

また、特公昭56−031860号公報に提案されてい
るアルミニウム合金は、Mg 34〜5.5wt%、Z
n 0.5〜2.Owt%、Cu 0.:3−1.2w
t%を必須成分として含有し、さらに、Mn 0.05
〜0.4vt%、Or 0.05〜0.25wt%、Z
r 0.05〜0.25wt%、VO1O1〜0.15
wt%の内から選んだ1種または2種以上を含有し、残
部Alおよび不可避不純物からなるものである。
Furthermore, the aluminum alloy proposed in Japanese Patent Publication No. 56-031860 contains 34 to 5.5 wt% Mg, Z
n 0.5-2. Owt%, Cu 0. :3-1.2w
t% as an essential component, and further contains Mn 0.05
~0.4vt%, Or 0.05~0.25wt%, Z
r 0.05-0.25wt%, VO1O1-0.15
% by weight, and the remainder consists of Al and unavoidable impurities.

しかしながら、上記に説明したアルミニウム合金は、強
度−延性バランスに優れた性質を有するものの、冷間圧
延鋼板と比較すると成形性が劣っているという問題があ
る。そして、成形性は引張試験における伸び率と強い相
関関係があることは良く知られている。
However, although the aluminum alloy described above has properties with an excellent balance of strength and ductility, it has a problem in that its formability is inferior compared to cold rolled steel sheets. It is well known that formability has a strong correlation with the elongation rate in a tensile test.

上記に説明した従来技術としての各公報に提案されてい
るアルミニウム合金は、伸び率は30%程度であり、冷
間圧延鋼板の伸び率36〜50%と比較しても可なり劣
っており、このことが成形性において劣っている原因と
なっている。
The elongation rate of the aluminum alloys proposed in each publication as the prior art described above is about 30%, which is considerably inferior to the elongation rate of cold rolled steel sheets, which is 36 to 50%. This is the cause of poor moldability.

従って、成形性の優れたアルミニウム合金が要望されて
いる。
Therefore, an aluminum alloy with excellent formability is desired.

[発明が解決しようとする課題] 本発明は上記に説明した従来技術におけるアルミニウム
合金を自動車ボディに適用するためには、成形性をさら
に向上させることが必要であり、それには冷間圧延鋼板
に匹敵する伸び率を有するものとすることが必要である
ことに鑑み、本発明者は鋭意研究を行なった結果、アル
ミニウム合金の延性の機構について、AlにMgとCu
を同時に含有させることによって、アルミニウム合金の
加工硬化能が大幅に増大し、冷間圧延鋼板に匹敵する伸
び率を示すことを知見し、本発明に係る加工硬化能が優
れた冷間成形加工用アルミニウム合金を開発したのであ
る。
[Problems to be Solved by the Invention] In order to apply the aluminum alloy in the prior art described above to automobile bodies, it is necessary to further improve the formability. Considering that it is necessary to have comparable elongation rates, the present inventor conducted extensive research and found that the ductility mechanism of aluminum alloys is
It has been found that by simultaneously containing aluminum alloys, the work hardening ability of the aluminum alloy is greatly increased and the elongation rate is comparable to that of cold rolled steel sheets. He developed an aluminum alloy.

[問題点を解決するための手段] 本発明に係る加工硬化能が優れた冷開成形加工用アルミ
ニウム合金は、 (1) Mg+ Cu 7〜10wt%を含有し、残部
Alおよび不可避不純物からなり、冷間成形加工後、セ
ル組織を含まず、転位が直線状に配列された組織を有す
ることを特徴とする加工硬化能が優れた冷開成形加工用
アルミニウム合金を第1の発明とし、 (2) Mg+cu 7〜10wt% を含有し、さらに、 Zn 0.5〜1.5wt%、Mn 0.05〜0.5
wt%、Cr 0.05〜OJwt%、Z r 0.0
5〜0.3vt%の内から選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなり、冷間
成形加工後、セル組織を含まず、転位が直線状に配列さ
れた組織を有することを特徴とする加工硬化能が優れた
冷間成形加工用アルミニウム合金を第2の発明とする2
つの発明よりなるものである。
[Means for Solving the Problems] The aluminum alloy for cold-open forming with excellent work hardenability according to the present invention contains (1) 7 to 10 wt% of Mg+Cu, and the remainder consists of Al and unavoidable impurities; The first invention is an aluminum alloy for cold-open forming which has excellent work hardening ability and which does not contain a cell structure and has a structure in which dislocations are linearly arranged after cold forming. ) Contains Mg+cu 7 to 10 wt%, and further contains Zn 0.5 to 1.5 wt%, Mn 0.05 to 0.5
wt%, Cr 0.05~OJwt%, Z r 0.0
A structure containing one or more selected from 5 to 0.3 vt%, the remainder consisting of Al and unavoidable impurities, and after cold forming processing, does not contain a cell structure and has dislocations arranged in a straight line. A second invention provides an aluminum alloy for cold forming which has excellent work hardening ability.
This invention consists of three inventions.

本発明に係る加工硬化能が優れた冷開成形加工用アルミ
ニウム合金について、以下詳細に説明する。
The aluminum alloy for cold-open forming with excellent work hardenability according to the present invention will be described in detail below.

一般的に、Mgを4,5wt%程度含有するアルミニウ
ム合金は、積層欠陥エネルギーが大きく低下しないため
、例えば、自動車ボディの冷開成形加工を行なうと第1
図(a)の顕微鏡写真に示すようにセル組織になるので
、冷間成形加工における鋼板並の延性向上を期待するこ
とはできない。
In general, aluminum alloys containing about 4.5 wt% Mg do not have a significant drop in stacking fault energy, so for example, when cold-forming an automobile body, the first
As shown in the micrograph in Figure (a), it becomes a cellular structure, so it cannot be expected to improve the ductility as much as a steel plate in cold forming.

しかし、積層欠陥エネルギーが低下すると、加工を行な
った時の転位の交差滑りが困難となるため、転位が一つ
の滑り面のみを滑るようになって、セル組織を形成し難
くなり、転位が直線状に流れる組織となって、加工硬化
能が増大することになる。
However, when the stacking fault energy decreases, it becomes difficult for dislocations to cross-slide during processing, so dislocations slide only on one sliding surface, making it difficult to form a cell structure, and dislocations become linear. This results in an increased work hardening ability, resulting in a flowing structure.

なお、本発明に係る加工硬化能が優れた冷間成形加工用
アルミニウム合金における合金組織は、即ち、冷間成形
加工後、セル組織を含まず、転位が直線状に配列された
組織であり、例えば、自動車ボディ等の最終用途におけ
る製品および部品へのプレス等の冷間成形加工を行なう
際に発現するものであり、通常のアルミニウム合金の鍛
造−熱間加工あるいはこれに伴う冷間側ニー熱処理の段
階においては発現しない。これは、熱的に活性化された
転位が、回復もしくは再結晶によって消滅するためであ
る。
The alloy structure of the cold-forming aluminum alloy with excellent work hardenability according to the present invention is a structure in which dislocations are linearly arranged without containing a cell structure after cold-forming. For example, it occurs when performing cold forming processing such as pressing on products and parts for end use such as automobile bodies, and is caused by ordinary forging-hot processing of aluminum alloys or the accompanying cold side knee heat treatment. It does not appear at this stage. This is because thermally activated dislocations disappear through recovery or recrystallization.

本発明に係る加工硬化能が優れた冷間成形加工用アルミ
ニウム合金の含有成分および成分割合について説明する
The components and component ratios of the cold-forming aluminum alloy with excellent work hardenability according to the present invention will be explained.

Mgは積層欠陥エネルギーを低くし、加工硬化能を増大
させることにより、強度および伸び率を高くする元素で
あり、また、Cuは積層欠陥エネルギーを低くし、加工
硬化能を増大させることによって、強度および伸び率を
高くする元素であり、また、Cuはプレス成形後の焼付
塗装処理において時効硬化させる効果を育しており、さ
らに、CuはAl−Mg系合金において問題となる応力
腐蝕割れを防止する効果を育し、Mg十Cuの含有量が
7wt%未満では上記に説明したMgとCuの効果が充
分に発揮されず、また、IKt%を越えて含有させると
熱間加工性および冷間加工性が悪化する。
Mg is an element that increases strength and elongation by lowering stacking fault energy and increasing work hardening ability, and Cu is an element that increases strength by lowering stacking fault energy and increasing work hardening ability. Cu is an element that increases the elongation rate, and also has an age-hardening effect in the baking painting process after press forming.Cu also prevents stress corrosion cracking, which is a problem in Al-Mg alloys. If the content of Mg and Cu is less than 7wt%, the effects of Mg and Cu explained above will not be fully exhibited, and if the content exceeds IKt%, hot workability and cold workability will be affected. Workability deteriorates.

よって、Mg十Cu含育量は 7〜10wt%とする。Therefore, the Mg and Cu content is set to 7 to 10 wt%.

Znは応力腐蝕割れを防止する効果と、焼入れ後の室温
時効により強度を増加させる効果を有する元素であり、
含有量が0.5wt%未満ではこのような効果は充分で
はなく、また、1.5wt%を越えて含有させると伸び
率が低下し、成形性が悪化する。よって、Zn含有量は
0.5〜1 、5wt%とする。
Zn is an element that has the effect of preventing stress corrosion cracking and increasing strength through room temperature aging after quenching.
If the content is less than 0.5 wt%, such effects are not sufficient, and if the content exceeds 1.5 wt%, the elongation rate decreases and moldability deteriorates. Therefore, the Zn content is set to 0.5 to 1.5 wt%.

Mn、Orは応力腐蝕割れを防止する効果と、結晶粒を
微細化し、成形性を向上させる効果を有する元素であり
、Mn含有量が0.05wt%未満、Cr含有量がo、
oswt%未満では上記の効果は不充分であり、また、
Mn含有量が0.5wt%、Cr含有量が0.3wt%
をそれぞれ越えると粗大な金属間化合物が晶出し易くな
り、成形性が悪化する。よって、Mn含有量は0.05
〜0.5wt%、Cr含有量は0.05〜OJwt%と
する。
Mn and Or are elements that have the effect of preventing stress corrosion cracking, refining crystal grains, and improving formability, and the Mn content is less than 0.05 wt%, the Cr content is o,
If it is less than oswt%, the above effect is insufficient, and
Mn content is 0.5wt%, Cr content is 0.3wt%
If these values are exceeded, coarse intermetallic compounds tend to crystallize, resulting in poor formability. Therefore, the Mn content is 0.05
~0.5wt%, and the Cr content is 0.05~OJwt%.

Zrは結晶粒を微細化し、成形性を向上させる元素であ
り、含有量が0.05wt%未満ではこのような効果は
不充分であり、また、0.3vt%を越えて含有させる
と粗大な金属間化合物が晶出し易くなり、成形性が悪く
なる。よって、Zr含有量は0.05〜0.3wt%と
する。
Zr is an element that refines crystal grains and improves formability.If the content is less than 0.05wt%, this effect is insufficient, and if the content exceeds 0.3wt%, it will cause coarse grains. Intermetallic compounds tend to crystallize, resulting in poor formability. Therefore, the Zr content is set to 0.05 to 0.3 wt%.

本発明に係る加工硬化能が優れた冷開成形加工用アルミ
ニウム合金は、通常の溶解、鋳造、均質化処理、熱間圧
延、冷間圧延を行なった後、T4処理の最終調質処理を
行なうことにより製造される。なお、溶体化処理の最適
温度条件は、Mg含有量およびCu含有量が変化すると
、それにつれて変化するが、MgとCuを充分に固溶さ
せるためには、450〜500℃の範囲とするのがよい
The aluminum alloy for cold-open forming with excellent work hardening ability according to the present invention is subjected to the usual melting, casting, homogenizing treatment, hot rolling, and cold rolling, and then to the final tempering treatment of T4 treatment. Manufactured by The optimum temperature conditions for solution treatment will change as the Mg content and Cu content change, but in order to sufficiently dissolve Mg and Cu, it should be in the range of 450 to 500°C. Good.

また、450〜500℃の温度において1時間の溶体化
処理を行なった後、水焼入れを行なう通常の処理を行な
う以外にも、連続焼鈍炉を使用して短時間急速加熱後、
空冷処理を行なうことによっても、高い強度および伸び
率を得る゛ことができる。
In addition to the usual treatment of solution treatment at a temperature of 450 to 500°C for one hour followed by water quenching, we can also perform rapid heating for a short time using a continuous annealing furnace.
High strength and elongation can also be obtained by performing air cooling treatment.

第1図(a)にMg含有量4.5wt%の、従来技術に
よる合金の5%ストレッチ材の顕微鏡写X(T EM像
、室温30,000倍)を示すが、セル組織が顕著に形
成されていることが認められ、第1図(b)は本発明に
係る加工硬化能が優れた冷間成形加工用アルミニウム合
金、即ち、Mg含有量8wt%の5%ストレッチ材の顕
微鏡写真(TEM像、室温75.000倍)を示してあ
り、転位が直線状に流れていることが認められる。
Figure 1(a) shows a micrograph X (TEM image, 30,000x room temperature) of a 5% stretch material made of a conventional alloy with an Mg content of 4.5 wt%, and a cell structure is clearly formed. Figure 1(b) is a micrograph (TEM (75,000 times room temperature), and it is observed that dislocations flow in a straight line.

[実 施 例コ 本発明に係る加工硬化能が優れた冷間成形加工用アルミ
ニウム合金の実施例を比較例と共に説明する。
[Example] Examples of the aluminum alloy for cold forming with excellent work hardenability according to the present invention will be described together with comparative examples.

実施例 第1表(こ示す含有成分および成分割合のアルミニウム
合金を溶解、鋳造して鋳塊を製造した。
Examples Table 1 (An ingot was produced by melting and casting an aluminum alloy having the components and proportions shown in the table.

480℃×24時間の均質化処理を行なった後、熱間圧
延により5mmの厚さとし、400X1時間の中間焼鈍
を行ない、ソーダ洗浄を行なった後、冷間圧延により2
mmの厚さとなし、400℃×1時間の中間焼鈍を経て
、再び冷間圧延を行なってInon厚さのアルミニウム
合金板を製作した。
After homogenizing at 480°C for 24 hours, it was hot rolled to a thickness of 5mm, intermediately annealed at 400°C for 1 hour, washed with soda, and then cold rolled to a thickness of 5mm.
After intermediate annealing at 400° C. for 1 hour, cold rolling was performed again to produce an aluminum alloy plate with Inon thickness.

最終調質を ■ 480℃×1時間保持−水冷 ■ 480℃×30秒間保持−強制空冷の2つの条件で
溶体化処理を行なった後、1週間以上室温に放置し、自
然時効させるT4処理を行なった。
After the final thermal refining is carried out under two conditions: (1) holding at 480°C for 1 hour - water cooling and (2) holding at 480°C for 30 seconds - forced air cooling, T4 treatment is carried out by leaving it at room temperature for over a week and allowing natural aging. I did it.

このようにして製作されたT4材に対して、弓張試験を
実施し、機械的特性を調査した。
The T4 material produced in this way was subjected to a bow tension test to investigate its mechanical properties.

第2表にその結果を示す。Table 2 shows the results.

第 1 表 N015 NO16は比較例 No、5.No、6は比較例、No、8は熱間圧延割れ
で測定不能この第2表から明らかなように、本発明に係
る加工硬化能が優れた冷間成形加工用アルミニウム合金
は、伸びが33〜38%であり、比較例のアルミニウム
合金の伸び30%程度を大きく上回っていることがわか
る。
Table 1 No. 15 No. 16 is Comparative Example No. 5. No. 6 is a comparative example, and No. 8 is a hot rolling crack that cannot be measured. It can be seen that the elongation is ~38%, which greatly exceeds the elongation of the aluminum alloy of the comparative example, which is about 30%.

また、Mg+Cu含有量が7wt%を下回ると、充分な
特性を発揮できず、10wt%を越えると熱間圧延にお
いて割れが発生して加工を行なうことが不可能であった
Further, when the Mg+Cu content was less than 7 wt%, sufficient properties could not be exhibited, and when it exceeded 10 wt%, cracks occurred during hot rolling, making it impossible to process.

[発明の効果〕 以上説明したように、本発明に係る加工硬化能が優れた
冷間成形加工用アルミニウム合金は上記の構成であるか
ら、主として自動車ボディ用アルミニウム合金として強
度−延性バランスに優れた特性を有するという効果があ
る。
[Effects of the Invention] As explained above, since the aluminum alloy for cold forming with excellent work hardening ability according to the present invention has the above structure, it can be used mainly as an aluminum alloy for automobile bodies with an excellent strength-ductility balance. It has the effect of having characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は従来のアルミニウム合金の5%ストレッ
チ材の顕微鏡写真(TEM像、室温30.000倍)、
第1図(b)は本発明に係る加工硬化能が優れた冷間成
形加工用アルミニウム合金の5%ストレッチ材の顕微鏡
写真(TEM像、室温75,000倍)である。 5、補正命令の日付 平成02年03月27日 (発送臼) 6、補正の対象 (1)明細書の図面の簡単な説明の欄 (2)第1図(aXb) 7、補正の内容 別紙の通り
Figure 1 (a) is a micrograph (TEM image, room temperature, 30.000x) of a 5% stretch material made of conventional aluminum alloy.
FIG. 1(b) is a micrograph (TEM image, 75,000 times room temperature) of a 5% stretch material of an aluminum alloy for cold forming with excellent work hardenability according to the present invention. 5. Date of amendment order: March 27, 2000 (Shipping mortar) 6. Subject of amendment (1) Brief explanation column of drawings in the specification (2) Figure 1 (aXb) 7. Attachment with details of amendment street

Claims (2)

【特許請求の範囲】[Claims] (1)Mg+Cu7〜10wt% を含有し、残部Alおよび不可避不純物からなり、冷間
成形加工後、セル組織を含まず、転位が直線状に配列さ
れた組織を有することを特徴とする加工硬化能が優れた
冷間成形加工用アルミニウム合金。
(1) Contains 7 to 10 wt% of Mg + Cu, the balance is Al and unavoidable impurities, and after cold forming, it does not contain a cell structure and has a structure in which dislocations are linearly arranged. An aluminum alloy with excellent cold forming properties.
(2)Mg+Cu7〜10wt% を含有し、さらに、 Zn0.5〜1.5wt%、Mn0.05〜0.5wt
%、Cr0.05〜0.3wt%、Zr0.05〜0.
3wt%の内から選んだ1種または2種以上 を含有し、残部Alおよび不可避不純物からなり、冷間
成形加工後、セル組織を含まず、転位が直線状に配列さ
れた組織を有することを特徴とする加工硬化能が優れた
冷間成形加工用アルミニウム合金。
(2) Contains Mg+Cu7-10wt%, and further contains Zn0.5-1.5wt%, Mn0.05-0.5wt%
%, Cr0.05-0.3wt%, Zr0.05-0.
3wt% of one or more selected from the group consisting of Al and unavoidable impurities, and after cold forming, it does not contain a cell structure and has a structure in which dislocations are linearly arranged. An aluminum alloy for cold forming with excellent work hardening ability.
JP33325689A 1989-12-22 1989-12-22 Aluminum alloy for cold forming having excellent work hardenability Pending JPH03193841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33325689A JPH03193841A (en) 1989-12-22 1989-12-22 Aluminum alloy for cold forming having excellent work hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33325689A JPH03193841A (en) 1989-12-22 1989-12-22 Aluminum alloy for cold forming having excellent work hardenability

Publications (1)

Publication Number Publication Date
JPH03193841A true JPH03193841A (en) 1991-08-23

Family

ID=18264075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33325689A Pending JPH03193841A (en) 1989-12-22 1989-12-22 Aluminum alloy for cold forming having excellent work hardenability

Country Status (1)

Country Link
JP (1) JPH03193841A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851811A (en) * 1971-10-29 1973-07-20
JPS5631860A (en) * 1979-08-23 1981-03-31 Kawasaki Heavy Ind Ltd Coupling connecting device for railway rolling stock
JPS5631858A (en) * 1979-08-24 1981-03-31 Shibaura Eng Works Ltd Sound insulating operating chamber for railroad maintenance machine
JPH01225738A (en) * 1988-03-03 1989-09-08 Sky Alum Co Ltd Heat treatment-type aluminum alloy rolled plate for forming and its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4851811A (en) * 1971-10-29 1973-07-20
JPS5631860A (en) * 1979-08-23 1981-03-31 Kawasaki Heavy Ind Ltd Coupling connecting device for railway rolling stock
JPS5631858A (en) * 1979-08-24 1981-03-31 Shibaura Eng Works Ltd Sound insulating operating chamber for railroad maintenance machine
JPH01225738A (en) * 1988-03-03 1989-09-08 Sky Alum Co Ltd Heat treatment-type aluminum alloy rolled plate for forming and its manufacture

Similar Documents

Publication Publication Date Title
US9797029B2 (en) Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
WO1995022634A1 (en) Method of manufacturing aluminum alloy plate for molding
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPS62177143A (en) Aluminum alloy sheet excellent in formability and baking hardening and its production
KR20180033202A (en) A moldable lightweight steel having improved mechanical properties and a method for producing a semi-finished product from said steel
JPH027386B2 (en)
JP4472015B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
CA1119920A (en) Copper based spinodal alloys
JPS6050864B2 (en) Aluminum alloy material for forming with excellent bending workability and its manufacturing method
JPS6383251A (en) Manufacture of high strength and high elasticity aluminum alloy
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPS6022054B2 (en) High-strength Al alloy thin plate with excellent formability and corrosion resistance, and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP4771791B2 (en) Method for producing aluminum alloy sheet for forming
JPS61166938A (en) Al-li alloy for expansion and its production
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH0480979B2 (en)
JPS61163232A (en) High strength al-mg-si alloy and its manufacture
JPH03193841A (en) Aluminum alloy for cold forming having excellent work hardenability
JPS60145348A (en) High-strength thin al alloy plate having superior formability and corrosion resistance and its manufacture
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPS61227157A (en) Manufacture of al-li alloy for elongation working
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPS63169353A (en) Aluminum alloy for forming and its production
JPH0428837A (en) Continuous casting mold material made of high strength cu alloy having high cooling capacity and its manufacture