JPH03193832A - Production of cermet - Google Patents

Production of cermet

Info

Publication number
JPH03193832A
JPH03193832A JP1335386A JP33538689A JPH03193832A JP H03193832 A JPH03193832 A JP H03193832A JP 1335386 A JP1335386 A JP 1335386A JP 33538689 A JP33538689 A JP 33538689A JP H03193832 A JPH03193832 A JP H03193832A
Authority
JP
Japan
Prior art keywords
cermet
raw material
material powder
powder
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1335386A
Other languages
Japanese (ja)
Inventor
Akira Noda
朗 野田
Kenji Maruta
丸田 賢二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1335386A priority Critical patent/JPH03193832A/en
Publication of JPH03193832A publication Critical patent/JPH03193832A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce the cermet which is improved in strength by effective removal of oxygen by reducing mixed raw material powder with hydrogen, then molding the mixture by a hot isotropic pressurization press method at the time of producing the cermet by the hot isotropic pressurization press method. CONSTITUTION:The raw material powder is first compounded at prescribed ratios to form the powder mixture or after this powder mixture is subjected to spray dry pelletization, the pellets are hydrogen-reduced for about >=1 hours at about 1100 to 1250 deg.C in a reducing furnace to remove oxygen in the raw material powder. The raw material powder is then packed in a container and is held for about 2 to 3 hours at about 600 deg.C. The container is vacuum-deaerated to about 10<-2> to 10<-1>Torr and is hermetically closed. The container is then subjected to the hot isotropic pressurization pressing for about 0.5 to 6 hours at about 1280 to 1350 deg.C and about >=1000atm, by which the cermet is produced. The cermet is constituted of the hard dispersion phase which consists essentially of the carbide, nitride or carbonitride of Ti and in which 1 to 70% thereof is substd. with >=1 kinds of the carbide or nitride of group IVa, Va, VIa metals (exclusive of Ti) and a bond phase contg. Ni and Cr.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、耐摩耗性、耐衝撃性、耐欠損性等に優れたサ
ーメットを熱間等方圧プレス法(以下、HIP と称す
る)によって製造する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for producing a cermet with excellent wear resistance, impact resistance, chipping resistance, etc. using a hot isostatic pressing method (hereinafter referred to as HIP). Relating to a method of manufacturing.

〔従来の技術〕[Conventional technology]

圧延ロール、ダイスあるいはパンチ等に使用する材料は
、耐摩耗性と靭性に優れ、高い耐衝撃性と高温強度を備
えていることが要求される。そのような材料として、従
来から鋳鋼や工具鋼が用いられているが、近年になって
、より耐摩耗性に優れた超硬合金、例えばWC−Co系
超硬合金等が使用されるようになった。しかし、WC−
Co系超硬合金の比重は約15もあり、鋳鋼や工具鋼な
どに比べて約2倍も重いため、例えば圧延用ロール等に
適用した場合には、びびりゃ振動が発生し、被加工物の
品質が損なわれるという問題があった。それに対して、
T1CNを硬質相としたいわゆるサーメット合金が19
71年にはじめて市場に登場し、その後WC。
Materials used for rolling rolls, dies, punches, etc. are required to have excellent wear resistance and toughness, as well as high impact resistance and high temperature strength. Cast steel and tool steel have traditionally been used as such materials, but in recent years, cemented carbide with better wear resistance, such as WC-Co cemented carbide, has come into use. became. However, W.C.
The specific gravity of Co-based cemented carbide is approximately 15, which is approximately twice as heavy as cast steel or tool steel. Therefore, when applied to rolling rolls, for example, it will generate vibrations and damage the workpiece. There was a problem that the quality of the product was impaired. On the other hand,
The so-called cermet alloy with T1CN as a hard phase is 19
First appeared on the market in 1971, then WC.

TaC、NbC等のrVa % Vas VIa族炭化
炭化物1CNの一部におきかえる試みが数多くなされて
きており、現在ではロールや切削加工工具分野で重要な
位置を占めている。このようなサーメットは、一般にT
+C5IIIc、 Coなどの原料粉末を湿式混合して
混合粉末とし、金型プレスやラバープレスなどを用いて
成形し、中間焼結、成形を経て、最後に真空焼結して得
られる。
Many attempts have been made to replace a part of rVa % Vas Group VIa carbide 1CN such as TaC and NbC, and it currently occupies an important position in the field of rolls and cutting tools. Such cermets are generally T
It is obtained by wet mixing raw material powders such as +C5IIIc and Co to form a mixed powder, molding using a mold press or rubber press, intermediate sintering, molding, and finally vacuum sintering.

真空焼結を行うことによって、焼結中に炭素による還元
反応により脱酸が起こるので、製品中に残る酸素は少な
い。しかし、真空焼結によっても、わずかながら細孔が
残留することは避けがたい。
By performing vacuum sintering, deoxidation occurs through a reduction reaction with carbon during sintering, so less oxygen remains in the product. However, even with vacuum sintering, it is unavoidable that pores remain, albeit slightly.

サーメットのような脆性材料においては、気孔に応力が
集中し、正常であれば耐え得る応力下でも、破壊してし
まう。従って、鋼線材圧延ロール、プランジャ、超高圧
用アンビルなどに用いる場合、工具の破損のみならず、
安全面でも大きな問題となる。また、細孔が工具表面に
存在すると、被加工物の表面に転写される場合がある。
In a brittle material such as cermet, stress concentrates in the pores, causing the material to break even under stress that it would normally withstand. Therefore, when used for steel wire rod rolling rolls, plungers, ultra-high pressure anvils, etc., not only will the tools be damaged, but the
It also poses a big problem in terms of safety. Furthermore, if pores exist on the tool surface, they may be transferred to the surface of the workpiece.

例えば、冷間での薄板圧延用のゼンジミアロールなどで
は、製品不良につながるため、細孔が存在してはならな
い。
For example, pores must not be present in Sendzimir rolls for cold rolling of thin sheets, as this may lead to product defects.

そのため、焼結体中の欠陥、とりわけ細孔をできるだけ
少なくするために、工程の改善が種々行われてきたが、
サーメットを旧Pによって製造すれば、細孔を完全に消
滅できることが見い出された。その効果は極めて大きく
、特に大型耐摩工具を中心にサーメットを旧P処理する
ことが急速に普及した。
Therefore, various improvements have been made to the process in order to minimize defects, especially pores, in the sintered body.
It has been found that if the cermet is made from old P, the pores can be completely eliminated. The effect was extremely large, and the old P treatment of cermets, especially for large wear-resistant tools, rapidly became popular.

しかし、例えば複合ロール等のような複合部材の外層部
をサーメットとし、これを旧Pにより製造する場合にお
いては、芯材の周囲に固着した鋼材などからなる容器に
原料混合粉末を封入して加圧及び加熱を行うので、密封
状態で焼結することになり、真空焼結におけるような脱
酸は起こらない。そのため、粉末中の酸素がそのまま製
品中に残留して脆くなり、強度が低くなってしまうとい
う問題があった。
However, when the outer layer of a composite member such as a composite roll is made of cermet and this is manufactured using old P, the raw material mixed powder is sealed in a container made of steel fixed around the core material and then added. Since pressure and heat are applied, sintering is performed in a sealed state, and deoxidation does not occur as in vacuum sintering. Therefore, there was a problem in that the oxygen in the powder remained in the product, making it brittle and reducing its strength.

従って本発明の目的は、サーメットの強度を向上させる
ために、HIF による改良された製造方法を提供する
ことである。
It is therefore an object of the present invention to provide an improved manufacturing method by HIF in order to increase the strength of cermets.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題に鑑み鋭意研究の結果、本発明者は、111P
処理を行う前に、原料粉末を水素で還元することによっ
て、完成後のサーメットの強度が向上することを発見し
、本発明を完成した。
As a result of intensive research in view of the above problems, the present inventor has discovered that 111P
The present invention was completed based on the discovery that the strength of the finished cermet can be improved by reducing the raw material powder with hydrogen before treatment.

すなわち、本発明の方法は、サーメットを熱間等方圧プ
レス法によって製造する方法であって、混合した原料粉
末を水素で還元するか、あるいは混合した原料粉末をス
プレードライ造粒した後、水素で還元し、次いで熱間等
方圧プレス法によって成形することを特徴とする。
That is, the method of the present invention is a method for manufacturing cermet by hot isostatic pressing, in which mixed raw material powder is reduced with hydrogen, or mixed raw material powder is spray-dried and granulated, and then hydrogen It is characterized in that it is reduced with water and then molded by hot isostatic pressing.

また、上記方法によって製造するサーメットは、Tiの
炭化物、窒化物、又は炭窒化物を主成分とし、その1〜
70モル%をrva SVa、 VIa族金属(ただし
、T1を除く)の炭化物及び窒化物のうちの一種又は二
種以上で置換したものからなる硬質分散相が、Ni及び
Crを含む結合相で結合されてなることが望ましい。
Further, the cermet produced by the above method has Ti carbide, nitride, or carbonitride as a main component, and
A hard dispersed phase consisting of 70 mol% substituted with one or more carbides and nitrides of group VIa metals (excluding T1) is bonded with a binder phase containing Ni and Cr. It is desirable that it be done.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の方法は、サーメットを旧Pによって製造するも
のであるが、その前工程として、(a)原料粉末の混合
、(b)必要に応じて行う造粒、(C)分級、(d)水
素還元、(e)キャニング、及び(f)真空脱気を行う
In the method of the present invention, cermet is manufactured using old P, and the pre-processes include (a) mixing of raw material powder, (b) granulation as necessary, (C) classification, and (d) Perform hydrogen reduction, (e) canning, and (f) vacuum degassing.

(a)原料粉末の混合工程では、原料粉末を所定量配合
し、ボールミル等によって乾式又は湿式混合を行い、混
合粉とする。次いで、わ)必要に応じて、スプレードラ
イ法により所定の粒度に造粒する。
(a) In the step of mixing raw material powders, a predetermined amount of raw material powders are blended, and dry or wet mixing is performed using a ball mill or the like to obtain a mixed powder. Then, c) if necessary, the mixture is granulated to a predetermined particle size by spray drying.

造粒粉の粒径としては、30〜150虜程度が好ましい
。造粒装置としては、サイクロン型、水平型、垂直円筒
型など、通常のものを用いることができる。造粒した場
合、水素還元によって、充填性のよい適度の大きさの球
状仮焼給粉が得られるので、通常の焼結で必要な仮焼結
後の粉末を細かくするための粉砕工程を省くことができ
る。次いで、(C)ふるいにかけ、粒度をそろえる。
The particle size of the granulated powder is preferably about 30 to 150 particles. As a granulating device, a conventional one such as a cyclone type, horizontal type, or vertical cylindrical type can be used. When granulated, spherical calcined powder with good filling properties and an appropriate size can be obtained by hydrogen reduction, so the pulverization process required in normal sintering to make the powder fine after calcining is omitted. be able to. Next, (C) sieve to make the particle size uniform.

次に、(d)水素還元を、還元炉中で1100〜125
0℃の温度で1時間以上行う。水素還元温度が1100
℃未満では、還元が十分に行えず、また1250℃を超
えると、窒化物又は炭窒化物の分解が起こる恐れがある
。また還元時間としては、温度により多少異なるが、1
時間以上が好ましく、特に2〜4時間が好ましい。この
水素還元工程により、原料粉末中の酸素はほぼ完全に除
去され、HIP後にも残留するということはない。
Next, (d) hydrogen reduction is carried out in a reduction furnace between 1100 and 125
The test is carried out for at least 1 hour at a temperature of 0°C. Hydrogen reduction temperature is 1100
If the temperature is less than 1250°C, reduction may not be sufficient, and if the temperature exceeds 1250°C, there is a risk that nitrides or carbonitrides will be decomposed. In addition, the reduction time varies slightly depending on the temperature, but the reduction time is 1
The time is preferably at least 1 hour, particularly preferably 2 to 4 hours. By this hydrogen reduction step, oxygen in the raw material powder is almost completely removed, and no oxygen remains even after HIP.

また(e)キャニングには、通常鋼材等からなる厚さ5
〜12mm程度の容器を用い、その中に原料粉を50%
以上の密度となるようにプレス充填する。キャニング用
容器としては、鋼材の他にニッケル等の耐熱性金属を用
いることができる。
(e) The canning is usually made of steel or the like and has a thickness of 5
~ Use a container with a diameter of about 12 mm, and add 50% of the raw powder into it.
Press and fill to achieve the above density. As the canning container, heat-resistant metal such as nickel can be used in addition to steel.

次に原料粉を充填した容器を2〜3時間、600℃程度
に保ち、その中が10−2〜IQ−’torrとなるよ
うに真空脱気する(工程(f))。
Next, the container filled with the raw material powder is kept at about 600° C. for 2 to 3 hours, and vacuum degassed so that the inside becomes 10 −2 to IQ −’ torr (step (f)).

次いで、容器の脱気口を溶接により密封後、旧Pを行う
。)IIP は、1280〜1350℃の温度、110
00at以上の圧力で、0.5〜6時間を行う。
Next, after sealing the deaeration port of the container by welding, the old P is performed. ) IIP is a temperature of 1280-1350°C, 110
It is carried out for 0.5 to 6 hours at a pressure of 00at or more.

な右、HIP前に水素還元を行う理由は以下の通りであ
る。真空焼結を含む通常の焼結法では、焼結の間に、原
料粉中の炭素によって還元反応が起こり、脱酸されるの
で、予め還元処理を行う必要はない。しかし、複合部材
等を製造するのに行うHIP焼結では、原料混合粉末を
容器に封入して、加圧及び加熱を行うので、還元反応は
起りにくい。
The reason for performing hydrogen reduction before HIP is as follows. In normal sintering methods including vacuum sintering, a reduction reaction occurs with carbon in the raw material powder during sintering and deoxidization occurs, so there is no need to perform a reduction treatment in advance. However, in HIP sintering for manufacturing composite members and the like, the raw material mixed powder is sealed in a container and pressurized and heated, so reduction reactions are unlikely to occur.

このような理由により旧Pの前に水素還元を行う必要が
ある。
For these reasons, it is necessary to perform hydrogen reduction before the old P.

なお上記方法を適用するサーメットとしては、Tiの炭
化物、窒化物、又は炭窒化物を主成分とし、その1〜7
0モル%をIVa 、 Va、 VIa族金属(ただし
、Tiを除く)の炭化物及び窒化物のうちの一種又は二
種以上で置換したものからなる硬質分散相が、Ni及び
Crを含む結合相で結合されているものが望ましい。水
素還元によって、TlO□等の酸化物から酸素が除去さ
れ、強度の高いサーメットが得られる。
The cermet to which the above method is applied is mainly composed of Ti carbides, nitrides, or carbonitrides, and
A hard dispersed phase consisting of one or more carbides and nitrides of group IVa, Va, and VIa metals (excluding Ti) substituted with 0 mol% is a binder phase containing Ni and Cr. Preferably combined. Hydrogen reduction removes oxygen from oxides such as TlO□, yielding a cermet with high strength.

チタンの炭化物、窒化物又は炭窒化物からなる主成分の
1〜70モル%を周期率表の■a SVa、 VIa族
の炭化物、窒化物で置換する理由は、炭窒化物等の主成
分自体の靭性、及び炭窒化物と結合相との濡れ性を改善
するとともに、高温強度を改善するためである。1モル
%未満ではその効果が発揮されず、70モル%を超える
と、耐摩耗性や耐酸化性が低下するため好ましくない。
The reason for replacing 1 to 70 mol% of the main component consisting of titanium carbides, nitrides, or carbonitrides with carbides or nitrides of groups ■a SVa and VIa of the periodic table is that the main components such as carbonitrides themselves This is to improve the toughness of carbonitride and the wettability between the carbonitride and the binder phase, as well as to improve the high temperature strength. If it is less than 1 mol %, the effect will not be exhibited, and if it exceeds 70 mol %, wear resistance and oxidation resistance will deteriorate, which is not preferable.

また、炭窒化チタンにおいて炭素に対する窒素の原子比
を0.05/1〜5/lとするのが望ましい。
Further, in titanium carbonitride, it is desirable that the atomic ratio of nitrogen to carbon be 0.05/1 to 5/l.

0、05/1未満では硬質相粒子が粗大化して靭性の低
下が著しく、また5/l を超えると炭窒化物の分解が
生じてN2ガスが発生し、ミクロポアが生じるとともに
、炭窒化物と結合相の濡れ性が悪くなり、抗折力が低下
する。
If it is less than 0.05/1, the hard phase particles will become coarse and the toughness will be significantly reduced, and if it exceeds 5/l, carbonitrides will decompose and N2 gas will be generated, micropores will be created, and carbonitrides will be The wettability of the binder phase deteriorates, and the transverse rupture strength decreases.

なお、硬質相の合計重量が30%未満だと耐摩耗性に劣
り、一方、70%を超えて含有すると結合相が少なくな
り靭性の劣化が著しいので、硬質相の量は30〜70%
の範囲とするのが良い。
If the total weight of the hard phase is less than 30%, the wear resistance will be poor, while if the total weight is more than 70%, the binder phase will decrease and the toughness will deteriorate significantly, so the amount of the hard phase should be 30 to 70%.
It is best to set it within the range of .

一方結合相はNi及びCrを含んだ合金であり、Nlは
20〜50重量%、Crは5〜30重量%であるのが好
ましい。また、NiとCrの総量に対するCrの重量比
が、2 /100未満ではこれら成分の含有効果が十分
に発揮されず、40/100を超えるとCrの炭化物が
析出しすぎて靭性が低下する。したがって、NiとCr
の総量に対するCrの重量比は、2/100〜40/1
00であることが望ましい。なお場合によっては、Fe
及び/又はCOを含んでも、本発明のサーメットの特性
に影響は与えない。
On the other hand, the binder phase is an alloy containing Ni and Cr, preferably 20 to 50% by weight of Nl and 5 to 30% by weight of Cr. Furthermore, if the weight ratio of Cr to the total amount of Ni and Cr is less than 2/100, the effect of containing these components will not be sufficiently exhibited, and if it exceeds 40/100, too much Cr carbide will precipitate, resulting in a decrease in toughness. Therefore, Ni and Cr
The weight ratio of Cr to the total amount is 2/100 to 40/1.
00 is desirable. In some cases, Fe
The inclusion of CO and/or CO does not affect the properties of the cermet of the present invention.

〔実施例〕〔Example〕

本発明を以下の具体的実施例によりさらに詳細に説明す
る。
The present invention will be explained in more detail by the following specific examples.

実施例1〜4 原料粉末として平均粒径1〜6ρのT1CN粉末を主成
分とし、これにMO2C粉末及びWC粉末並びにNi及
びCr粉末を第1表に示す割合で配合し、超硬ボールを
用いた高速回転ミル中で約48時間湿式混合し、次いで
サイクロン型乾燥機で30〜100 Amの平均粒度に
乾燥造粒した。
Examples 1 to 4 The main component was T1CN powder with an average particle size of 1 to 6ρ as the raw material powder, and MO2C powder, WC powder, and Ni and Cr powder were blended in the proportions shown in Table 1, and a cemented carbide ball was used. The mixture was wet mixed for about 48 hours in a high speed rotating mill and then dry granulated in a cyclone dryer to an average particle size of 30-100 Am.

次に、造粒粉末を60メツシユのふるいにかけてから、
鋼製の缶に入れて還元炉中で1200℃で3時間水素還
元した。次いで、2.5時間、600 ℃に保ちながら
缶内を10−”torrに真空脱気し、最後にIllP
装置内で1300℃、11000at の条件で4時間
HIP焼結をした。
Next, after passing the granulated powder through a 60-mesh sieve,
The mixture was placed in a steel can and subjected to hydrogen reduction at 1200° C. for 3 hours in a reduction furnace. Next, the inside of the can was vacuum degassed to 10-"torr while maintaining it at 600 °C for 2.5 hours, and finally IllP
HIP sintering was performed for 4 hours at 1300° C. and 11000 at.

これによって得られた各種のサーメットの組成を、第1
表に実施例1〜4として示す。また、これら各合金につ
いて、抗折力、破壊靭性値及び硬度を測定した。結果を
第2表に示す。
The compositions of the various cermets obtained in this way were
Examples 1 to 4 are shown in the table. Furthermore, the transverse rupture strength, fracture toughness value, and hardness of each of these alloys were measured. The results are shown in Table 2.

比較例1〜4 上記実施例と同様に、各種原料粉末を第1表に示す割合
で配合し、混合、乾燥造粒した後、水素還元を行わずに
、上記実施例と同じ条件で旧P焼結した。
Comparative Examples 1 to 4 In the same manner as in the above Examples, various raw material powders were blended in the proportions shown in Table 1, mixed, dried and granulated. Sintered.

これによって得られた各種サーメットの組成を、第1表
に比較例1〜4として示す。また、これら各合金につい
て抗折力、破壊靭性値及び硬度を測定した。結果を第2
表に示す。
The compositions of the various cermets thus obtained are shown in Table 1 as Comparative Examples 1 to 4. Further, the transverse rupture strength, fracture toughness value, and hardness of each of these alloys were measured. Second result
Shown in the table.

第 ■ 表 第 表 測定結果に示されたように、水素還元を行った各実施例
においては脱酸が行われ、抗折力と破壊靭性値は、平均
して比較例よりも高い値を示した。
As shown in the measurement results in Table 1, deoxidation was performed in each example in which hydrogen reduction was performed, and the transverse rupture strength and fracture toughness values were higher on average than in the comparative examples. Ta.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の製造方法によれば、硬質
分散相と結合相からなり、本来優れた強度、靭性、耐摩
耗性、耐衝撃性等を有するサーメットの旧P焼結体にお
いて、酸素を有効に除去したものとすることができるの
で、強度がより一層向上する。
As explained above, according to the manufacturing method of the present invention, in the old P sintered body of cermet, which is composed of a hard dispersed phase and a binder phase and has inherently excellent strength, toughness, wear resistance, impact resistance, etc. Since oxygen can be effectively removed, the strength is further improved.

またHIP によって鋼材等との複合化が可能なので、
各種の複合ロール等に幅広く使用できる。
In addition, HIP allows for compounding with steel materials, etc.
Can be widely used for various composite rolls, etc.

Claims (3)

【特許請求の範囲】[Claims] (1)サーメットを熱間等方圧プレス法によって製造す
る方法において、混合した原料粉末を水素で還元し、次
いで熱間等方圧プレス法によって成形することを特徴と
するサーメットの製造方法。
(1) A method for producing a cermet by a hot isostatic pressing method, which comprises reducing mixed raw material powder with hydrogen and then molding it by a hot isostatic pressing method.
(2)サーメットを熱間等方圧プレス法によって製造す
る方法において、混合した原料粉末をスプレードライ法
により造粒した後、水素で還元し、次いで熱間等方圧プ
レス法によって成形することを特徴とするサーメットの
製造方法。
(2) In the method of manufacturing cermet by hot isostatic pressing, the mixed raw material powder is granulated by spray drying, reduced with hydrogen, and then molded by hot isostatic pressing. Characteristic cermet manufacturing method.
(3)請求項1又は2に記載の方法において、前記サー
メットは、Tiの炭化物、窒化物、又は炭窒化物を主成
分とし、その1〜70モル%をIVa、Va、VIa族金属
(ただし、Tiを除く)の炭化物及び窒化物のうちの一
種又は二種以上で置換したものからなる硬質分散相と、
Ni及びCrを含む結合相とからなることを特徴とする
サーメットの製造方法。
(3) In the method according to claim 1 or 2, the cermet has Ti carbide, nitride, or carbonitride as a main component, and 1 to 70 mol% of Ti carbide, Va, or VIa group metal (but , excluding Ti) substituted with one or more of carbides and nitrides;
A method for producing a cermet, comprising a binder phase containing Ni and Cr.
JP1335386A 1989-12-25 1989-12-25 Production of cermet Pending JPH03193832A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1335386A JPH03193832A (en) 1989-12-25 1989-12-25 Production of cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1335386A JPH03193832A (en) 1989-12-25 1989-12-25 Production of cermet

Publications (1)

Publication Number Publication Date
JPH03193832A true JPH03193832A (en) 1991-08-23

Family

ID=18287968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1335386A Pending JPH03193832A (en) 1989-12-25 1989-12-25 Production of cermet

Country Status (1)

Country Link
JP (1) JPH03193832A (en)

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
US5778301A (en) Cemented carbide
US7767138B2 (en) Process for the production of a molybdenum alloy
US20170130302A1 (en) Atomized picoscale composition aluminum alloy and method thereof
JP4773416B2 (en) Method for producing sintered body, powder mixture used in the method, and sintered body produced by the method
US4270952A (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JP2006257467A (en) Hard metal material for tool and manufacturing method therefor
SE511834C2 (en) Fully dense products made by uniaxial high speed metal powder pressing
JP2005068547A (en) Method of fabricating superfine cermet alloy with homogeneous solid solution grain structure
US5470372A (en) Sintered extremely fine-grained titanium-based carbonitride alloy with improved toughness and/or wear resistance
CN111432957B (en) Alloy steel powder
JP3113144B2 (en) Method for producing high density sintered titanium alloy
JPS62224602A (en) Production of sintered aluminum alloy forging
JPH03193832A (en) Production of cermet
JPH03285040A (en) Manufacture of powder high speed steel
JPS5857502B2 (en) Sintered material with toughness and wear resistance
JP3102167B2 (en) Production method of fine composite carbide powder for production of tungsten carbide based cemented carbide
JPS62287041A (en) Production of high-alloy steel sintered material
KR950007174B1 (en) Hard alloy process of watch case
JPH03277735A (en) Manufacture of cermet
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JPS61223145A (en) Manufacture of tungsten carbide base sintered hard alloy
US4092156A (en) Process for preparing titanium carbide base powder for cemented carbide alloys
KR820001538B1 (en) Process for preparing titanium carbide-tungsten carbide base powder for cemented carbide alloys
JPS60228634A (en) Manufacture of tungsten-base sintered material