JPH0319366A - Image sensor - Google Patents

Image sensor

Info

Publication number
JPH0319366A
JPH0319366A JP1155141A JP15514189A JPH0319366A JP H0319366 A JPH0319366 A JP H0319366A JP 1155141 A JP1155141 A JP 1155141A JP 15514189 A JP15514189 A JP 15514189A JP H0319366 A JPH0319366 A JP H0319366A
Authority
JP
Japan
Prior art keywords
film
electrode
individual electrode
type
image sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1155141A
Other languages
Japanese (ja)
Inventor
Keiji Tarui
垂井 敬次
Tatsuo Morita
達夫 森田
Shuhei Tsuchimoto
修平 土本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1155141A priority Critical patent/JPH0319366A/en
Publication of JPH0319366A publication Critical patent/JPH0319366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To obtain an image sensor of an individual electrode which is excellent in blocking properties and productivity and free of defect by a method wherein the individual electrode has such a structure that its side opposed to a common transparent electrode is formed of a flat film of Ti and its part exposed through the dry etching of an amorphous silicon hydride film is made to contain an Al film. CONSTITUTION:An Al film 2, a Ti film 3, and an Al film 4 are continuously formed on the whole face of a glass board 1, which is successively formed into an individual electrode thorough photolithography and etching. In succession, an i-type a-Si:H film 5 and a P-type a-Si:H film 6 are formed on the whole face. Then, an indium tin oxide(ITO) film 7 and an Al film 8 are deposited, and an auxiliary common electrode 8 of Al and a common transparent electrode 7 of ITO film are formed through photoetching. In succession, the right side of an amorphous film is removed through plasma etching performed for the formation of the a-Si:H films 5 and 6 and then the P-type a-Si:H film is removed using the transparent electrode as a mask. At this point, as the Al film 2 is left un-etched by plasma, an individual electrode of this design retains electrical properties as an individual electrode.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は水素化アモルファス膜を用いた密着型の画像読
取を行なうイメージセンサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an image sensor that performs contact type image reading using a hydrogenated amorphous film.

〈従来の技術〉 従来から一般に、イメージスキャナやファクシミリ等に
用いる画像読取装置には、半導体単結晶を用いて作製し
たCCDセンサ,MOSセンサ等といわれるICセンサ
が用いられている。しかし、このICセンサは、大形化
や複数の配列使用が製造上コスト高になる問題があるた
め、原稿像を縮小光学系により縮小して、■Cセンサ上
へ投影し、読み取る方法が用いられた。しかし、前記の
縮小光学系は、その光路長が読み取る原稿の幅に比例し
て長くなるため、縮小光学系をもつ画像読取装置の小型
化が困難であった。
<Prior Art> Conventionally, IC sensors such as CCD sensors and MOS sensors fabricated using semiconductor single crystals have been used in image reading devices used in image scanners, facsimiles, and the like. However, this IC sensor has the problem of increasing manufacturing costs due to its large size and the use of multiple arrays, so a method is used in which the original image is reduced using a reduction optical system and then projected onto the C sensor and read. It was done. However, since the optical path length of the reduction optical system increases in proportion to the width of the document to be read, it has been difficult to downsize an image reading apparatus having the reduction optical system.

以上の問題を解消するため、大面積化が容易なa−Si
:H(水素化アモルファスシリコン)薄膜を用いて、原
稿と同じ幅をもたせた密着イメージセンサの開発が進め
られている。
In order to solve the above problems, a-Si, which can easily be made into a large area, is
A close-contact image sensor with the same width as the original document is being developed using a :H (hydrogenated amorphous silicon) thin film.

a−Si:H薄膜のイメージセンサは、■Cセンサに比
し、高速読み取りや高分解能の特性は劣るが、コストが
低く、大型の密着型イメージセンサを形成できる特徴が
ある。光センサ用薄膜の材料は多いが、現在その大半は
、不純物添加によるp型又はn型への導電型の制御が可
能なa−Si:H膜が用いられている。光センサになる
フォトダイオードの構成は、a−Si:H膜のp型,n
型及びイントリン7ツク型の層をそれぞれp+n及びi
で表したとき、透明電極/pin/金属電極のpin接
合型と透明電極/pi/金属[極、又は、透明電極/i
/金属電極のようなメタルショットキー接合型とに分類
することができる。
Although the a-Si:H thin film image sensor is inferior to the ■C sensor in high-speed reading and high-resolution characteristics, it is characterized by low cost and the ability to form a large-sized contact type image sensor. Although there are many materials for thin films for optical sensors, currently most of them are a-Si:H films whose conductivity type can be controlled to p-type or n-type by adding impurities. The configuration of the photodiode that becomes the optical sensor is p-type and n-type of a-Si:H film.
p+n and i type and intrin7 type layers, respectively.
When expressed as transparent electrode/pin/pin junction type of metal electrode and transparent electrode/pi/metal [pole or transparent electrode/i
/Metal Schottky junction type such as metal electrode.

メタル7gットキー接合型ではi層の暗抵抗が非常に高
いため(比抵抗は約10 Ω・cIn)画素間の電気的
分離構或を設ける必要がなくなり、個別電極側の形成に
用いたとき工程が簡単になる特徴がある。
Since the dark resistance of the i-layer is very high in the metal 7gt key junction type (specific resistance is approximately 10 Ω・cIn), there is no need to provide an electrical isolation structure between pixels, and when used for forming individual electrodes, the process It has the feature of making it easier.

〈発明が解決しようとする課題〉 以上で説明したメタルシタットキー接合型フォトダイオ
ードでは、その電極に用いた金属により暗電流のブロッ
キング特性が太き〈変わるので電極金属の選定が重要に
なる。
<Problems to be Solved by the Invention> In the metal sitat-key junction photodiode described above, the dark current blocking characteristics vary depending on the metal used for the electrode, so selection of the electrode metal is important.

第5図の(a)と(b)で示したのは、5種の金属のメ
タルショットキー接合での逆バイアス電圧値に対する光
電流と暗電流の大きさであり、これから分かるように、
光電流は電極材料の金属による差が少なくほぼ同じ価に
なる。しかし、暗電流のときはCr,Ti,Atなどを
電$iにすると逆バイアス電圧の上昇に対する暗電流の
増大は少ないが(第5図(b)、NiやCr−Auなど
を電極にすると、逆バイアス電圧の上昇に対し暗電流が
急激に大きくなっている(第5図(a))。暗電流が逆
バイアス電圧で大きく変動することは、電圧変動に対し
ての安定性が悪いことを示しているので、このような金
属材料は電極に使用するのは好しくない。
Figure 5 (a) and (b) show the magnitude of the photocurrent and dark current with respect to the reverse bias voltage value in a metal Schottky junction of five types of metals, and as can be seen from this,
There is little difference in photocurrent depending on the metal of the electrode material, and the valence is almost the same. However, in the case of dark current, if Cr, Ti, At, etc. are used as the electrode, the dark current increases little with respect to the increase in reverse bias voltage (Fig. 5(b), but if Ni, Cr-Au, etc. are used as the electrode) , the dark current increases rapidly as the reverse bias voltage increases (Figure 5 (a)).The fact that the dark current fluctuates greatly with the reverse bias voltage indicates poor stability against voltage fluctuations. Therefore, it is not preferable to use such metal materials for electrodes.

ブロッキング特性のよいCrも密着センサのような大型
基板での個別電極を7ォトエソチングで形成すると、エ
ッチングの廃液に溶解したCrによる公害の問題があり
、量産したときは、大量のエッチング廃液処理が大きい
問題になるのでCrの使用は不適である。
Even though Cr has good blocking properties, when individual electrodes on a large substrate such as a contact sensor are formed by 7-photoetching, there is a problem of pollution due to Cr dissolved in the etching waste liquid, and when mass-produced, it is difficult to dispose of a large amount of etching waste liquid. The use of Cr is inappropriate because it causes problems.

又、Tiのみで個別電極を形威したときは上に成膜した
a−Si:H膜をCF4 ガスでドライエソチングした
とき、露出したTi電極もCF4 ガスでかなりエッチ
ングされ、Ti電極の抵抗増大や、エッチング条件によ
ってはTi電極がな〈なることもある。
In addition, when individual electrodes are formed using only Ti, when the a-Si:H film formed on top is dry etched with CF4 gas, the exposed Ti electrodes are also considerably etched with CF4 gas, resulting in a decrease in the resistance of the Ti electrodes. Depending on the increase in thickness and etching conditions, the Ti electrode may disappear.

個別電極をAtで作製したときは、CF4ガスによりエ
ソチングされることはないが、At金属としての特性に
より、広い面積に薄膜を形成したとき、表面に凹凸がで
きたり、a−Si:H膜の成膜のときAt膜表面での凹
凸が大きくなるなどで、薄いa−Si:H膜の上に形成
した共通透明電極とAtの個別電極の間で多数のショー
トによる欠陥カ;発生するという問題があった。
When individual electrodes are made of At, they will not be etched by CF4 gas, but due to the characteristics of At metal, when a thin film is formed over a large area, the surface may become uneven or the a-Si:H film may During film formation, the unevenness on the At film surface becomes large, causing many defects due to short circuits between the common transparent electrode formed on the thin a-Si:H film and the At individual electrodes. There was a problem.

本発明は画素分離の構造を必要としないメタルシッット
キー接合の電極材料に関する課題を解消し、プロッキン
グ特性に優れ、生産性がよく、かつ、欠陥発生のない個
別電極のイメージセンサを提供することを目的としてい
る。
The present invention solves the problems associated with metal Schittky junction electrode materials that do not require a pixel separation structure, and provides an individual electrode image sensor with excellent blocking characteristics, high productivity, and no defects. The purpose is to

〈課題を解決するための手段〉 本発明のイメージセンサでは、シタットキー接合を形成
する個別電極を、特性がよく、かつ、生産性も高くした
ものである。即ち、個別電極は、少なくともAt膜とT
i膜の2層になる部分をもつ金属膜で形威され、かつ、
a−Si:H膜を挾んで共通透明電極と対向する面をT
i膜にし、そのTi膜を成膜する基板の凹凸をカバーす
る厚さにすると共に、a−Si:H膜をドライエソチン
グしたとき露出する個別電極の引出し部分は少なくとも
At膜を含む構成にしている。
<Means for Solving the Problems> In the image sensor of the present invention, the individual electrodes forming the sitat-key junction have good characteristics and high productivity. That is, the individual electrodes include at least the At film and the T film.
It is formed of a metal film having a portion that becomes two layers of the i-film, and
The surface facing the common transparent electrode sandwiching the a-Si:H film is T.
The Ti film is made into an i film, with a thickness that covers the irregularities of the substrate on which the Ti film is formed, and the lead-out portions of the individual electrodes exposed when the a-Si:H film is dry-etched are configured to include at least an At film. ing.

く作 用〉 本発明のイメージセンサの個別電極は、a−Si:H膜
との接合面がプロソキング特性がよ〈、又、平滑な面を
形成して、凹凸などで透明電極とショートなどの欠陥を
発生しないTi膜にすると共に、a−Si:H膜のドラ
イエッチングのとき露出しても、そのドライエノチング
で影響をうけないAt膜をもつため、特性の良いイメー
ジセンサを歩留りよく作製することができる。
Effects> The individual electrodes of the image sensor of the present invention have a bonding surface with the a-Si:H film that has good prosocating properties, and also forms a smooth surface to prevent short circuits between the transparent electrode and the transparent electrode due to unevenness. In addition to using a Ti film that does not generate defects, it also has an At film that is not affected by dry etching even if it is exposed during dry etching of the a-Si:H film, so image sensors with good characteristics can be manufactured with high yield. can do.

〈実施例〉 以下、図面を参照して、本発明の実施例を詳細に説明す
る。
<Example> Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1実施例 第1図は、本発明のイメージセンサの製造工程を断面図
で示したものである。
First Embodiment FIG. 1 is a sectional view showing the manufacturing process of an image sensor according to the present invention.

第1図(a)は、A4の横幅以上の長さをもつガラス基
板1の上面全面に、膜厚がそれぞれ約50OAのAt膜
2、約200OAのTi膜3及び約1.6μmのAt膜
4をスパッタリングで連続或膜し、続いてフォトリソグ
ラフィーとエッチング(フォトエッチ)で個別電aiK
形成したものである。
FIG. 1(a) shows an At film 2 with a thickness of about 50 OA, a Ti film 3 with a thickness of about 200 OA, and an At film with a thickness of about 1.6 μm on the entire upper surface of a glass substrate 1 having a length longer than the width of A4. 4 was continuously formed by sputtering, and then individual electrodes were formed by photolithography and etching (photoetch).
It was formed.

この個別電極は断面を示した図と垂直な方向に、125
μmピッチで分離した1,728個並べて形成してある
。At膜4の部分は個別電極からの信号検出を制御する
LSIとワイヤボンデングするためのボンデンバノトで
ある。
This individual electrode has 125
1,728 pieces separated at a μm pitch are arranged in a row. A portion of the At film 4 is a bonding point for wire bonding with an LSI that controls signal detection from the individual electrodes.

以上のAt膜のエノチングにはリン酸と硝酸の混合液を
、Ti膜のエノチングには過酸化水素水とアンモニア水
及びエチレンジアミン四酢酸(EDTA)の混合液を用
いた。
A mixed solution of phosphoric acid and nitric acid was used for enoching the At film, and a mixed solution of hydrogen peroxide, aqueous ammonia, and ethylenediaminetetraacetic acid (EDTA) was used for enoching the Ti film.

続いて全面にi型a−Si:H膜5とp型a−Si:H
膜6を成膜したのが′WJ1図(b)である。このアモ
ルファス膜は、H2で希釈したSiH4の低圧ガスを高
周波放電で分解し、基板1上に堆積させるプラズマCV
D法で、膜5は約1.5μm1膜6はSiH4ガスに体
積比0.1〜10%のB2H6ガスを混合したガスを用
いて約200X堆積している。このプラズマCVDによ
る成膜時に基板1の温度は約250℃に達した。
Next, an i-type a-Si:H film 5 and a p-type a-Si:H film are formed on the entire surface.
Figure 1 (b) shows the film 6 formed. This amorphous film is produced by plasma CV in which low pressure gas of SiH4 diluted with H2 is decomposed by high frequency discharge and deposited on the substrate 1.
By method D, the film 5 is about 1.5 μm thick, and the film 6 is about 200× deposited using a mixture of SiH4 gas and B2H6 gas at a volume ratio of 0.1 to 10%. During film formation by plasma CVD, the temperature of the substrate 1 reached approximately 250°C.

以上のアモルファス膜は、At膜4の表面上のみ平滑性
がよくなかった。
The above amorphous film had poor smoothness only on the surface of the At film 4.

引き続いて、酸化インジウムー錫(ITO)膜7を約7
00XとAt膜8を約2000λスパッタリングで堆積
した上、フォトエソチにより、Atの補助共通電極8と
、ITO膜からなる共通透明電極7の形成を行ったのが
第1図<c>である。ITOのエッチングには塩酸と塩
化@2鉄溶液の混合液を用いた。
Subsequently, an indium-tin oxide (ITO) film 7 of about 7
As shown in <c> in FIG. 1, an auxiliary common electrode 8 of At and a common transparent electrode 7 made of an ITO film were formed by photolithography after depositing 00X and an At film 8 by sputtering with a thickness of about 2000 λ. A mixed solution of hydrochloric acid and diiron chloride solution was used for etching ITO.

続いて、a−Si:H膜5,6の成形を行なうため図示
しない7才トレジスト膜のマスクを用いたCF4 ガス
のプラズマエノチングにより、図に於けるアモルファス
膜の右側を除去し、続いて共通透明電極をマスクにして
p型a−Si:H膜を除去した状態を示したのが、第1
図(d)である。共通透明N極7をマスクに、そこから
露出したp型膜6をエッチング除去したのは低抵抗のp
型膜を通して共通透明電極7と個別電極2の間に電流の
リークが生じるのを防ぐためである。
Next, in order to form the a-Si:H films 5 and 6, the right side of the amorphous film in the figure was removed by plasma etching with CF4 gas using a mask of a 7-year-old resist film (not shown), and then The first image shows the state in which the p-type a-Si:H film is removed using the common transparent electrode as a mask.
It is figure (d). Using the common transparent N-electrode 7 as a mask, the exposed p-type film 6 was etched away using a low-resistance p-type film.
This is to prevent current leakage between the common transparent electrode 7 and the individual electrodes 2 through the mold film.

この第1図(d)は、a−Si:H膜5,6のプラズマ
エソテングが完了し、Ti膜3の一部が露出した状態で
あるが、イメージセンナの基板lの面積が広くなるに従
い、或膜したa−Si:H膜の膜厚は、同一基板1上で
も均一性が悪くなり、部分的に残ったa−Si:H膜を
完全に除去するときに、他の部分ではTi膜のプラズマ
エッチングを長時間行なわれて、Ti膜の殆んど全部が
除去されることもある。しかし、プラズマエッチングさ
れないAt膜2が残っているので個別電極としての電気
的特性に支障は生じない。
FIG. 1(d) shows a state in which the plasma etching of the a-Si:H films 5 and 6 has been completed and a part of the Ti film 3 is exposed, but the area of the image sensor substrate l has become larger. Therefore, the thickness of a certain a-Si:H film becomes less uniform even on the same substrate 1, and when the partially remaining a-Si:H film is completely removed, other parts become less uniform. In some cases, plasma etching of the Ti film is performed for a long time, and almost all of the Ti film is removed. However, since the At film 2 that is not plasma etched remains, there is no problem with the electrical characteristics of the individual electrodes.

以上のようにイメージ検出部を作製した基板1持台12
に固定し、続いてLSIIOと各個別電極のAt膜4の
間をワイヤー11によりボンディングで接続したのが第
」図(e)である。
The substrate 1 holder 12 on which the image detection section was fabricated as described above
The LSIIO and the At film 4 of each individual electrode were then connected by bonding using wires 11, as shown in FIG. 1(e).

以上のように読取部を形威したイメージセンサに読取る
イメージの導光部、保護カバー及び照明用光源等を付加
し、イメージセンサとして用いるものである。
As described above, a light guide section for an image to be read, a protective cover, an illumination light source, etc. are added to an image sensor with a reading section, and the image sensor is used as an image sensor.

第2実施例 第2実施例のイメージセンサの断面図を示したのが第2
図である。第2実施例で、第1実施例と異なるのは個別
電極の構成のみである。即ち、第1実施例のAt膜2を
省略し、T1膜13を基板1上に形成して、基板1との
密着性とTi膜l3の表面の平滑性を向上させた。1た
ボンディングパノトに用いたAt膜14をa−Si:H
膜5と一部重なるよう延在させている。At膜l4と重
なるa−Si:H膜5が異常な凹凸の形状になることも
あるが、検出動作部の共通透明電極7と極めて接近した
構成にしない限り悪影響はなかった。
Second Embodiment The second embodiment shows a cross-sectional view of the image sensor of the second embodiment.
It is a diagram. The second embodiment differs from the first embodiment only in the configuration of the individual electrodes. That is, the At film 2 of the first embodiment was omitted and the T1 film 13 was formed on the substrate 1 to improve the adhesion to the substrate 1 and the smoothness of the surface of the Ti film 13. The At film 14 used for the first bonding panel is a-Si:H.
It extends so as to partially overlap the membrane 5. Although the a-Si:H film 5 overlapping the At film 14 may have an abnormally uneven shape, there was no adverse effect unless it was configured to be extremely close to the common transparent electrode 7 of the detection operation section.

この第2実施例は第1実施例と殆んど同じ工程で作製で
き、本発明の効果も同じであるから、その説明は省略す
る。
This second embodiment can be manufactured through almost the same steps as the first embodiment, and the effects of the present invention are also the same, so a description thereof will be omitted.

第3実施例 第3実施例で作製したイメージセンナの構或断而を第3
図に示した。
Third Example The structure or breakdown of the image sensor manufactured in the third example is shown in the third example.
Shown in the figure.

この実施例で、フォトダイオードの検出部は第1実施例
と同じ構戒であるが、個別電極からの信号を選択するス
イソチングが同じ基板上に形成した薄膜MOS型電界効
果トランジスタ(TFMOSFET)にした点が異って
いる。第3図は、基板1上に減icVD法で多結晶Si
膜(15.16.17)を形成し、その表面を熱酸化で
ゲート膜を作りゲート電極l8を作製してから、多結晶
Si膜にリン(P)をイオン注入してドレイン16とン
ース17を形成した。l5ぱチャンネル部である。続い
て、全面にCVDによるSi02絶縁膜19の形成と、
TFMOSFETのドレイン16とソース17の上にコ
ンタクトホールをエノチングで形成している。
In this example, the detection section of the photodiode has the same structure as in the first example, but the switching process for selecting signals from the individual electrodes is a thin film MOS field effect transistor (TFMOSFET) formed on the same substrate. They are different in some respects. FIG. 3 shows polycrystalline Si deposited on substrate 1 using the reduced ICVD method.
A film (15, 16, 17) is formed, and its surface is thermally oxidized to form a gate film to form a gate electrode 18, and then phosphorus (P) is ion-implanted into the polycrystalline Si film to form a drain 16 and a drain 17. was formed. This is the l5 channel section. Next, a Si02 insulating film 19 is formed on the entire surface by CVD,
Contact holes are formed above the drain 16 and source 17 of the TFMOSFET by etching.

次に、第1実施例のような5ooXのAt膜20と、z
oooXのTi膜21を連続して積層構成にした上、フ
ォトエッチにより、個別電極とドレ一ンエ6の接続とソ
ースl7を接続する電祿に形成した。以下の工程は第1
実施例と同じであるから、その説明は省略するが、a−
Si:H膜のプラズマエッチングに於て露出したTi膜
21もエッチングされ膜厚が薄くなるか消滅したところ
もあったが、下部のAt膜20の存在で、電極の機能に
支障はなかった。
Next, an At film 20 of 5ooX as in the first embodiment and z
The Ti film 21 of oooX was formed into a continuous layered structure, and was then photoetched to form an electric wire connecting the individual electrodes to the drain layer 6 and connecting the source 17. The following steps are the first
Since it is the same as the example, the explanation is omitted, but a-
During the plasma etching of the Si:H film, the exposed Ti film 21 was also etched and the film thickness became thinner or disappeared in some places, but due to the presence of the underlying At film 20, there was no problem with the function of the electrode.

第4実施例 @4実施例で作製したイメージセンサの構成を断面図で
示したのが第4図である。
Fourth Example @ FIG. 4 is a cross-sectional view showing the structure of the image sensor manufactured in the fourth example.

図から分るように、この実施例のフォトダイオードの検
出部は第2実施例と同じ構成にしてあり、その個別電極
を延長などで、第3実施例と同じように形成したTFM
OSFETのドL/−716K接続し、ンースl7の電
極も形成をしている。以上の構成であるから本実施例に
於でも第2実施例と同じように共通透明電極7に対向す
る電極は丁iの平滑な電極であり、a−Si:H膜のプ
ラズマエノチング工程に於でも露出した個別電槓などの
表面はkt膜23であるから、プラズマエソチングによ
りそのt極の性能が損傷することはない。
As can be seen from the figure, the detection section of the photodiode of this example has the same configuration as the second example, and the TFM is formed in the same way as the third example by extending the individual electrodes.
The terminal L/-716K of the OSFET is connected, and the terminal terminal 17 is also formed. Because of the above structure, in this embodiment as well, the electrode facing the common transparent electrode 7 is a flat smooth electrode, which is suitable for the plasma etching process of the a-Si:H film. Since the exposed surface of the individual electrode is the KT film 23, the performance of the T-pole is not damaged by plasma etching.

以上は実施例についての説明であり、本発明は実施例の
形状に限定するものでなく、又、水素化モルファスにし
たものでもよい。
The above is a description of the embodiments, and the present invention is not limited to the shapes of the embodiments, and may be hydrogenated amorphous.

更に、実施例に於てはAt膜とTi膜の形成に、スパッ
タリングを用いたが、その他の、電子ビーム加熱などに
よる真空蒸着法やMB法、又は、ICB法などを用いて
もよく、Atは純アルミでもよく、又、Atにsitた
はCuなどを添加した合金を用いてもよい。
Further, in the examples, sputtering was used to form the At film and the Ti film, but other methods such as vacuum evaporation method using electron beam heating, MB method, or ICB method may be used. may be pure aluminum, or may be an alloy in which sit or Cu is added to At.

く発明の効果〉 本発明は、極めて薄い水素化アモルファス膜のフォトダ
イオードを用いるイメージセンサの個別電極を、共通透
明電極と対向する面に11の平滑な膜を用い水素化アモ
ルファス膜のドライエッチングで露出する部分は少なく
ともAt膜を含む構成にすることで、特性のよいイメー
ジセンサを歩留りよく製造することができるものである
Effects of the Invention The present invention provides individual electrodes of an image sensor using a photodiode with an extremely thin hydrogenated amorphous film by dry etching the hydrogenated amorphous film using 11 smooth films on the surface facing a common transparent electrode. By configuring the exposed portion to include at least an At film, an image sensor with good characteristics can be manufactured with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1実施例の製造工程を示す断面図、
第2図は本発明の第2実施例の構成を示す断面図、第3
図は本発明の第3実施例の構或を示す断面図、第4図は
本発明の第4実施例の構成を示す断面図、第5図は電極
金属によるショノトキー接合の特性の相違を示す図であ
る。
FIG. 1 is a sectional view showing the manufacturing process of the first embodiment of the present invention,
FIG. 2 is a sectional view showing the configuration of the second embodiment of the present invention, and FIG.
The figure is a cross-sectional view showing the structure of a third embodiment of the present invention, FIG. 4 is a cross-sectional view showing the structure of a fourth embodiment of the present invention, and FIG. It is a diagram.

Claims (1)

【特許請求の範囲】[Claims] 1 複数の個別電極を近接して配列した絶縁基板と、前
記個別電極上に形成され前記個別電極とショットキー接
合を形成する水素化アモルファス膜と、前記アモルファ
ス膜上に形成した共通透明電極からなるイメージセンサ
において、前記個別電極は前記ショットキー接合を形成
する面がチタン(Ti)膜であり、外部と接続する引出
し部は少なくともアルミニウム(Al)膜を含む構成で
あることを特徴とするイメージセンサ。
1 Consisting of an insulating substrate on which a plurality of individual electrodes are arranged closely, a hydrogenated amorphous film formed on the individual electrode and forming a Schottky junction with the individual electrode, and a common transparent electrode formed on the amorphous film. In the image sensor, the surface of the individual electrode forming the Schottky junction is a titanium (Ti) film, and the lead-out portion connected to the outside includes at least an aluminum (Al) film. .
JP1155141A 1989-06-16 1989-06-16 Image sensor Pending JPH0319366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1155141A JPH0319366A (en) 1989-06-16 1989-06-16 Image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1155141A JPH0319366A (en) 1989-06-16 1989-06-16 Image sensor

Publications (1)

Publication Number Publication Date
JPH0319366A true JPH0319366A (en) 1991-01-28

Family

ID=15599442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1155141A Pending JPH0319366A (en) 1989-06-16 1989-06-16 Image sensor

Country Status (1)

Country Link
JP (1) JPH0319366A (en)

Similar Documents

Publication Publication Date Title
US5191453A (en) Active matrix substrate for liquid-crystal display and method of fabricating the active matrix substrate
US5346833A (en) Simplified method of making active matrix liquid crystal display
JPH06148685A (en) Liquid crystal display device
JPH0481353B2 (en)
US5355002A (en) Structure of high yield thin film transistors
US6180438B1 (en) Thin film transistors and electronic devices comprising such
JP2780673B2 (en) Active matrix type liquid crystal display device and manufacturing method thereof
US5061040A (en) Liquid crystal displays operated by amorphous silicon alloy diodes
JP2572379B2 (en) Method for manufacturing thin film transistor
JPH0319366A (en) Image sensor
JP2675587B2 (en) Matrix type liquid crystal display panel
JPH08172195A (en) Thin film transistor
JPS61128560A (en) Image sensor
KR100897720B1 (en) Fabrication method of Liquid Crystal Display
JP3141456B2 (en) Thin film transistor and method of manufacturing the same
EP0521565B1 (en) Semiconductor device and method of manufacturing same, display device provided with such a semiconductor device
JPH0362972A (en) Thin-film transistor
JPH03114234A (en) Thin film transistor and its manufacture
JPH1084106A (en) Semiconductor device and photoelectric conversion device
EP0601200A1 (en) Semiconductor device
KR950003942B1 (en) Method of manufacturing thin film transistor for lcd
KR890003419B1 (en) Silicon thin film tr for driving of liquid crystal display device
KR20000021735A (en) Method of manufacturing thin film transistor
JPH02210882A (en) Phototransistor and manufacture thereof
KR920006195B1 (en) Manufacturing method of thin film transistor