JPH03191577A - Insulated-gate field-effect transistor - Google Patents

Insulated-gate field-effect transistor

Info

Publication number
JPH03191577A
JPH03191577A JP33200389A JP33200389A JPH03191577A JP H03191577 A JPH03191577 A JP H03191577A JP 33200389 A JP33200389 A JP 33200389A JP 33200389 A JP33200389 A JP 33200389A JP H03191577 A JPH03191577 A JP H03191577A
Authority
JP
Japan
Prior art keywords
region
gate electrode
conductivity type
gate
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33200389A
Other languages
Japanese (ja)
Inventor
Takatoshi Ito
貴敏 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33200389A priority Critical patent/JPH03191577A/en
Publication of JPH03191577A publication Critical patent/JPH03191577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To reduce the difference in level on the surface of an insulating film by a method wherein a gate electrode is formed in the whole region and at the upper part of a gate insulating film, a region which surrounds a contact hole region at one end of the gate electrode and whose conductivity type is opposite to that of a substrate is formed and a first high-concentration region and a second high-concentration region of a first conductivity type are formed. CONSTITUTION:A gate electrode 1 is formed, via a gate oxide film 7, inside element formation regions 2 partitioned by a field oxide film 6 formed selectively on one main surface of a P-type Si substrate 12; and a source region 3S and a drain region 3D, of an N-type, are formed respectively inside the element formation regions 2 on both sides of the gate electrode 1. An N-type region 11 is formed in the element formation regions 2 surrounding a contact hole 4 of the gate electrode 1; a first P<+> type region 13 is formed between one end of the gate electrode 1 and the field oxide film 6; and a second P<+> type region 14 is formed between the N-type region 11 and the source and drain regions 3S, 3D. Thereby, the difference in level on the surface of an insulating film 9 on the top can be made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート電界効果トランジスタに関し、特に
半導体集積回路に用いるMOS)ランジスタの構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an insulated gate field effect transistor, and more particularly to the structure of a MOS (MOS) transistor used in a semiconductor integrated circuit.

〔従来の技術〕[Conventional technology]

従来の半導体集積回路に用いるMOS)ランジスタは第
3図に示すようにP型Si基板12にフィールド酸化M
6が選択的に形成された素子形成領域2を区画しており
、ゲート電極1はフィールド酸化膜6及び素子形成領域
2の上部に設けられている。
A MOS (MOS) transistor used in a conventional semiconductor integrated circuit is formed by field oxidation M on a P-type Si substrate 12, as shown in FIG.
6 delimits a selectively formed element formation region 2, and the gate electrode 1 is provided above the field oxide film 6 and the element formation region 2.

ゲート電極1は絶縁膜8でおおわれ、ゲート電極1のコ
ンタクトホール4はフィールド酸化M6の上部に位置し
、このコンタクトホール4によりゲート配線10とゲー
ト電極1は導通し、ゲート配線10は絶縁膜9でおおわ
れるという構造をとっていた。
The gate electrode 1 is covered with an insulating film 8, the contact hole 4 of the gate electrode 1 is located above the field oxide M6, the gate wiring 10 and the gate electrode 1 are electrically connected through this contact hole 4, and the gate wiring 10 is covered with an insulating film 9. It had a structure in which it was covered with

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のMOS)−ランジスタでは、素子形成領
域上部の絶縁膜9の表面とフィールド酸化B6上部で且
つコンタクトホール4上部にある絶縁膜9の表面とでは
約1μm程度の絶縁膜表面段差h 6を持っているので
、絶縁膜9上部に作る配線の断線、あるいは絶縁膜9の
段切れによるゲート配線10と絶縁膜9上部に作る他の
配線(図示しない)の短絡を起こす可能性があるという
欠点がある。
In the conventional MOS)-transistor described above, there is an insulating film surface level difference h 6 of about 1 μm between the surface of the insulating film 9 above the element formation region and the surface of the insulating film 9 above the field oxidation B 6 and above the contact hole 4. Therefore, there is a possibility that the wiring formed on the upper part of the insulating film 9 may be disconnected, or the gate wiring 10 and other wiring (not shown) formed on the upper part of the insulating film 9 may be short-circuited due to a break in the insulating film 9. There are drawbacks.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の絶縁ゲート電界効果トランジスタは、第1導電
型半導体基板の一十表面に選択的に設けられたフィール
ド絶縁膜で区画された素子形成領域内にゲート絶縁膜を
介して設けられたゲート電極と、前記ゲート電極の両側
の前記素子形成領域内にそれぞれ設けられた第2導電型
のソース領域及びドレイン領域と、前記ゲート電極の一
端の直下部を含み前記素子形成領域を横断して前記第1
導電型半導体基板に選択的に設けられた第1の高濃度第
1導電型領域と、前記ゲート電極の他端の直下部とその
近傍を含み前記素子形成領域を横断して前記第1導電型
半導体基板に選択的に設けられた第2導電型領域と、前
記第2導電型領域と前記ソース領域並びにドレイン領域
間に設けられた第2の高濃度第1導電型領域と、前記第
2導電型領域の上方で前記ゲート電極に接続するゲート
配線とを有するというものである。
The insulated gate field effect transistor of the present invention has a gate electrode provided through a gate insulating film in an element formation region defined by a field insulating film selectively provided on the ten surfaces of a first conductivity type semiconductor substrate. a source region and a drain region of a second conductivity type provided in the element formation region on both sides of the gate electrode; 1
A first high-concentration first conductivity type region selectively provided on a conductivity type semiconductor substrate; a second conductivity type region selectively provided on a semiconductor substrate; a second high concentration first conductivity type region provided between the second conductivity type region and the source and drain regions; and a second conductivity type region selectively provided in the semiconductor substrate; A gate wiring is provided above the mold region and connected to the gate electrode.

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例を示すパターン配置図
、第1図(b)は第1図(a)のA−A線相当部で切断
した半導体チップの断面図である。ただし、第1図(a
)には、便宜上ゲート配線などの配線層は図示していな
い。
FIG. 1(a) is a pattern layout diagram showing one embodiment of the present invention, and FIG. 1(b) is a cross-sectional view of the semiconductor chip taken along the line A--A in FIG. 1(a). However, in Figure 1 (a
), wiring layers such as gate wiring are not shown for convenience.

この実施例は第1導電型半導体基板(P型Si基板12
)の−主表面に選択的に設けられたフィールド絶縁膜(
フィールド酸化膜6)で区画された素子形成領域2内に
ゲート絶縁膜(ゲート酸化膜7)を介して設けられたゲ
ート電極1と、ゲート電極1の両側の素子形成領域2内
にそれぞれ設けられたN型のソース領域3S及びドレイ
ン領域3Dと、ゲート電極1の一端の直下部を含み素子
形成領域2を横断してP型Si基板12に選択的に設け
られた第1の高濃度第1導電型領域(P+型領域13)
と、ゲート電極1の他端の直下部とその近傍を含み素子
形成領域2を横断してP型Si基板12に選択的に設け
られた第2導電型領域(N型領域11)と、N型領域1
1とソース領域3S並びにドレイン領域3D間に設けら
れた第2の高濃度第1導電型領域(P+型領域14)と
、N型領域11の上方でゲート電極1に接続するゲート
配線10とを有するMOSトラジスタである。
This embodiment uses a first conductivity type semiconductor substrate (P-type Si substrate 12).
) - field insulating film selectively provided on the main surface (
A gate electrode 1 is provided in an element formation region 2 divided by a field oxide film 6) via a gate insulating film (gate oxide film 7), and a gate electrode 1 is provided in an element formation region 2 on both sides of the gate electrode 1. A first high-concentration first region is selectively provided on the P-type Si substrate 12 across the element formation region 2, including the N-type source region 3S and drain region 3D, and directly under one end of the gate electrode 1. Conductivity type region (P+ type region 13)
, a second conductivity type region (N-type region 11) selectively provided in the P-type Si substrate 12 across the element formation region 2 including immediately below the other end of the gate electrode 1 and its vicinity; mold area 1
1, a second high concentration first conductivity type region (P+ type region 14) provided between the source region 3S and the drain region 3D, and a gate wiring 10 connected to the gate electrode 1 above the N type region 11. It is a MOS transistor with

ゲート電極1は従来の構造と巽なりフィールド酸化M6
の上部には存在しないため、P型Si基板12の表面よ
り突出しているフィールド酸化膜6の厚み500t+m
だけ絶縁膜9の表面段差りが従来の段差haと比較して
小さくなる。また、ゲート電極1のコンタクトホール4
が薄いゲート酸化膜7の上部にあるため、コンタクトホ
ール4及びゲート電極1を作成するホトリソグラフィー
における目金せずれにより、ゲート電極1とP型Si基
板12が短絡する可能性があるが、ゲート電極1のコン
タクトホール4を囲む素子形成領域2にN型領域11を
形成しているため、ゲート電極1及びP型Si基板12
が短絡することはない。またゲート電極1の一端とフィ
ールド酸化膜6の間に第1のP+型領域13を形成し、
第1図(a)の矢印qが示す経路で、ソースとドレイン
の間の漏れ電流が流れることを防いでいる。また、N型
領域11とソース及びトレインの間に流れる漏れ電流を
防止するための第2のP+型領域14を形成している。
Gate electrode 1 has a conventional structure and field oxidation M6
The thickness of the field oxide film 6, which protrudes from the surface of the P-type Si substrate 12, is 500t+m.
Therefore, the surface level difference of the insulating film 9 is smaller than the conventional level difference ha. In addition, the contact hole 4 of the gate electrode 1
is on the top of the thin gate oxide film 7, there is a possibility that the gate electrode 1 and the P-type Si substrate 12 may be short-circuited due to misalignment in the photolithography used to create the contact hole 4 and the gate electrode 1. Since the N-type region 11 is formed in the element formation region 2 surrounding the contact hole 4 of the electrode 1, the gate electrode 1 and the P-type Si substrate 12
will not short circuit. Further, a first P+ type region 13 is formed between one end of the gate electrode 1 and the field oxide film 6,
The path indicated by arrow q in FIG. 1(a) prevents leakage current from flowing between the source and drain. Further, a second P+ type region 14 is formed to prevent leakage current flowing between the N type region 11 and the source and train.

このMOSトランジスタの表面の絶縁膜9の表面の段差
が小さくなるので、半導体集積回路に用いるとき絶縁膜
9上部に作る配線の断線やこのような配線とゲート配線
との短絡の可能性は少なくできる。
Since the level difference on the surface of the insulating film 9 on the surface of this MOS transistor becomes smaller, when used in a semiconductor integrated circuit, the possibility of disconnection of the wiring formed on the upper part of the insulating film 9 or short circuit between such wiring and the gate wiring can be reduced. .

第2図(a)は、本発明の一実施例の応用例を示すパタ
ーン配置図、第2図(b)は第2図(a>のl−A線相
当部で切断した半導体チップの断面図である。この応用
例は一実施例のMOSトランジスタを2個並列に配置し
たものである。
FIG. 2(a) is a pattern layout diagram showing an example of application of one embodiment of the present invention, and FIG. 2(b) is a cross section of a semiconductor chip cut along the line 1-A in FIG. 2(a>). This application example is one in which two MOS transistors of one embodiment are arranged in parallel.

それぞれのMOSトランジスタのコンタクトホール4a
、4.bはそれぞれのゲート電極1a。
Contact hole 4a of each MOS transistor
,4. b is each gate electrode 1a.

1bとN型領域11内の素子形成領域2a、2b上部に
位置し、N型領域11は、2個のトランジスタのコンタ
クトホール4を囲む素子形成領域2a、2bの部分及び
2a、2bを連結する領域2Cにわたって設けられてい
る。他の部分は前述の一実施例と同様である。コンタク
トホールによってそれぞれのゲート電極1とN領域11
が導通し、N型領域11が2個のトランジスタの共通領
域であるため、2個のトランジスタのゲート電極は導通
している。一実施例ではN型領域11はゲート電極とP
型Si基板12間の漏れ電流を防止する役割を有するだ
けであったが、この応用例では、N型領域11をゲート
電極間配線として利用しているため、N型領域11の上
部に他の配線を通過させることができる。
1b and the element formation regions 2a, 2b in the N-type region 11, the N-type region 11 connects the parts of the element formation regions 2a, 2b surrounding the contact holes 4 of the two transistors and 2a, 2b. It is provided over the area 2C. Other parts are the same as in the previous embodiment. Each gate electrode 1 and N region 11 are connected by contact holes.
is conductive, and since the N-type region 11 is a common region of the two transistors, the gate electrodes of the two transistors are conductive. In one embodiment, N-type region 11 is connected to the gate electrode and P
However, in this application example, since the N-type region 11 is used as a wiring between gate electrodes, other Wiring can be passed through.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ゲート電極を全領域、ゲ
ート絶縁膜上部に形成し、かつゲート電極の一端にある
コンタクトホール領域を囲む基板と逆導電型の領域(第
2導電型領域)を形成し、かつ、ゲート電極の他端とフ
ィールド絶縁膜の間、及び第2導電型領域とソース領域
、ドレイン領域との間にそれぞれ第1.第2の高濃度第
1導電型領域を形成することで、従来の構造と比較して
、絶縁膜表面段差がフィールド絶縁膜の厚みのほぼ1/
2だけ小さくなる効果があり、またゲート電極及びコン
タクトホールを形成する時の目金せずれに起因する、ゲ
ート電極のコンタクトホールを囲む領域でのゲート電極
と半導体基板の短絡の可能性は小さく、また第2導電型
領域とソース及びドレイン領域の間に流れる漏れ電流及
び、ゲート電極の一端とフィールド絶縁膜の間の領域に
流れる漏れ電流を防いでいる。また、第2導電型領域は
、ゲート電極間の配線として利用可能なため、半導体4
A積回路に用いるとその集積度が向上できるという効果
がある。
As explained above, in the present invention, the gate electrode is formed over the entire region of the gate insulating film, and a region of the opposite conductivity type (second conductivity type region) to the substrate surrounding the contact hole region at one end of the gate electrode is formed. and a first . By forming the second high-concentration first conductivity type region, the insulating film surface level difference is approximately 1/1 of the thickness of the field insulating film compared to the conventional structure.
2, and the possibility of short circuit between the gate electrode and the semiconductor substrate in the area surrounding the contact hole of the gate electrode due to misalignment when forming the gate electrode and contact hole is small. It also prevents leakage current from flowing between the second conductivity type region and the source and drain regions, and leakage current from flowing into the region between one end of the gate electrode and the field insulating film. In addition, since the second conductivity type region can be used as wiring between gate electrodes, the semiconductor 4
When used in an A product circuit, there is an effect that the degree of integration can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示すパターン配置図
、第1図(b)は第1図(a)のA−A線相当部で切断
した半導体チップの断面図、第2図(a)は一実施例の
応用例を示すパターン配置図、第2図(b)は第2図(
a)のA−A線相当部で切断した半導体チップの断面図
、第3図(a)は従来例を示すパターン配置図、第3図
(l〕)は第3図(a)のA−A線相当部で切断した半
導体チップの断面図である。 1、la、lb・−・ゲート電極、2,2a、2b。 2C・・・素子形成領域、3D、3Da、3Db・・・
ドレイン領域、3S、3Sa、3Sb−・・ソース領域
、4.4a、4b・・・コンタクトホール、6・・・フ
ィールド酸化膜、7・・・ゲート酸化膜、8.9・・・
絶縁膜、10・・・ゲート配線、11・・・N型領異、
12・・・P型Si基板、13・・・第1のP+型領域
、14・・・第2のP+型領域。
FIG. 1(a) is a pattern layout diagram showing one embodiment of the present invention, FIG. 1(b) is a cross-sectional view of a semiconductor chip taken along line A-A in FIG. 1(a), and FIG. Figure (a) is a pattern layout diagram showing an application example of one embodiment, and Figure 2 (b) is a pattern layout diagram showing an application example of one embodiment.
3(a) is a pattern layout diagram showing a conventional example, and FIG. 3(l) is a cross-sectional view of a semiconductor chip taken along line A-A in FIG. 3(a). FIG. 3 is a cross-sectional view of the semiconductor chip taken along a section corresponding to line A. 1, la, lb --- gate electrode, 2, 2a, 2b. 2C...Element formation area, 3D, 3Da, 3Db...
Drain region, 3S, 3Sa, 3Sb-- Source region, 4.4a, 4b... Contact hole, 6... Field oxide film, 7... Gate oxide film, 8.9...
Insulating film, 10... Gate wiring, 11... N-type region,
12... P type Si substrate, 13... First P+ type region, 14... Second P+ type region.

Claims (1)

【特許請求の範囲】[Claims]  第1導電型半導体基板の一主表面に選択的に設けられ
たフィールド絶縁膜で区画された素子形成領域内にゲー
ト絶縁膜を介して設けられたゲート電極と、前記ゲート
電極の両側の前記素子形成領域内にそれぞれ設けられた
第2導電型のソース領域及びドレイン領域と、前記ゲー
ト電極の一端の直下部を含み前記素子形成領域を横断し
て前記第1導電型半導体基板に選択的に設けられた第1
の高濃度第1導電型領域と、前記ゲート電極の他端の直
下部とその近傍を含み前記素子形成領域を横断して前記
第1導電型半導体基板に選択的に設けられた第2導電型
領域と、前記第2導電型領域と前記ソース領域並びにド
レイン領域間に設けられた第2の高濃度第1導電型領域
と、前記第2導電型領域の上方で前記ゲート電極に接続
するゲート配線とを有することを特徴とする絶縁ゲート
電界効果トランジスタ。
A gate electrode provided via a gate insulating film in an element formation region partitioned by a field insulating film selectively provided on one main surface of a first conductivity type semiconductor substrate, and the device on both sides of the gate electrode. selectively provided in the first conductivity type semiconductor substrate across the element formation region including a source region and a drain region of the second conductivity type provided in the formation region, and immediately below one end of the gate electrode; The first
a second conductivity type selectively provided on the first conductivity type semiconductor substrate across the element formation region including directly below and in the vicinity of the other end of the gate electrode; a second high concentration first conductivity type region provided between the second conductivity type region and the source and drain regions; and a gate wiring connected to the gate electrode above the second conductivity type region. An insulated gate field effect transistor comprising:
JP33200389A 1989-12-20 1989-12-20 Insulated-gate field-effect transistor Pending JPH03191577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33200389A JPH03191577A (en) 1989-12-20 1989-12-20 Insulated-gate field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33200389A JPH03191577A (en) 1989-12-20 1989-12-20 Insulated-gate field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03191577A true JPH03191577A (en) 1991-08-21

Family

ID=18250052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33200389A Pending JPH03191577A (en) 1989-12-20 1989-12-20 Insulated-gate field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03191577A (en)

Similar Documents

Publication Publication Date Title
JPH05206470A (en) Insulated gate field effect transistor
KR100326693B1 (en) Power Metal Oxide Semiconductor (MOS) Transistor
JP2825038B2 (en) Semiconductor device
JPH03191577A (en) Insulated-gate field-effect transistor
JPH02862B2 (en)
US20070075368A1 (en) CMOS inverter cell
JPH0222868A (en) Insulated-gate field-effect transistor
JP2978504B2 (en) MOS transistor
JPH0513017Y2 (en)
JPH0247849A (en) Semiconductor device
JP3248791B2 (en) Semiconductor device
JPH0666412B2 (en) Stacked semiconductor integrated circuit
KR950010066A (en) Semiconductor device having thin film wiring and manufacturing method thereof
US6677644B2 (en) Semiconductor integrated circuit having low voltage and high voltage transistors
JPH11220124A (en) Semiconductor device
JPH0255953B2 (en)
JPH0837299A (en) Protective circuit of semiconductor integrated circuit
JPH05110075A (en) Insulated gate type field effect transistor
JPS6146042A (en) Semiconductor device
JPS62211945A (en) Semiconductor device
JP2993041B2 (en) Complementary MOS semiconductor device
JP2000012805A (en) Semiconductor device
JPH04186674A (en) Semiconductor device
JPS6220366A (en) Semiconductor device
JPH04307767A (en) Semiconductor device