JPH03191565A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03191565A
JPH03191565A JP33202989A JP33202989A JPH03191565A JP H03191565 A JPH03191565 A JP H03191565A JP 33202989 A JP33202989 A JP 33202989A JP 33202989 A JP33202989 A JP 33202989A JP H03191565 A JPH03191565 A JP H03191565A
Authority
JP
Japan
Prior art keywords
layer
region
crystal silicon
type
silicon layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33202989A
Other languages
Japanese (ja)
Inventor
Akira Yoshino
明 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP33202989A priority Critical patent/JPH03191565A/en
Publication of JPH03191565A publication Critical patent/JPH03191565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To reduce the size of an element isolation region and to realize a high integration by a method wherein a MOS transistor is formed in a single- crystal silicon layer and a bipolar transistor is formed in a single-crystal silicon layer which has been epitaxially grown selectively only in a region which has been isolated electrically from it via an insulating layer. CONSTITUTION:An SiO2 film 2 which has been formed in a P-type silicon substrate 1 and a single-crystal silicon layer 3 near the surface are formed; and then, a field oxide film 6 is formed; a MOS transistor formation region 7 is partitioned. The field oxide film 6 and the SiO2 film 2 are etched sequentially; an opening part 9 is formed in a bipolar transistor formation region; implanted arsenic is diffused and activated; and an N<+> type buried layer 10 is formed. A single-crystal silicon layer 12 is grown in the opening part 9 by using a selective epitaxial technique; a bipolar transistor is formed inside the single-crystal silicon layer 12; and a MOS transistor is formed in the MOS transistor formation region 7. Thereby, the size of an element isolation region is reduced and a high integration can be realized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特にバイポーラトランジス
タとMOSトランジスタを混載した半導体装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device in which a bipolar transistor and a MOS transistor are mounted together.

〔従来の技術〕[Conventional technology]

従来の半導体装置は、第2図に示すようP型シリコン基
板1の一生面にN+型埋込層21及びP+型埋込層22
をそれぞれ選択的に設けN+型埋込層21及びP+型埋
込層22を含む表面にN−型エピタキシャル層23を成
長させる。次に、N〜型エピタキシャル層23にP型不
純物を選択的に導入してP+型埋込層22を含む領域に
P型ウェル24を形成する。次に、チャネルスト、バ2
5を選択的に設けたP型ウェル24を含む表面に選択的
にフィールド酸化膜6を設けてN+型埋込層21を含む
バイポーラトランジスタ形成領域及びMOSトランジス
タ形成領域を区画する。次に、バイポーラトランジスタ
形成領域にN+型埋込層21に接続するコレクタコンク
ト領域26を形成し、P型ベース領域27及びN+型エ
ミッタ領域28を設けてバイポーラトランジスタを形成
する。また、MOSトランジスタ形成領域のそれぞれに
はゲート酸化膜29を介して設けたゲート電極30に整
合してN+型ソース・ドレイン領域31及びP+型ソー
ス・ドレイン領域32を形成してNチャネルMOSトラ
ンジスタ及びPチャネルMOSトランジスタのそれぞれ
を設はバイポーラトランジスタと0MO8トランジスタ
を混載したBi−CMO8半導体装置を構成する。
A conventional semiconductor device has an N+ type buried layer 21 and a P+ type buried layer 22 on the entire surface of a P type silicon substrate 1, as shown in FIG.
are selectively provided, respectively, and an N- type epitaxial layer 23 is grown on the surface including the N+ type buried layer 21 and the P+ type buried layer 22. Next, P type impurities are selectively introduced into the N~ type epitaxial layer 23 to form a P type well 24 in the region including the P+ type buried layer 22. Next, channel strike, bar 2
A field oxide film 6 is selectively provided on the surface including the P-type well 24 selectively provided with a field oxide film 6 to define a bipolar transistor formation region and a MOS transistor formation region including the N+ type buried layer 21. Next, a collector contact region 26 connected to the N+ type buried layer 21 is formed in the bipolar transistor forming region, and a P type base region 27 and an N+ type emitter region 28 are provided to form a bipolar transistor. Further, in each of the MOS transistor formation regions, an N+ type source/drain region 31 and a P+ type source/drain region 32 are formed in alignment with a gate electrode 30 provided through a gate oxide film 29, thereby forming an N channel MOS transistor and a P+ type source/drain region 32. Each of the P-channel MOS transistors constitutes a Bi-CMO8 semiconductor device in which a bipolar transistor and an 0MO8 transistor are mounted together.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の半導体装置は、シリコン基板内部に多くのPN接
合が存在するため、各トランジスターを電気的に分離す
るための素子分離領域の寸法を数μm以下に縮小する事
が容易でない。また、上記PN接合の一部は寄生サイリ
スター構造を形成しており、いわゆるラッチアップ現象
が生じ得る構造となっている事も半導体装置の高集積化
を限外する主要因子の1つとなっている。
In a conventional semiconductor device, since many PN junctions exist inside a silicon substrate, it is not easy to reduce the size of an element isolation region for electrically isolating each transistor to several μm or less. In addition, a part of the above-mentioned PN junction forms a parasitic thyristor structure, which is a structure that can cause so-called latch-up phenomenon, which is one of the main factors that limits the high integration of semiconductor devices. .

本発明の目的は素子分離領域の寸法を縮小し、且つラッ
チアップ現象を無くして高集積化を向上させた半導体装
置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a semiconductor device in which the dimensions of the element isolation region are reduced and the latch-up phenomenon is eliminated to improve high integration.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、−導電型の半導体基板の中層域
に設けた埋込絶縁層及び前記埋込絶縁層上に設けた単結
晶半導体層と、前記単結晶半導体層に設けて素子形成領
域を区画する複数の素子分離領域と、少くとも一つの前
記素子分離領域及び前記埋込絶縁層を貫通して設けた開
孔部と、前記開孔部に露出した前記半導体基板上に設け
た逆導電型のエピタキシャル層と、前記エピタキシャル
層に設けたバイポーラトランジスタと、前記素子形成領
域に設けたMOSトランジスタとを有する。
The semiconductor device of the present invention includes a buried insulating layer provided in a middle layer region of a - conductivity type semiconductor substrate, a single crystal semiconductor layer provided on the buried insulating layer, and an element formation region provided in the single crystal semiconductor layer. a plurality of element isolation regions for partitioning a plurality of element isolation regions; an opening provided through at least one of the element isolation regions and the buried insulating layer; and an inverse region provided on the semiconductor substrate exposed in the opening It has a conductive type epitaxial layer, a bipolar transistor provided in the epitaxial layer, and a MOS transistor provided in the element formation region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(e)は本発明の一実施例の製造方法を
説明するための工程順に示した半導体チップの断面図で
ある。
FIGS. 1A to 1E are cross-sectional views of a semiconductor chip shown in order of steps for explaining a manufacturing method according to an embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板l
の一生面に高濃度の酸素イオンを加速エネルギー180
keV、 ドーズ量2.2 X 10 ”cm−”基板
温度約550℃の条件でイオン注入した後、表面に気相
成長法で酸化シリコン膜を0.3μmの厚さに堆積し、
1300℃の窒素雰囲気中で6時間の7ニールを行い、
注入損傷を回復させ、P型シリコン基板の内部に埋込ま
れた厚さ0.5μmの5iCh層2及び表面近傍に厚さ
0.1μmの単結晶シリコン層3を形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate l
The energy of accelerating high concentration of oxygen ions on the life surface of 180
keV, dose amount 2.2 x 10 "cm-" After ion implantation at a substrate temperature of approximately 550°C, a silicon oxide film was deposited on the surface to a thickness of 0.3 μm by vapor phase epitaxy.
Seven anneals for 6 hours were performed in a nitrogen atmosphere at 1300°C.
After recovering the implantation damage, a 0.5 μm thick 5iCh layer 2 buried inside the P-type silicon substrate and a 0.1 μm thick single crystal silicon layer 3 near the surface are formed.

次に、第1図(b)に示すように、単結晶シリコン層3
の表面に熱酸化膜4を設けた後、熱酸化膜4の上に選択
的に窒化シリコン膜5を設け、窒化シリコン膜5をマス
クとして単結晶シリコン層3を選択的に酸化し、バイポ
ーラトランジスタ形成領域及びMOSトランジスタの素
子分離領域としてSi0g層2に達するフィールド酸化
膜6を形成し、MOSトランジスタ形成領域7を区画す
る。
Next, as shown in FIG. 1(b), a single crystal silicon layer 3
After providing a thermal oxide film 4 on the surface of the bipolar transistor, a silicon nitride film 5 is selectively provided on the thermal oxide film 4, and the single crystal silicon layer 3 is selectively oxidized using the silicon nitride film 5 as a mask. A field oxide film 6 reaching the SiOg layer 2 is formed as a formation region and an element isolation region of a MOS transistor, and a MOS transistor formation region 7 is defined.

次に、第1図(C)に示すように、全面にホトレジスト
膜8を設けてパターニングし、ホトレジスト膜8をマス
クとしてフィールド酸化膜6及びSiOx層2を反応性
イオンエツチング技術により順次エツチングしてバイポ
ーラトランジスタ形成領域に開口部9を設け、P型シリ
コン基板1の表面を露出させる。
Next, as shown in FIG. 1C, a photoresist film 8 is provided and patterned on the entire surface, and the field oxide film 6 and SiOx layer 2 are sequentially etched by reactive ion etching technology using the photoresist film 8 as a mask. An opening 9 is provided in the bipolar transistor formation region to expose the surface of the P-type silicon substrate 1.

次に、第1図(d)に示すように、ホトレジスト膜8を
マスクとしてヒ素イオンを加速エネルギー70keV、
  ドーズ量5 X 10 ”am−2の条件でイオン
注入する。次に、ホトレジスト膜8を除去した後、数%
の酸素ガスを含む窒素ガス雰囲気中で1150℃の温度
、3時間の熱処理を行い、注入したヒ素の拡散及び活性
化によりN+型埋込層10を形成し、同時にP型シリコ
ン基板lの表面に熱酸化膜11を50nm程度の厚さに
形成すると共にヒ素イオンの注入損傷を回復させる。
Next, as shown in FIG. 1(d), arsenic ions are accelerated with an energy of 70 keV using the photoresist film 8 as a mask.
Ion implantation is performed at a dose of 5 x 10" am-2. Next, after removing the photoresist film 8, a few percent
A heat treatment is performed at a temperature of 1150° C. for 3 hours in a nitrogen gas atmosphere containing oxygen gas, and the implanted arsenic is diffused and activated to form an N+ type buried layer 10, and at the same time, on the surface of the P type silicon substrate l. A thermal oxide film 11 is formed to a thickness of about 50 nm, and damage caused by arsenic ion implantation is recovered.

次に、第1図(e)に示すように、熱酸化膜11を希釈
したHF液で除去した後、窒化硅素膜5を加熱したリン
酸で除去し、選択エピタキシャル技術により開孔部9の
N+型埋込層10の表面に単結晶シリコン層12を成長
させ開孔部9の内部を充填する。
Next, as shown in FIG. 1(e), after removing the thermal oxide film 11 with diluted HF solution, the silicon nitride film 5 is removed with heated phosphoric acid, and the openings 9 are formed using selective epitaxial technique. A single crystal silicon layer 12 is grown on the surface of the N+ type buried layer 10 to fill the inside of the opening 9.

以後、単結晶シリコン層12内にバイポーラトランジス
タを形成し、MOSトランジスタ形成領域にPチャネル
MO8トランジスタ及びNチャネルMO8トランジスタ
をそれぞれ形成し、Bi−CMO8型半導体装置を構成
する。
Thereafter, a bipolar transistor is formed in the single-crystal silicon layer 12, and a P-channel MO8 transistor and an N-channel MO8 transistor are formed in the MOS transistor formation region, thereby forming a Bi-CMO8 type semiconductor device.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、半導体基板の中電気的に
完全に分離された領域だけに、選択的にエピタキシャル
成長した単結晶シリコン層にバイポーラトランジスター
を形成することにより、素子分離領域の寸法を縮減でき
、ラッチアップ現象の原因となる寄生サイリスター構造
を消滅できる結果、Bi−CMO8半導体装置の高集積
化を実現できるという効果を有する。
As explained above, the present invention reduces the dimensions of the element isolation region by forming a bipolar transistor in a single crystal silicon layer that is selectively epitaxially grown only in an electrically completely isolated region of a semiconductor substrate. As a result, the parasitic thyristor structure that causes the latch-up phenomenon can be eliminated, and as a result, high integration of Bi-CMO8 semiconductor devices can be achieved.

また、絶縁体上の単結晶シリコン層にMOS)ランシス
ターを形成することにより、ソース・ドレインの寄生容
量、配線Q基板間の寄生容量を低減でき、且つ従来のB
i−0MO8で存在していた多くのPN接合を消滅させ
られるため、各接合に起因する寄生容量を低減できる結
果、デバイスをより高速化できる、という効果がある。
In addition, by forming a MOS (MOS) run sister in a single crystal silicon layer on an insulator, the parasitic capacitance between the source and drain and the parasitic capacitance between the wiring Q and the substrate can be reduced.
Since many PN junctions that existed in i-0MO8 can be eliminated, the parasitic capacitance caused by each junction can be reduced, resulting in the effect that the device can be made faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(e)は本発明の一実施例の製造方法を
説明するための工程順に示した半導体チップの断面図、
第2図は従来の半導体装置の一例を示す断面図である。 1・・・・・・P型シリコン基板、2・・・・・・Si
O2層、3・・・・・・単結晶シリコン層、4・・・・
・・熱酸化膜、5・・・・・・窒化シリコン膜、6・・
・・・・フィールド酸化膜、7・・・・・・MOS)ラ
ンシスタ形成領域、8・・・・・・ホトレジスト膜、9
・・・・・・開孔部、10・・・・・・N+型埋込層、
11・・・・・・熱酸化膜、12・・・・・・単結晶シ
リコン層、21・・・・・・N+型埋込層、22・・・
・・・P+型埋込層、23・・・・・・N−エピタキシ
ャル層、24・・・・・・P型ウェル、25・・・・・
・チャネルストッパ、26・・・・・・コレクタコンタ
クト領域、27・・・・・・P型ベース領域、28・・
・・・・N+型エミッタ領域、29・・・・・・ゲート
酸化膜、30・・・・・・ゲート電極、31・・・・・
・N+型ソース・ドレイン領域、32・・・・・・P+
ソース・ドレイン領域。
FIGS. 1(a) to 1(e) are cross-sectional views of a semiconductor chip shown in the order of steps for explaining a manufacturing method according to an embodiment of the present invention;
FIG. 2 is a sectional view showing an example of a conventional semiconductor device. 1...P-type silicon substrate, 2...Si
O2 layer, 3... Single crystal silicon layer, 4...
...Thermal oxide film, 5...Silicon nitride film, 6...
...Field oxide film, 7...MOS) transistor formation region, 8...Photoresist film, 9
...Opening part, 10...N+ type buried layer,
11... Thermal oxide film, 12... Single crystal silicon layer, 21... N+ type buried layer, 22...
...P+ type buried layer, 23...N- epitaxial layer, 24...P type well, 25...
- Channel stopper, 26... Collector contact region, 27... P-type base region, 28...
...N+ type emitter region, 29...gate oxide film, 30...gate electrode, 31...
・N+ type source/drain region, 32...P+
Source/drain area.

Claims (1)

【特許請求の範囲】[Claims]  一導電型の半導体基板の中層域に設けた埋込絶縁層及
び前記埋込絶縁層上に設けた単結晶半導体層と、前記単
結晶半導体層に設けて素子形成領域を区画する複数の素
子分離領域と、少くとも一つの前記素子分離領域及び前
記埋込絶縁層を貫通して設けた開孔部と、前記開孔部に
露出した前記半導体基板上に設けたエピタキシャル層と
、前記エピタキシャル層に設けたバイポーラトランジス
タと、前記素子形成領域に設けたMOSトランジスタと
を有することを特徴とする半導体装置。
A buried insulating layer provided in a middle layer region of a semiconductor substrate of one conductivity type, a single crystal semiconductor layer provided on the buried insulating layer, and a plurality of element isolations provided in the single crystal semiconductor layer to partition element formation regions. an opening provided through at least one of the element isolation regions and the buried insulating layer; an epitaxial layer provided on the semiconductor substrate exposed in the opening; 1. A semiconductor device comprising: a bipolar transistor provided; and a MOS transistor provided in the element formation region.
JP33202989A 1989-12-20 1989-12-20 Semiconductor device Pending JPH03191565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33202989A JPH03191565A (en) 1989-12-20 1989-12-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33202989A JPH03191565A (en) 1989-12-20 1989-12-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03191565A true JPH03191565A (en) 1991-08-21

Family

ID=18250343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33202989A Pending JPH03191565A (en) 1989-12-20 1989-12-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03191565A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310882A (en) * 2006-06-26 2006-11-09 Toshiba Corp Manufacturing method of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310882A (en) * 2006-06-26 2006-11-09 Toshiba Corp Manufacturing method of semiconductor device

Similar Documents

Publication Publication Date Title
US4918510A (en) Compact CMOS device structure
JPH0355984B2 (en)
JP3258123B2 (en) Semiconductor device
JPS62155552A (en) Simultaneous manufacture of bipolar transistor and cmos transistor
JPS63199463A (en) Manufacture of bipolar transistor
JPH0557741B2 (en)
JPH077773B2 (en) Method for manufacturing semiconductor device
JPH03191565A (en) Semiconductor device
KR100259586B1 (en) Method for manufacturing semiconductor device
JP3097095B2 (en) Method for manufacturing semiconductor device
JPS5837990B2 (en) Manufacturing method of semiconductor device
JP2697631B2 (en) Method for manufacturing semiconductor device
JPS632143B2 (en)
JPH0239091B2 (en)
JP2842075B2 (en) Method for manufacturing semiconductor device
JPS61142755A (en) Manufacture of semiconductor device
JP2892436B2 (en) Method for manufacturing semiconductor device
JPS59217363A (en) Manufacture of bi-polar type semiconductor device
JPH05198754A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS60127756A (en) Complementary field effect semiconductor device
JPH10289961A (en) Method of manufacturing semiconductor device
JPH0346979B2 (en)
JPS62123762A (en) Manufacture of semiconductor device
JPS6376470A (en) Manufacture of semiconductor device