JPH03191547A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03191547A
JPH03191547A JP1332036A JP33203689A JPH03191547A JP H03191547 A JPH03191547 A JP H03191547A JP 1332036 A JP1332036 A JP 1332036A JP 33203689 A JP33203689 A JP 33203689A JP H03191547 A JPH03191547 A JP H03191547A
Authority
JP
Japan
Prior art keywords
semiconductor
semiconductor substrate
bonding wire
potential
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1332036A
Other languages
Japanese (ja)
Inventor
Yukihiko Matsuda
松田 幸彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1332036A priority Critical patent/JPH03191547A/en
Publication of JPH03191547A publication Critical patent/JPH03191547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Dicing (AREA)

Abstract

PURPOSE:To prevent a short circuit even when a bonding wire comes into contact with a semiconductor element by any chance after the element has been assembled in a package or the like by a method wherein a dicing region is insulated electrically form a potential of a semiconductor substrate. CONSTITUTION:Ions using oxygen as a source are implanted into a region corresponding to a dicing line 3 during a semiconductor-device manufacturing process under conditions, e.g. at an acceleration energy of 250keV and at a dose of 2X10<16>cm<-2>. As a result, a region as a dicing line 3 is constituted of an insulator layer 4. Thereby, when a bonding wire 9 comes into contact with a semiconductor substrate 6 by a loop control error of the wire or by an external force such as a shock or the like, an electric signal of the bonding wire 9 is not short-circuited with a potential of the semiconductor substrate 6 because a contact part P is constituted of the insulator layer 4.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置に関し、特に半導体装置のダイシン
グ線の領域の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to the structure of a dicing line region of a semiconductor device.

〔従来の技術〕[Conventional technology]

従来より半導体装置は半導体ウェーハからダイシングソ
ー等を用いて個々の半導体素子に分断される。この時、
半導体素子KFiダイシングソーの切断切シしろに相当
する部分が必要であり、通常この部分は第5図に示す半
導体素子2が形成される。フィールド酸化膜5の間に半
導体基板6が無量した領域のダイシング線3aが形成さ
れている。
Conventionally, semiconductor devices are cut from a semiconductor wafer into individual semiconductor elements using a dicing saw or the like. At this time,
A portion corresponding to the cutting margin of the semiconductor device KFi dicing saw is required, and the semiconductor device 2 shown in FIG. 5 is normally formed in this portion. A dicing line 3a is formed between the field oxide films 5 in an area in which a semiconductor substrate 6 is not covered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置は、ダイシング線が半導体基
板が産出しているため、半導体基板の電位がダイシング
線の表面にあられれている。
In the conventional semiconductor device described above, since the dicing line is formed by the semiconductor substrate, the potential of the semiconductor substrate is applied to the surface of the dicing line.

このため第6図に示すように、半導体素子2がリードフ
レーム7上にマウントされてかつボンディングワイヤ9
を用いてボールボンディングされている半導体装置につ
いて述べると、ボンディングワイヤ9が適正にループコ
ントロールされなかったシ、ボンディング後のワイヤに
衝撃が加わり九場合、ボンティングワイヤ9は第6図の
部分Pbで半導体基板と接触し、ボンディングワイヤの
信号電位は、半導体基板6の電位と短絡してしまという
欠点があった。
Therefore, as shown in FIG. 6, the semiconductor element 2 is mounted on the lead frame 7 and the bonding wires 9
Regarding a semiconductor device that is ball-bonded by using the bonding wire 9, if the bonding wire 9 is not properly loop-controlled and an impact is applied to the wire after bonding, the bonding wire 9 will be damaged at the portion Pb in FIG. There is a drawback that the signal potential of the bonding wire is short-circuited with the potential of the semiconductor substrate 6 due to contact with the semiconductor substrate.

C線題を解決するための手段〕 本発明の半導体装置は、ダイシング線が半導イ基板の電
位と絶縁されている構造であり、酸素″窒素をソースと
したイオン注入がPN接合を利メして形成される。
Means for Solving the C Line Problem] The semiconductor device of the present invention has a structure in which the dicing line is insulated from the potential of the semiconductor substrate, and ion implantation using oxygen and nitrogen as sources utilizes a PN junction. It is formed by

〔実施例〕〔Example〕

次に本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(aifi半導体装置の製造工程中の半導体ウェ
ーハの平面図である。この半導体ウェーハ1ね同一の半
導体素子2の集ま9で#f&されており、これらの半導
体素子2はダイシング線3を境にタイシングンー等で個
々の半導体素子2に分断さねパッケージ組立等に供され
る。
FIG. 1 is a plan view of a semiconductor wafer during the manufacturing process of an AIFI semiconductor device. This semiconductor wafer 1 is made up of a group 9 of identical semiconductor elements 2, and these semiconductor elements 2 are arranged along a dicing line 3. After that, the semiconductor elements 2 are divided into individual semiconductor elements 2 using a cutting machine or the like, and then used for package assembly or the like.

第1図(b)は第1図ダイシ/グ線3を含む部分Aを拡
大平面図である。
FIG. 1(b) is an enlarged plan view of a portion A including the dicing line 3 in FIG.

第1図(C1は第1図(b)のB−B’線断面図である
FIG. 1 (C1 is a sectional view taken along line BB' in FIG. 1(b).

半導体基板6上に通常用いられる方法によりフィールド
酸化膜5が形成される。
Field oxide film 5 is formed on semiconductor substrate 6 by a commonly used method.

本実施例では、ダイシング線3に該当する領域に、半導
体装置製造プロセスの中で酸素をソースとするイオン注
入を例えば加速エネルギ−250K e V 、ドーズ
量2×1o cRの条件で行うことにより、ダイシング
1lJ3の領域が絶縁物層4で構成されるようにする。
In this embodiment, ion implantation using oxygen as a source is performed in the region corresponding to the dicing line 3 during the semiconductor device manufacturing process under conditions of an acceleration energy of 250 K e V and a dose of 2×1ocR, for example. The region of the dicing 1lJ3 is made to be composed of the insulator layer 4.

ここで絶縁物層4を形成するために行うイオン注入のソ
ースは酸素に限定するものでなく、絶縁物層4が構成さ
れればよいので窒素等のソースの使用も考えられる。
Here, the source of the ion implantation performed to form the insulating layer 4 is not limited to oxygen, but it is also possible to use a source of nitrogen or the like as long as the insulating layer 4 is formed.

第2図は第1図の半導体素子をリードフレーム7上にマ
ウントした例であシ、ポンディングパッド8上にホンデ
ィングワイヤー9がボールボンディングされている。
FIG. 2 shows an example in which the semiconductor element shown in FIG. 1 is mounted on a lead frame 7, and a bonding wire 9 is ball-bonded onto a bonding pad 8.

この時、ボンティングワイヤ9がワイヤのループコント
ロールの誤りや衝撃等の外力により半導体基板6と接触
した場合、接触部分Pは絶縁物層4となるため、ボンデ
ィングワイヤ9の電気信号と半導体基板6の電位は短絡
を起すことはない。
At this time, if the bonding wire 9 comes into contact with the semiconductor substrate 6 due to an error in the loop control of the wire or an external force such as an impact, the contact portion P becomes the insulator layer 4, so that the electrical signal of the bonding wire 9 and the semiconductor substrate 6 potential will not cause a short circuit.

第3図は本発明の第2の実施例の平面図である。FIG. 3 is a plan view of a second embodiment of the invention.

本実施例ではダイシング線3の領域が基板が露出した部
分、すなわちP型基板無比領域11とN−ウェル領域1
2で構成される。第4図は第3図の半導体素子を用いた
マウント工程を説明するための平面図である。
In this embodiment, the area of the dicing line 3 is the exposed area of the substrate, that is, the P-type substrate unmatched area 11 and the N-well area 1.
Consists of 2. FIG. 4 is a plan view for explaining a mounting process using the semiconductor element of FIG. 3.

第4図かられかるように、ヘーウェル領域12けボンデ
ィングワイヤ9の直下に位置し、こうすることでボンデ
ィングワイヤ9と半導体基板6との接触部分P3はヘー
ウエル領域12であ夛ボンディングワイヤ9の電位はP
型の半導体基板6と逆/<イアス状態であるので、ポン
ディングワイヤ9が半導体基板6に接触しても短絡をお
こすことはない。
As can be seen from FIG. 4, the Hewell region 12 is located directly under the bonding wire 9, so that the contact portion P3 between the bonding wire 9 and the semiconductor substrate 6 is at the Hewell region 12 and the potential of the bonding wire 9 is increased. is P
Since the bonding wire 9 is in a reverse/< bias state with respect to the semiconductor substrate 6 of the type, a short circuit will not occur even if the bonding wire 9 contacts the semiconductor substrate 6.

本例では接触部分1oがN−ウェルで構成される場合を
例示したがN型導電型の層であれば何でもよい。また、
基板がN型であれば接触部分1゜dP型型室電型層で形
成すべきであることは言うまでもない。
In this example, the case where the contact portion 1o is constituted by an N-well is illustrated, but any layer may be used as long as it is an N-type conductivity type layer. Also,
It goes without saying that if the substrate is of N type, the contact portion should be formed of a 1.deg.P type layer.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は半導体素子をウェー”カラ
(ml々の素子に分断するためにm会式f1+ダイシン
グ領域を半導体基板の電位と電気的に絶縁するので、パ
ッケージ等に組立てた場合にボンディングワイヤが半導
体素子に万が一接触しても短絡を起さないという効果が
ある。
As explained above, the present invention electrically insulates the dicing region from the potential of the semiconductor substrate in order to divide the semiconductor device into wafer (ml) devices, so that when assembled into a package etc. This has the effect that even if the bonding wire should come into contact with a semiconductor element, a short circuit will not occur.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al〜(aは本発明の第1の実施例のウェーハ
の平面図、A部分の拡大図及びB−B’線断面図、第2
図は第1図の半導体素子のマウント工程を説明するため
の断面図、第3図は本発明の第2の実施例のウェーハの
部分平面図、第4図は第3図の半導体素子のマウント工
程を説明するための平面図、第5図は従来の半導体素子
の一例の断面図、第6図は第5図の半導体素子のボンデ
ィング工程を説明するだめの断面図である。 1・・・半導体ウェーハ、2・・・半導体素子、3・・
・ダイシング線、4・・・絶縁物層、5・・・フィール
ド酸化膜、6・・・半導体基板、7・・・リードフレー
ム、8・・・ポンデイングパツド、9・・・ポンディン
グワイヤ、1ハ、、−位&II並バ 11−D Jul
督招り山刺繍 噌^・・・へ ウェル領域。
FIG.
3 is a partial plan view of a wafer according to the second embodiment of the present invention, and FIG. 4 is a sectional view for explaining the mounting process of the semiconductor device shown in FIG. 3. FIG. 5 is a plan view for explaining the process, FIG. 5 is a cross-sectional view of an example of a conventional semiconductor element, and FIG. 6 is a cross-sectional view for explaining the bonding process of the semiconductor element of FIG. 1... Semiconductor wafer, 2... Semiconductor element, 3...
- Dicing line, 4... Insulator layer, 5... Field oxide film, 6... Semiconductor substrate, 7... Lead frame, 8... Ponding pad, 9... Ponding wire , 1 C,, - place & II parallel bar 11-D Jul
Embroidery of Mt. beckoning mountain 噌^...Hewell area.

Claims (1)

【特許請求の範囲】 1、半導体素子のダイシング領域が半導体基板の電位と
絶縁されていることを特徴とする半導体装置。 2、ダイシング領域は酸素や窒素等のイオンをソースと
するイオン注入で形成されることを特徴とする第1項記
載の半導体装置。 3、ダイシング領域は、PN接合の逆バイアスを利用す
るものであることを特徴とする第1項記載の半導体装置
[Claims] 1. A semiconductor device characterized in that a dicing region of a semiconductor element is insulated from a potential of a semiconductor substrate. 2. The semiconductor device according to item 1, wherein the dicing region is formed by ion implantation using ions such as oxygen or nitrogen as a source. 3. The semiconductor device according to item 1, wherein the dicing region utilizes a reverse bias of a PN junction.
JP1332036A 1989-12-20 1989-12-20 Semiconductor device Pending JPH03191547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1332036A JPH03191547A (en) 1989-12-20 1989-12-20 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1332036A JPH03191547A (en) 1989-12-20 1989-12-20 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03191547A true JPH03191547A (en) 1991-08-21

Family

ID=18250422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1332036A Pending JPH03191547A (en) 1989-12-20 1989-12-20 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03191547A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188477A (en) * 1992-12-21 1994-07-08 Showa Denko Kk Magnetoelectric transducer
US5585667A (en) * 1994-12-23 1996-12-17 National Semiconductor Corporation Lead frame for handling crossing bonding wires

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06188477A (en) * 1992-12-21 1994-07-08 Showa Denko Kk Magnetoelectric transducer
US5585667A (en) * 1994-12-23 1996-12-17 National Semiconductor Corporation Lead frame for handling crossing bonding wires

Similar Documents

Publication Publication Date Title
EP0965141B1 (en) Method of providing a gettering scheme in the manufacture of silicon-on-insulator (soi) integrated circuits
US4040078A (en) Opto-isolators and method of manufacture
JPS62273736A (en) Sealing structure for semiconductor integrated circuit device
US4265685A (en) Utilizing simultaneous masking and diffusion of peripheral substrate areas
EP0170268B1 (en) Complementary mos integrated circuit having means for preventing latch-up phenomenon
JP2003092408A (en) Method for manufacturing semiconductor integrated circuit
US5198880A (en) Semiconductor integrated circuit and method of making the same
JPH03191547A (en) Semiconductor device
US5290711A (en) Method for fabricating semiconductor devices which lessens the effect of electrostatic discharge
JPH06177242A (en) Semiconductor integrated circuit device
US8329548B2 (en) Field transistors for electrostatic discharge protection and methods for fabricating the same
EP0290305B1 (en) Cmos integrated circuit having a top-side substrate contact and method for making same
JPH0492466A (en) Semiconductor device and manufacture thereof
JP3686226B2 (en) Compound semiconductor device
JPS649742B2 (en)
KR0169471B1 (en) Bipolar bump transistor and method for its manufacture
JPH1084073A (en) Semiconductor device
EP0404180B1 (en) Semiconductor integrated circuit and method of making the same
JP2948256B2 (en) Method for manufacturing semiconductor memory device
JP3133425B2 (en) Semiconductor device and manufacturing method thereof
JPH0237112B2 (en)
JP3174614B2 (en) Semiconductor device
JPH079932B2 (en) Semiconductor device
JPS6098666A (en) Semiconductor memory device
JP2001127070A (en) Semicnductor device