JPH03186103A - Boiler controller - Google Patents

Boiler controller

Info

Publication number
JPH03186103A
JPH03186103A JP32291089A JP32291089A JPH03186103A JP H03186103 A JPH03186103 A JP H03186103A JP 32291089 A JP32291089 A JP 32291089A JP 32291089 A JP32291089 A JP 32291089A JP H03186103 A JPH03186103 A JP H03186103A
Authority
JP
Japan
Prior art keywords
signal
water supply
water
boiler
function generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32291089A
Other languages
Japanese (ja)
Inventor
Ichiro Tashiro
田代 一郎
Akira Takami
彰 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP32291089A priority Critical patent/JPH03186103A/en
Publication of JPH03186103A publication Critical patent/JPH03186103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

PURPOSE:To stabilize boiler control at the time when the boiler operation is switched from wet operation to dry operation by providing a supply water bias addition circuit which adds to a lowest supply water signal a supply water bias addition signal that is outputted based on the increase in a water-fuel ratio master signal and corrected for gain. CONSTITUTION:When the quantity of required steam increases at the final stage of wet operation, water-fuel ratio signal 28 is increased and the combustion flow rate by a combustion valve 3 is increased in order to prevent a fall in the pressure of main steam. On the other hand supply water bias signal 56 is obtained by inputting the water-fuel ratio master signal 28 into a function generator 57, and by inputting the supply water bias signal 56 to a multiplier 58 to which gain correction signal 59 from a function generator is inputted so as to input power generation requirement signal 22 supply water bias addition signal 61 is obtained with gain correction made, and supply water bias addition signal 61 is added through a variation limitter 63 to a lowest supply signal 38 from a lowest supply water signal generating device 37 by a multiplier 64. With this arrangement the additional increase to boiler is stabilized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は変圧貫流ボイラにおけるウェット運転からドラ
イ運転に切替わる際のボイラ制御の安定を図るようにし
たボイラ制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a boiler control device designed to stabilize boiler control when switching from wet operation to dry operation in a variable pressure once-through boiler.

[従来の技術1 第5図は変圧貫流ボイラの構成と従来の制御回路の一例
を示すもので、図中1はボイラの火炉であり、該火炉I
には燃料が燃料管2及び燃料弁3を介して供給されると
共に、給水ポンプ4からの給水か給水管5、節炭器(E
CO)Bを介して供給されており、火炉lにて加熱され
た気水は、気水分離器7に導かれて蒸気と熱水に分離さ
れ、蒸気は蒸気管8により過熱器9.lO等を介して発
電機11を回すタービン12に供給されて仕事をするよ
うになっている。図中13は蒸気管8から補助蒸気を取
り出す補助蒸気取出管、14は取出弁を示す。
[Prior art 1] Figure 5 shows an example of the configuration of a variable pressure once-through boiler and a conventional control circuit. In the figure, 1 is the furnace of the boiler, and the furnace I
is supplied with fuel via a fuel pipe 2 and a fuel valve 3, and is also supplied with water from a water supply pump 4, a water supply pipe 5, and an energy saver (E
The steam and water heated in the furnace I are led to a steam separator 7 and separated into steam and hot water, and the steam is passed through a steam pipe 8 to a superheater 9. It is supplied to the turbine 12 which rotates the generator 11 via lO etc. to do work. In the figure, reference numeral 13 indicates an auxiliary steam extraction pipe for extracting auxiliary steam from the steam pipe 8, and 14 indicates an extraction valve.

一方気水分#を器7にて分離された熱水は分離タンク1
5に導かれ、循環ポンプ16及びQ弁17を有した循環
流路18を介して前記給水管5に循環されるようになっ
ており、前記Q弁17は前記分離タンク15内の水位が
常に一定のレベル範囲内に維持されるよう自動制御され
るようになっている。
On the other hand, hot water separated from steam and moisture # in vessel 7 is transferred to separation tank 1.
5, the water is circulated to the water supply pipe 5 through a circulation passage 18 having a circulation pump 16 and a Q valve 17, and the Q valve 17 ensures that the water level in the separation tank 15 is always maintained. It is automatically controlled to maintain within a certain level range.

火炉1に供給された給水はその一部が蒸気となって気水
分離器7に導かれて気水分離され、蒸気は蒸気管8に、
又熱水は分離タンク15に導かれ、分離タンクI5の熱
水は循環ポンプ16により給水管5に循環されるように
なっている。
A portion of the feed water supplied to the furnace 1 becomes steam and is led to a steam-water separator 7 where steam and water are separated, and the steam is transferred to a steam pipe 8.
The hot water is also led to a separation tank 15, and the hot water in the separation tank I5 is circulated to the water supply pipe 5 by a circulation pump 16.

ボイラの起動から所要の期間は、火炉パス通過流量がボ
イラ最大負荷蒸発量の25%(火炉パス最低通過流量)
となるように給水量が維持された状態で徐々に加熱が行
われ、主蒸気圧力が例えば75)cg/cjにむると、
タービンに蒸気流入を開始したのちタービンL2に発電
機11が接続され(発電機併入という)、以後上記火炉
パス最低通過流量が維持された状態で上記主蒸気圧力が
75kg/cjに維持されるようにウェット運転が行わ
れる。
During the required period from boiler startup, the furnace pass flow rate is 25% of the boiler maximum load evaporation amount (furnace pass minimum flow rate).
Heating is performed gradually while the water supply amount is maintained so that the main steam pressure reaches, for example, 75) cg/cj,
After the steam starts flowing into the turbine, the generator 11 is connected to the turbine L2 (referred to as generator connection), and from then on, the main steam pressure is maintained at 75 kg/cj while the minimum passing flow rate of the furnace path is maintained. Wet operation is performed as follows.

ウェット運転時の初期の段階では蒸発量が少ないために
、熱水の循環量が多いが、発電量指令の増加によって燃
料弁3による燃料の供給量が増加されて行くと蒸気量は
増加し、その分分離タンク15に導かれる熱水の量が減
少して熱水循環量は減少する。
At the initial stage of wet operation, the amount of evaporation is small, so the amount of hot water circulated is large, but as the amount of fuel supplied by the fuel valve 3 increases due to the increase in the power generation command, the amount of steam increases, The amount of hot water introduced to the separation tank 15 is correspondingly reduced, and the amount of hot water circulated is reduced.

気水分離器7からの熱水の量が減少して、分離タンク1
5のレベルが設定値以下の状態が所要時間続いた時、或
いはQ弁17が所要の時間継続して遮断されたときドラ
イ状態として、ボイラの制御がウェット運転からドライ
運転に切替えられるようになっている。
The amount of hot water from the steam-water separator 7 decreases, and the separation tank 1
When the level of 5 remains below the set value for the required time, or when the Q valve 17 is continuously shut off for the required time, the boiler control is switched from wet operation to dry operation as a dry state. ing.

前記蒸気管8には、タービン12入口の主蒸気圧力を検
出する圧力計19が設けられており、該圧力jt19の
主蒸気圧力信号2oが引算器21に入力されると共に、
発電量要求信号(MWD)22を関数発生器23によっ
て変換した主蒸気圧力指令信号24を前記引算器21に
入力することにより引算し、その引算した差の信号25
を切替器26を介してPIシコンローラ27に入力して
、水燃比マスター信号28を出力させるようにしている
The steam pipe 8 is provided with a pressure gauge 19 that detects the main steam pressure at the inlet of the turbine 12, and the main steam pressure signal 2o of the pressure jt19 is input to the subtracter 21, and
The main steam pressure command signal 24 obtained by converting the power generation demand signal (MWD) 22 by the function generator 23 is subtracted by inputting it to the subtracter 21, and the subtracted difference signal 25 is obtained.
is input to the PI control roller 27 via the switch 26, and a water-fuel ratio master signal 28 is output.

又、前記発電量要求信号22を後述する加算器33を介
して関数発生器29に導くことにより燃料プログラム信
号30に変換し、該燃料プログラム信号30により燃料
流量制御器3゛を介し前記燃料弁3をH節して火炉Iに
供給する燃料を制御すると共に、前記燃料プログラム信
号30に加算器31を介して前記水燃比マスター信号2
8を加算し、その加算信号31’により、前記主蒸気圧
力を一定に制御するようにしている。
Further, the power generation amount request signal 22 is converted into a fuel program signal 30 by leading it to a function generator 29 via an adder 33, which will be described later. 3 to control the fuel supplied to the furnace I, and the water-fuel ratio master signal 2 is added to the fuel program signal 30 via an adder 31.
8 is added, and the main steam pressure is controlled to be constant by the addition signal 31'.

更に、前記切替器2Gは、ボイラのドライ運転時、切替
信号Sにより引算器21からの差の信号25を断りて、
ボイラ出口の温度偏差信号32をPIシコンローラ27
に入力するように切替えを行うようになっている。
Furthermore, the switching device 2G rejects the difference signal 25 from the subtractor 21 by the switching signal S during dry operation of the boiler,
The temperature deviation signal 32 at the boiler outlet is sent to the PI control roller 27.
It is designed to switch so that it is input to .

又、前記発電量要求信号22を、加算器33を経て関数
発生器34に導くことにより給水プログラム信号35に
変換し、該給水プログラム信号35を高信号選択器36
に入力する。高信号選択器36には最低給水信号発生器
37からの最低給水信号38が入力されており、前記給
水プログラム信号35との比較により大きい方の信号が
選択されて出力されるようになっている。通常ボイラの
ウェット運転時は、火炉lの最大負荷時の25%の給水
を保持するようにしており、前記最低給水信号発生器3
7はこの25%給水の信号38を出力するようになって
いる。
Further, the power generation request signal 22 is converted into a water supply program signal 35 by leading it to a function generator 34 via an adder 33, and the water supply program signal 35 is converted to a high signal selector 36.
Enter. The minimum water supply signal 38 from the minimum water supply signal generator 37 is input to the high signal selector 36, and the higher signal is selected and outputted by comparison with the water supply program signal 35. . Normally, during wet operation of the boiler, 25% of the water supply at the maximum load of the furnace 1 is maintained, and the minimum water supply signal generator 3
7 outputs this 25% water supply signal 38.

前記高信号選択器3Bにて選択された給水指令信号39
は、引算器40に入力され、又前記給水管5の給水ポン
プ4出口に設けた流量計41からの流量信号42と、循
環流路18のQ弁17出口に設けた流量計43からの流
量信号44が加算器45にて加算されて、その加算され
た実流量信号46が前記引算器40に入力され、前記給
水指令信号39との差の信号47を給水流量制御器4°
を介して前記給水ポンプ4に出力し、実流量信号4Gか
給水指令信号39に一致するように給水ポンプ4の作動
を制御するようにしている。
Water supply command signal 39 selected by the high signal selector 3B
is input to the subtractor 40, and the flow rate signal 42 from the flow meter 41 provided at the outlet of the water supply pump 4 of the water supply pipe 5 and the flow rate signal 43 provided at the outlet of the Q valve 17 of the circulation channel 18 are The flow rate signal 44 is added by an adder 45, the added actual flow rate signal 46 is inputted to the subtracter 40, and the difference signal 47 from the water supply command signal 39 is sent to the water supply flow rate controller 4°.
The water supply pump 4 is outputted to the water supply pump 4 via the flow rate signal 4G, and the operation of the water supply pump 4 is controlled so that the actual flow rate signal 4G matches the water supply command signal 39.

又、前記引算器21からの差の信号25を、PIシコン
ローラ48及び切替器49を介して前記加算器33に入
力し、前記関数発生器29.34に導いて燃料プログラ
ム信号30及び給水プログラム信号35を得る発電量要
求信号22を主蒸気圧力信号2゜の変動に応じて補正す
るようにしている。更に上記切替器49は、ボイラのウ
ェット運転時、切替信号SによりPIシコンローラ48
からの信号を断って、ゼロ信号発生器50からのゼロ信
号(Ot/h)51を加算器33に入力するように切替
えを行うようになっている。
Further, the difference signal 25 from the subtracter 21 is input to the adder 33 via the PI switch roller 48 and the switch 49, and is guided to the function generator 29, 34 to generate the fuel program signal 30 and the water supply program. The power generation request signal 22 from which the signal 35 is obtained is corrected in accordance with fluctuations in the main steam pressure signal 2°. Furthermore, the switching device 49 switches the PI switch roller 48 in response to a switching signal S during wet operation of the boiler.
Switching is performed such that the signal from the zero signal generator 50 is cut off and the zero signal (Ot/h) 51 from the zero signal generator 50 is input to the adder 33.

ボイラのウェット運転時、発電量要求信号22に基づい
て加算器33及び関数発生器29を経て得られた燃料プ
ログラム信号30によって燃料弁3が制御され、更に、
圧力計19からの主蒸気圧力信号20と、発電量要求信
号22により関数発生器23を介して得られた一定圧力
の主蒸気圧力指令信号24とが引算器21によって比較
され、その差の信号25に基づいてPIコントローラ2
7から出力された水燃比マスター信号28が加算器31
によって前記燃料プログラム信号30に加算されること
により、主蒸気圧力が一定に維持されるように燃料流量
が制御されるようになっている。
During wet operation of the boiler, the fuel valve 3 is controlled by the fuel program signal 30 obtained via the adder 33 and the function generator 29 based on the power generation request signal 22, and further,
The main steam pressure signal 20 from the pressure gauge 19 and the constant pressure main steam pressure command signal 24 obtained via the function generator 23 based on the power generation request signal 22 are compared by the subtractor 21, and the difference between them is calculated. PI controller 2 based on signal 25
The water-fuel ratio master signal 28 output from the adder 31
is added to the fuel program signal 30, thereby controlling the fuel flow rate so that the main steam pressure is maintained constant.

一方、最低給水信号発生器37からの最低給水信号38
と、発電量要求信号22に応じて出力している関数発生
器34からの給水プログラム信号35とが高信号選択器
36に入力されているが、ウェット運転中の給水プログ
ラム信号35は前記最低給水信号3g (25%)に比
して小さいので、最低給水信号38が選択されて給水指
令信号39として引算器40に入力され、実流量信号4
6と引き算されてその差の信号47が給水ポンプ4に入
力され、火炉パス通過流量が最低給水m(25%)を維
持するように制御される。又、上記ウェット運転時は、
ゼロ信号発生器50からのゼロ信号51が加算器33に
入力されるよう切替信号Sにより切替器49が切替えら
れて、PIシコンローラ48からの信号は遮断されてい
る。
On the other hand, the minimum water supply signal 38 from the minimum water supply signal generator 37
and the water supply program signal 35 from the function generator 34 which is output in response to the power generation request signal 22 are input to the high signal selector 36. However, the water supply program signal 35 during wet operation is the lowest water supply. Since it is smaller than the signal 3g (25%), the minimum water supply signal 38 is selected and input to the subtracter 40 as the water supply command signal 39, and the actual flow rate signal 4
6 and the difference signal 47 is input to the feed water pump 4, and the flow rate passing through the furnace path is controlled to maintain the minimum feed water m (25%). Also, during the above wet operation,
The switch 49 is switched by the switching signal S so that the zero signal 51 from the zero signal generator 50 is input to the adder 33, and the signal from the PI controller 48 is cut off.

ウェット運転が終盤になって例えば分離タンク15の熱
水レベルか設定値以下の状態が所定時間続いたドライ状
態になると、切替信号Sにより切替器26か瞬時に切替
えられてボイラ出口の温度偏差信号32がP夏コントロ
ーラ27に入力されるようになり、以後ボイラ出口蒸気
温度が一定にむるように水燃比マスター信号28が加算
器31に出力される。
At the end of the wet operation, when the hot water level in the separation tank 15 becomes dry for a predetermined period of time, for example, the hot water level in the separation tank 15 remains below the set value for a predetermined period of time, the switch 26 is instantly switched by the switching signal S and the temperature deviation signal at the boiler outlet is changed. 32 is now input to the P summer controller 27, and thereafter the water-fuel ratio master signal 28 is output to the adder 31 so that the boiler outlet steam temperature remains constant.

又、上記切替が行われる頃には関数発生器34からの給
水プログラム信号35も最低給水信号38と同等になっ
ており、以後は増加する給水プログラム信号35が高信
号選択器36で選択されて給水ポンプ4は給水プログラ
ム信号35による給水指令信号39により制御される。
Furthermore, by the time the above switching is performed, the water supply program signal 35 from the function generator 34 has also become equivalent to the minimum water supply signal 38, and from then on, the increasing water supply program signal 35 is selected by the high signal selector 36. The water supply pump 4 is controlled by a water supply command signal 39 based on a water supply program signal 35.

又、上記ドライ運転への切替わりによる切替信号Sによ
り、切替器49が切替わって、引算器21からの差の信
号25に基づいたPIシコンローラ48からの信号が加
算器33に入力されて、関数発生器34に入力される発
電量要求信号22に加算され、よって主蒸気圧力の変動
を給水量及び燃料の加減によって修正するように制御さ
れる。
Further, the switch 49 is switched by the switch signal S caused by the switch to the dry operation, and a signal from the PI control roller 48 based on the difference signal 25 from the subtracter 21 is input to the adder 33. , is added to the power generation request signal 22 input to the function generator 34, and is controlled to correct fluctuations in main steam pressure by adjusting the amount of water supply and fuel.

[発明が解決しようとする課題] 第6図(ホ)(B) fc)(D)は上記従来装置にお
ける発電機併入後の発電量要求信号22と、主蒸気圧力
指令信号24と、水燃比マスター信号28と、火炉パス
通過流量との関係を示したもので、つ、Lット運転時、
発電量要求信号22による主蒸気量及び補助蒸気量の要
求量が第6図CD)に破線52で示すように増加するが
、火炉lに供給されている給水は最低給水信号38によ
って一定に維持されているので、蒸気に対する水の比が
大きく収るウェット運転の終盤において蒸発すべき水の
量が不足する傾向になって、火炉1での蒸発量が第6図
(C1)に実線53で示すように前記要求量52を満た
せなくなる。
[Problems to be Solved by the Invention] Figures 6 (e), (B), fc, and (D) show the power generation amount request signal 22, the main steam pressure command signal 24, and the water pressure command signal 22 after the generator is added in the conventional device. This shows the relationship between the fuel ratio master signal 28 and the flow rate passing through the furnace path.
Although the required amount of main steam amount and auxiliary steam amount based on the power generation amount request signal 22 increases as shown by the broken line 52 in FIG. Therefore, the amount of water to be evaporated tends to be insufficient at the end of wet operation when the ratio of water to steam is high, and the amount of evaporation in the furnace 1 is indicated by the solid line 53 in Fig. 6 (C1). As shown, the required amount 52 cannot be satisfied.

すると、第6図([3)に示すように主蒸気圧力指令信
号(75kg/cd) 24に対して破線54で示すよ
うに主蒸気圧力が落込み傾向になり、その圧力低下分を
補IT:、するべく水燃比マスター信号28が増加して
燃料が増加されるように制御されるため、給水/燃料の
バランスか崩れ、火炉1.iA熱器9.lO等の温度上
昇をまねく等の問題を有していた。
Then, as shown in FIG. 6 ([3), the main steam pressure tends to fall as shown by the broken line 54 with respect to the main steam pressure command signal (75 kg/cd) 24, and the pressure drop is compensated for by the compensation IT. : Since the water-fuel ratio master signal 28 is increased and the fuel is controlled to be increased as much as possible, the water/fuel balance is disrupted and the furnace 1. iA heating device9. There were problems such as an increase in temperature of lO, etc.

本究明は、上記従来装置におけるウェット運転からトラ
イ運転への切替時におけるボイラ制御の安定を図ること
を目的こするものである。
The purpose of this investigation is to stabilize the boiler control when switching from wet operation to trial operation in the conventional apparatus described above.

[課題を解決するための手段] 本発明はボイラのウェット運転時、発電量要求信号22
を関数発生器29に入力して得た燃料プログラム信号3
0を加算器31に入力し、又前記発電量要求信号22を
関数発生器23に入力して得た主蒸気圧力指令信号24
と蒸気管8のタービン12入口に設けた圧力計19から
の主蒸気圧力信号20とを引算器21に入力して信号の
差を求め、その差の信号25をPIシコンローラ27に
入力して得た水燃比マスター信号28を前記加算器31
に入力して前記燃料プログラム信号30に加算し、この
加算信号31’により主蒸気圧力が一定になるように燃
料弁3を制御するように(7、更に、前記発電量要求信
号22を関数発生器34に入力して得た給水プログラム
信号35と最低給水信号発生器37からの最低給水信号
38とを高信号選択器36に入力し、選択された給水指
令信号39と計測された実流量信号46とを引算器40
に入力して信号の差を求め、その差の信号47により給
水量が最低給水量を維持するように給水ポンプ4を制御
するようにしたボイラ制御装置において、前記PIコン
トローラ27からの水燃比マスター信号28を入力して
給水バイアス信号56を出力する関数発生器57と、発
電量要求信号22を入力してゲイン補正信号59を出力
する関数発生器60と、前記給水バイアス信号56とゲ
イン補正信号59を入力して給水バイアス付加信号61
を出力する掛算器58と、給水バイアス付加信号61の
変化率を制限する変化率制限器63と、該変化率制限器
63からの給水バイアス付加信号61を最低給水信号発
生器37からの最低給水信号38に加算して前記高信号
選択器3Bに出力する加算器64を有した給水バイアス
付加回路55を備えたことを特徴とするボイラ制御装置
にかかるものである。
[Means for Solving the Problems] The present invention provides a power generation amount request signal 22 during wet operation of a boiler.
is input into the function generator 29 to obtain the fuel program signal 3.
0 to the adder 31 and the power generation request signal 22 to the function generator 23 to obtain the main steam pressure command signal 24.
and the main steam pressure signal 20 from the pressure gauge 19 provided at the inlet of the turbine 12 of the steam pipe 8 are input to the subtracter 21 to obtain the difference between the signals, and the signal 25 of the difference is input to the PI silicon roller 27. The obtained water-fuel ratio master signal 28 is sent to the adder 31.
is input to the fuel program signal 30 and added to the fuel program signal 30, and this addition signal 31' controls the fuel valve 3 so that the main steam pressure is constant (7, furthermore, the power generation request signal 22 is added to the fuel program signal 30). The water supply program signal 35 obtained by inputting the water supply program signal 35 into the water supply unit 34 and the minimum water supply signal 38 from the minimum water supply signal generator 37 are inputted into the high signal selector 36, and the selected water supply command signal 39 and the measured actual flow rate signal are inputted into the high signal selector 36. 46 and subtractor 40
In the boiler control device, the water-fuel ratio master from the PI controller 27 is inputted to determine the difference between the signals, and the water-fuel ratio master from the PI controller 27 is controlled by the difference signal 47 to control the water supply pump 4 so that the water supply amount maintains the minimum water supply amount. A function generator 57 that inputs the signal 28 and outputs the water supply bias signal 56, a function generator 60 that inputs the power generation request signal 22 and outputs the gain correction signal 59, and the water supply bias signal 56 and the gain correction signal. 59 to input the water supply bias addition signal 61
a multiplier 58 that outputs the water supply bias addition signal 61, a change rate limiter 63 that limits the rate of change of the water supply bias addition signal 61, and a change rate limiter 63 that limits the rate of change of the water supply bias addition signal 61; This boiler control device is characterized in that it is equipped with a water supply bias adding circuit 55 having an adder 64 that adds to the signal 38 and outputs it to the high signal selector 3B.

[作   用] ウェット運転が終盤になって蒸気の要求量52か増加す
ると、主蒸気圧力の落込み54を防止するべく水燃比マ
スター信号28が増加されて燃料弁3による燃料流量か
増加される。
[Function] When the required amount of steam 52 increases toward the end of wet operation, the water-fuel ratio master signal 28 is increased to prevent the main steam pressure from dropping 54, and the fuel flow rate by the fuel valve 3 is increased. .

一方、前記水燃比マスター信号28を関数発生器57に
入力して給水バイアス信号56を得、該給水バイアス信
号56を、発電量要求信号22を入力するようにした関
数発生器60からのゲイン補正信号59が入力されてい
る掛算器58に入力することによりゲイン補正を行って
給水バイアス付加信号6tを得、該給水バイアス付加信
号61を変化率制限器63を経て加算器64により最低
給水信号発生器37からの最低給水信号38に加算する
On the other hand, the water-fuel ratio master signal 28 is input to a function generator 57 to obtain a water supply bias signal 56, and the water supply bias signal 56 is subjected to gain correction from a function generator 60 to which the power generation amount request signal 22 is input. By inputting the signal 59 to the multiplier 58, gain correction is performed to obtain a water supply bias addition signal 6t, and the water supply bias addition signal 61 is passed through a change rate limiter 63 and an adder 64 to generate a minimum water supply signal. It is added to the minimum water supply signal 38 from the water supply device 37.

これにより、ウェット運転の終盤において、水燃比マス
ター信号28の増加に対応(7た給水バイアス付加信号
61を最低給水信号38に付加した給水指令信号39に
よって給水ポンプ4が制御されるようになるので、ウェ
ット運転終盤における給水不足を解消して、水燃比のバ
ランスを確保し、ボイラの負荷上昇を安定させることが
できる。
As a result, at the end of wet operation, the water supply pump 4 is controlled by the water supply command signal 39 which is obtained by adding the water supply bias addition signal 61 to the minimum water supply signal 38 in response to the increase in the water-fuel ratio master signal 28. , it is possible to eliminate water supply shortages at the end of wet operation, ensure a balanced water-fuel ratio, and stabilize boiler load increases.

[実 施 例] 以下、本発明の実施例を図面を参照しつつ説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例であり、図中第5図と同一の
符号を付した部分は同一物を表わしている。
FIG. 1 shows one embodiment of the present invention, and the parts in the figure with the same reference numerals as in FIG. 5 represent the same parts.

第1図に示す如く、前記第5図の制御回路に、給水バイ
アス付加回路55を備える。
As shown in FIG. 1, the control circuit shown in FIG. 5 is provided with a water supply bias adding circuit 55.

給水バイアス付加回路55は、前記PIコントローラ2
7からの水燃比マスター信号28を入力し、該水燃比マ
スター信号28に対応して第2図に示すような給水バイ
アス信号56を出力する関数発生器57を有し、該関数
発生器57からの給水バイアス信号56を掛算器58に
入力するようにしている。
The water supply bias addition circuit 55 is connected to the PI controller 2.
It has a function generator 57 which inputs the water-fuel ratio master signal 28 from the water-fuel ratio master signal 28 and outputs a feed water bias signal 56 as shown in FIG. A water supply bias signal 56 is input to a multiplier 58.

更に、上記掛算器58には、発rti量要求信号(負荷
)22を入力することにより該発電量要求信号22の大
きさに応じて第3図に示すようなゲイン補正信号59を
出力する関数発生器60からの前記ゲイン補正信号59
か入力されて、前記給水バイアス信号56がゲイン捕正
されるようになっている。
Furthermore, the multiplier 58 is provided with a function that outputs a gain correction signal 59 as shown in FIG. 3 according to the magnitude of the generated RTI amount request signal (load) 22 as input. said gain correction signal 59 from generator 60;
is input, and the gain of the water supply bias signal 56 is corrected.

掛算器58にてゲイン捕正された給水バイアス付加信号
61は、切替器62及びゆるやかな変化を行わせるため
の変化率制限器63を介して加算器64に入力されるこ
とにより、最低給水信号発生器37からの最低給水信号
38に加算されて、高信号選択器36に入力されるよう
になっている。
The water supply bias addition signal 61 whose gain has been corrected by the multiplier 58 is inputted to the adder 64 via a switch 62 and a change rate limiter 63 for making gradual changes, thereby generating the minimum water supply signal. It is added to the minimum water supply signal 38 from the generator 37 and input to the high signal selector 36.

又、前記切替器62は、ウェット運転時には前記掛算器
58の給水バイアス付加信号61をそのまま変化率制限
器63に入力し、ドライ運転に切替わると同時に切替信
号Sによりゼロ信号発生器65からのゼロ信号6Bを変
化率制限器63に入力するよう切替を行うようになって
いる。
Further, the switch 62 inputs the water supply bias addition signal 61 of the multiplier 58 as it is to the change rate limiter 63 during wet operation, and at the same time inputs the water supply bias addition signal 61 from the zero signal generator 65 using the switch signal S when switching to dry operation. Switching is performed so that the zero signal 6B is input to the rate of change limiter 63.

ボイラのウェット運転時、発電量要求信号22に基づい
て関数発生器29により得られた燃料プログラム信号3
0によって燃料弁3が制御され、更に、圧力計19から
の主蒸気圧力信号20と、発電量要求信号22により関
数発生器23を介して得られた一定圧力(75)cg/
 (4)の主蒸気圧力指令信号24とか引算器21によ
って比較され、その差の信号25に基づいてP■シコン
ローラ27から出力された水燃比マスター信号28か加
算器31によって前記燃料プログラム信号3oに加算さ
れ、その加算信号31’が燃料弁3に入力されることに
より、主蒸気圧力が一定に維持されるように燃料流量が
制御される。
During wet operation of the boiler, the fuel program signal 3 is obtained by the function generator 29 based on the power generation request signal 22.
0, the fuel valve 3 is controlled by the main steam pressure signal 20 from the pressure gauge 19, and the constant pressure (75) cg/
(4) The main steam pressure command signal 24 is compared with the subtracter 21, and based on the difference signal 25, the water-fuel ratio master signal 28 outputted from the control roller 27 or the fuel program signal 3o is determined by the adder 31. By inputting the addition signal 31' to the fuel valve 3, the fuel flow rate is controlled so that the main steam pressure is maintained constant.

一方、前記水燃比マスター信号28が関数発生器57に
入力されることにより、その大きさに応じて第2図に示
す演算を行った給水バイアス信号56か掛算器58に出
力されると共に、発電量要求信号(負荷)22を入力し
て第3図のような演算を行う関数発生器60からのゲイ
ン補正信号59が前記掛算器58に入力されて、前記給
水バイアス信号56がバイアス補正される。
On the other hand, by inputting the water-fuel ratio master signal 28 to the function generator 57, the water supply bias signal 56, which has been calculated as shown in FIG. A gain correction signal 59 from a function generator 60 that inputs the quantity request signal (load) 22 and performs calculations as shown in FIG. 3 is input to the multiplier 58, and the water supply bias signal 56 is bias-corrected. .

即ち、第3図の場合、負荷が0〜15%(ウェット運転
の後半)までは給水バイアス信号56を零に押えて、こ
の間に給水バイアス信号56に変動があっても給水バイ
アス付加信号61は出力させないようにし、負荷が15
%以上(ウェット運転の終盤)になったら、上記給水バ
イアス信号56から給水バイアス負荷信号61を取り出
す割合を徐々に増加して行き、負荷(25%〉 (切替
時)に最大の1.0、即ち給水バイアス信号5Gのすべ
てが給水バイアス付加信号61として出力されるように
Aっている。
That is, in the case of FIG. 3, the water supply bias signal 56 is held to zero until the load is 0 to 15% (the second half of wet operation), and even if there is a fluctuation in the water supply bias signal 56 during this period, the water supply bias addition signal 61 remains unchanged. Do not output and the load is 15
% (at the final stage of wet operation), gradually increase the ratio of extracting the water supply bias load signal 61 from the water supply bias signal 56 until the load reaches the maximum of 1.0 (at the time of switching) of 25%. In other words, all of the water supply bias signal 5G is outputted as the water supply bias addition signal 61.

上記給水バイアス付加信号61は、切替器62及び変化
率制限器63を介して加算器64に入力されることによ
り最低給水信号発生器37からの最低給水量38に加算
されて高信号選択器36に入力される。
The water supply bias addition signal 61 is input to an adder 64 via a switch 62 and a change rate limiter 63, and is added to the minimum water supply amount 38 from the minimum water supply signal generator 37, and is added to the high signal selector 36. is input.

このとき、高信号選択器36には発電量要求信号22に
応じて出力している関数発生器34からの給水プログラ
ム信号35も入力されているが、ウェット運転中の給水
プログラム信号35は前記給水バイアス付加信号61が
加算された最低給水信号38に比して小さいので、前記
給水バイアス付加信号61が付加された最低給水信号3
8が選択されて給水指令信号39として引算器40に入
力され、実流量信号46と引き算されてその差の信号4
7が給水ポンプ4に入力され、火炉バス通過流量が最低
給水信号38+給水バイアス付加信号61を維持するよ
うに制御される。又、上記ウェット運転時は、ゼロ信号
発生器5oがらのゼロ信号5tが加算器33に入力され
るよう切替器49が切替えられて、PIコントローラ4
8からの信号は遮断されている。
At this time, the water supply program signal 35 from the function generator 34 that is output in response to the power generation request signal 22 is also input to the high signal selector 36, but the water supply program signal 35 during wet operation is Since the bias addition signal 61 is smaller than the minimum water supply signal 38 to which the bias addition signal 61 is added, the minimum water supply signal 3 to which the water supply bias addition signal 61 is added is smaller.
8 is selected and input to the subtracter 40 as the water supply command signal 39, and is subtracted from the actual flow rate signal 46 to obtain the difference signal 4.
7 is input to the water supply pump 4, and the furnace bus passing flow rate is controlled to maintain the minimum water supply signal 38+water supply bias addition signal 61. Further, during the wet operation, the switch 49 is switched so that the zero signal 5t from the zero signal generator 5o is input to the adder 33, and the PI controller 4
The signal from 8 is blocked.

ウェット運転が終盤になって例えば分離タンク15の熱
水レベルが設定値以下の状態が所定時間続いたドライ状
態になると、切替信号Sにより切替器26が瞬時に切替
えられてボイラ出口温度偏差信号32がPIコントロー
ラ27に入力されるようになり、以後ボイラ出口蒸気温
度が一定になるように水燃比マスター信号28が加算器
31に出力される。
At the end of the wet operation, when the hot water level in the separation tank 15 remains below the set value for a predetermined period of time and becomes dry, the switch 26 is instantly switched by the switching signal S and the boiler outlet temperature deviation signal 32 is switched. is now input to the PI controller 27, and thereafter the water-fuel ratio master signal 28 is output to the adder 31 so that the boiler outlet steam temperature is constant.

又、上記切替が行われる頃には関数発生器34からの給
水プログラム信号35も最低給水信号38と同等にムっ
でおり、以後は増加する給水プログラム信号35か高信
号選択器36で選択され、給水ポンプ4は給水プログラ
ム信号35による給水指令信号39により制御される。
Furthermore, by the time the above switching is performed, the water supply program signal 35 from the function generator 34 is also as stuffy as the minimum water supply signal 38, and from now on, either the increasing water supply program signal 35 or the high signal selector 36 is selected. , the water supply pump 4 is controlled by a water supply command signal 39 based on a water supply program signal 35.

又、上記ドライ運転への切替わりによる切替(よ号Sに
より切替器49か切替わって、引算器21からの差の信
号25に基づいたPIコントローラ48からの信号が加
算器33に入力されて、関数発生器34に入力される発
電量要求信号22に加算され、よって主蒸気圧力の変動
を給水量及び燃料量の加減によって修正するように制御
される。
In addition, the switch 49 is switched by the above-mentioned switch to dry operation (S), and the signal from the PI controller 48 based on the difference signal 25 from the subtracter 21 is input to the adder 33. The output power is added to the power generation request signal 22 input to the function generator 34, and the main steam pressure is controlled to be corrected by adjusting the amount of water and fuel.

従って、本発明では、第4図に示すように、ボイラのウ
ェット運転の終盤において、第4図(C)の水燃比マス
ター信号28の増加に伴って第4図■)に示すように給
水バイアス負荷信号61を最低給水信号38に付加する
ようにしたことにより、ウェット運転の終盤における水
燃比のバランスを確保して第4図(D)に示すように蒸
発1153を蒸気の要求量52に一致させることができ
、従って蒸気不足による主蒸気圧力の低下を防止し、且
つボイラ各部の温度上昇を防止する。よってボイラの負
荷を安定して−L昇させることが可能となる。
Therefore, in the present invention, as shown in FIG. 4, in the final stage of the boiler's wet operation, as the water-fuel ratio master signal 28 in FIG. 4(C) increases, the water supply bias increases as shown in FIG. By adding the load signal 61 to the minimum water supply signal 38, the balance of the water-fuel ratio at the final stage of wet operation is ensured, and the evaporation 1153 matches the required amount of steam 52 as shown in FIG. 4(D). Therefore, it is possible to prevent the main steam pressure from decreasing due to steam shortage, and also prevent the temperature from increasing in each part of the boiler. Therefore, it becomes possible to stably increase the load on the boiler by -L.

尚、本発明のボイラ制御装置は、上述の実施例にのみ限
定されるものではなく、各切替器の設置位置は種々選定
し得ること、その低木発明の要旨を逸脱しない範囲内に
おいて種々変更を加え得ることは勿論である。
It should be noted that the boiler control device of the present invention is not limited to the above-described embodiments, and the installation positions of each switching device can be selected from various locations, and various changes can be made without departing from the gist of the invention. Of course, you can add more.

[発明の効果] 以上説明したように、本発明のボイラ制御装置によれば
、ウェット運転の終盤において、水燃比マスター信号2
8の増加に基づいて出力され、且つゲイン補正された給
水バイアス付加信号61を最低給水信号38に付加する
給水バイアス付加回路55を備えるようにしたので、ウ
ェット運転終盤における給水不足を解消して、水燃比の
バランスを確保し、ボイラの安定した負荷上昇を達成し
得る優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the boiler control device of the present invention, in the final stage of wet operation, the water-fuel ratio master signal 2
Since the water supply bias addition circuit 55 is provided which adds the water supply bias addition signal 61 which is output based on the increase of 8 and has been gain corrected to the minimum water supply signal 38, the shortage of water supply at the end of the wet operation can be resolved. It is possible to achieve an excellent effect of ensuring a balance in the water-fuel ratio and achieving a stable load increase in the boiler.

又、ウェット運転からドライ運転移行時のボイラ各部の
なめらかな温度上昇が得られることにより、ボイラ寿命
消費を低減する効果もある。
Furthermore, by achieving a smooth temperature rise in each part of the boiler when transitioning from wet operation to dry operation, there is also the effect of reducing boiler life consumption.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示すブロック図、第2図は
関数発生器57における水燃比マスター信号28と給水
バイアス信号56との関係の一例を示す線図、第3図は
関数発生器60における発電量要求信号(負荷)22と
ゲイン補正信号59との関係の一例を示す線図、第4図
(4)(B) (C) E)は発電量指令信号と、主蒸
気圧力指令信号と、水燃比マスター信号と、火炉バス通
過流量の関係を示す線図、第5図はボイラの構成と従来
の制御回路の一例を示すブロック図、第6図(4)(B
) (C1(D)は従来の制御回路における第4図の場
合と同様の関係について示した線図である。 lは火炉、3は燃料弁、4は給水ポンプ、8は蒸気管、
12はタービン、19は圧力計、20は主蒸気圧力信号
、21は引算器、22は発電量要求信号、23は関数発
生器、24は主蒸気圧力指令信号、25は差の信号、2
7はPIシコンローラ、28は水燃比マスター信号、2
9は関数発生器、30は燃料プログラム信号、31は加
算器、31’は加算信号、34は関数発生器、35は給
水プログラム信号、36は高信号選択器、37は最低給
水信号発生器、38は最低給水信号、39は給水指令信
号、40は引算器、46は実流量信号、47は差の信号
、55は給水バイアス付加回路、56は給水バイアス信
号、57は関数発生器、58は掛算器、59はゲイン補
正信号、60は関数発生器、61は給水バイアス付加信
号、63は変化率制限器、64は加算器を示す。 特 許出願人 石川島播磨重工業株式会社
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing an example of the relationship between the water-fuel ratio master signal 28 and the water supply bias signal 56 in the function generator 57, and FIG. 3 is a diagram showing the function generator 57. A diagram showing an example of the relationship between the power generation request signal (load) 22 and the gain correction signal 59 in the generator 60, FIG. 4 (4) (B) (C) E) shows the power generation command signal and the main steam pressure. A diagram showing the relationship between the command signal, the water-fuel ratio master signal, and the flow rate passing through the furnace bus. Figure 5 is a block diagram showing the configuration of the boiler and an example of a conventional control circuit. Figure 6 (4) (B
) (C1(D) is a diagram showing the same relationship as in FIG. 4 in a conventional control circuit. 1 is a furnace, 3 is a fuel valve, 4 is a water pump, 8 is a steam pipe,
12 is a turbine, 19 is a pressure gauge, 20 is a main steam pressure signal, 21 is a subtracter, 22 is a power generation request signal, 23 is a function generator, 24 is a main steam pressure command signal, 25 is a difference signal, 2
7 is the PI control roller, 28 is the water-fuel ratio master signal, 2
9 is a function generator, 30 is a fuel program signal, 31 is an adder, 31' is an addition signal, 34 is a function generator, 35 is a water supply program signal, 36 is a high signal selector, 37 is a minimum water supply signal generator, 38 is a minimum water supply signal, 39 is a water supply command signal, 40 is a subtracter, 46 is an actual flow rate signal, 47 is a difference signal, 55 is a water supply bias addition circuit, 56 is a water supply bias signal, 57 is a function generator, 58 is a multiplier, 59 is a gain correction signal, 60 is a function generator, 61 is a water supply bias addition signal, 63 is a rate of change limiter, and 64 is an adder. Patent applicant Ishikawajima Harima Heavy Industries Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 1)ボイラのウェット運転時、発電量要求信号22を関
数発生器29に入力して得た燃料プログラム信号30を
加算器31に入力し、又前記発電量要求信号22を関数
発生器23に入力して得た主蒸気圧力指令信号24と蒸
気管8のタービン12入口に設けた圧力計19からの主
蒸気圧力信号20とを引算器21に入力して信号の差を
求め、その差の信号25をPIコントローラ27に入力
して得た水燃比マスター信号28を前記加算器31に入
力して前記燃料プログラム信号30に加算し、この加算
信号31’により主蒸気圧力が一定になるように燃料弁
3を制御するようにし、更に、前記発電量要求信号22
を関数発生器34に入力して得た給水プログラム信号3
5と最低給水信号発生器37からの最低給水信号38と
を高信号選択器36に入力し、選択された給水指令信号
39と計測された実流量信号46とを引算器40に入力
して信号の差を求め、その差の信号47により給水量が
最低給水量を維持するように給水ポンプ4を制御するよ
うにしたボイラ制御装置において、前記PIコントロー
ラ27からの水燃比マスター信号28を入力して給水バ
イアス信号56を出力する関数発生器57と、発電量要
求信号22を入力してゲイン補正信号59を出力する関
数発生器60と、前記給水バイアス信号56とゲイン補
正信号59を入力して給水バイアス付加信号61を出力
する掛算器58と、給水バイアス付加信号61の変化率
を制限する変化率制限器63と、該変化率制限器63か
らの給水バイアス付加信号61を最低給水信号発生器3
7からの最低給水信号38に加算して前記高信号選択器
36に出力する加算器64を有した給水バイアス付加回
路55を備えたことを特徴とするボイラ制御装置。
1) During wet operation of the boiler, the fuel program signal 30 obtained by inputting the power generation amount request signal 22 to the function generator 29 is inputted to the adder 31, and the power generation amount request signal 22 is inputted to the function generator 23. The main steam pressure command signal 24 obtained by The water-fuel ratio master signal 28 obtained by inputting the signal 25 to the PI controller 27 is inputted to the adder 31 and added to the fuel program signal 30, and this added signal 31' keeps the main steam pressure constant. The fuel valve 3 is controlled, and the power generation amount request signal 22 is
Water supply program signal 3 obtained by inputting to the function generator 34
5 and the minimum water supply signal 38 from the minimum water supply signal generator 37 are input to the high signal selector 36, and the selected water supply command signal 39 and the measured actual flow rate signal 46 are input to the subtracter 40. In the boiler control device, the water-fuel ratio master signal 28 from the PI controller 27 is inputted in a boiler control device that calculates the difference between the signals and controls the water supply pump 4 so that the water supply amount maintains the minimum water supply amount using the signal 47 of the difference. a function generator 57 that inputs the power generation amount request signal 22 and outputs a gain correction signal 59; a multiplier 58 that outputs a water supply bias addition signal 61; a rate of change limiter 63 that limits the rate of change of the water supply bias addition signal 61; and a rate of change limiter 63 that limits the rate of change of the water supply bias addition signal 61; Vessel 3
7. A boiler control device characterized by comprising a water supply bias adding circuit 55 having an adder 64 which adds the lowest water supply signal 38 from 7 and outputs the signal to the high signal selector 36.
JP32291089A 1989-12-13 1989-12-13 Boiler controller Pending JPH03186103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32291089A JPH03186103A (en) 1989-12-13 1989-12-13 Boiler controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32291089A JPH03186103A (en) 1989-12-13 1989-12-13 Boiler controller

Publications (1)

Publication Number Publication Date
JPH03186103A true JPH03186103A (en) 1991-08-14

Family

ID=18148994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32291089A Pending JPH03186103A (en) 1989-12-13 1989-12-13 Boiler controller

Country Status (1)

Country Link
JP (1) JPH03186103A (en)

Similar Documents

Publication Publication Date Title
US4578944A (en) Heat recovery steam generator outlet temperature control system for a combined cycle power plant
KR890001172B1 (en) Hrsg damper control
KR101862893B1 (en) Method for operating a combined gas and steam turbine system, gas and steam turbine system for carrying out said method, and corresponding control device
KR101841316B1 (en) Method for controlling a short-term increase in power of a steam turbine
KR880002362B1 (en) Deaerator level control apparatus
JP4117517B2 (en) Coal gasification combined power plant and its operation control device.
JPH03186103A (en) Boiler controller
JPS6149487B2 (en)
JP3374745B2 (en) Process control device and control method thereof
JPH06159603A (en) Control device for waste heat steam generator
CN111472852B (en) Intermediate point enthalpy value frequency modulation based logical optimization method for generator set
JPH03282102A (en) Exhaust heat recovery boiler and controller of temperature reducing device used for it
SU931916A1 (en) Method of cooling steam turbine
JP2000249305A (en) Stem temperature controller for boiler
JPS59110810A (en) Water level control device for steam turbine degasifier
SU1451443A1 (en) Automatic system for regulating steam parameters after power-generating boiler
JPH0214598B2 (en)
JPH0461241B2 (en)
KR20220019829A (en) Control device of power plant, power plant and control method of power plant
JPH0226122B2 (en)
JPS6291608A (en) Control device for power plant
JPH11108306A (en) Spray controller for superheater
JPH052801B2 (en)
JPH0322527B2 (en)
JPH0315081B2 (en)