JPH052801B2 - - Google Patents

Info

Publication number
JPH052801B2
JPH052801B2 JP59208249A JP20824984A JPH052801B2 JP H052801 B2 JPH052801 B2 JP H052801B2 JP 59208249 A JP59208249 A JP 59208249A JP 20824984 A JP20824984 A JP 20824984A JP H052801 B2 JPH052801 B2 JP H052801B2
Authority
JP
Japan
Prior art keywords
deaerator
condensate
water level
flow rate
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59208249A
Other languages
Japanese (ja)
Other versions
JPS61205307A (en
Inventor
Setsuo Nonaka
Hitoshi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP20824984A priority Critical patent/JPS61205307A/en
Publication of JPS61205307A publication Critical patent/JPS61205307A/en
Publication of JPH052801B2 publication Critical patent/JPH052801B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0063Regulation, control including valves and floats

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Control Of Non-Electrical Variables (AREA)
  • Flow Control (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は火力、原子力プラントの脱気器水位制
御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a deaerator water level control device for thermal power and nuclear power plants.

〔発明の背景〕[Background of the invention]

火力、原子力プラントの脱気器は、ボイラ又は
原子炉及び蒸気系統の内部腐食の原因となる溶存
酸素を除去するために、ボイラ又は原子炉への給
水系統に設けれており、復水器から供給される復
水に蒸気を吹き込んで加熱脱気し、これをボイラ
又は原子炉用給水として送り出すようになつてい
る。復水の加熱用の蒸気はタービンからの抽気、
あるいは、脱気器内の最低圧力を確保するための
補助蒸気などが用いられ、これら加熱用蒸気は脱
気器の脱気室において、復水と接触して凝縮し、
ボイラ用、又は、原子炉用給水の一部となる。脱
気器における水位は復水器からの復水流入量、及
び、ボイラ用、又は、原子炉用給水として送り出
す量、加熱用蒸気流入量及びボイラ又は原子炉側
よりの回収ドレン流量によつて変動するが、この
他に、タービンの起動、停止時、脱気器器内圧力
の変動により脱気器の貯水がフラツシヨし、この
影響で脱気器水位発信器は水位が見かけ上、低下
したように誤信号を出すことがる。脱気器の水位
を一定に保つための従来の制御方式には、例え
ば、特開昭57−74504号公報に示されるように、
タービン負荷信号を脱気器水位制御の先行信号と
してタービン負荷の急変に対する追従性の改善を
図つているが、ボイラ又は原子炉側の回収ドレン
流量の変化や脱気器貯水のフラツシユにより、脱
気器水位発信器出力が大きく変動し、万一、脱気
器水位信号が、水位調節計の設定位置より低い状
態が続くと、水位調節計の比例+積分動作によつ
て、やがて、脱気器水位制御用の復水流量調節弁
が全開となり、復水流量が過大となり、復水ポン
プ、又は、復水昇圧ポンプがランアウトする恐れ
があるため、脱気器の貯水がフラツシユを始めた
場合は、脱気器水位調節計を手動に切換えて、復
水流量調節弁が全開するのを未然に防止する必要
があつた。
Deaerators in thermal power and nuclear power plants are installed in the water supply system to the boiler or nuclear reactor in order to remove dissolved oxygen that causes internal corrosion of the boiler or nuclear reactor and steam system. Steam is blown into the supplied condensate to heat it and deaerate it, which is then sent out as feed water for the boiler or reactor. The steam for heating the condensate is extracted from the turbine,
Alternatively, auxiliary steam is used to ensure the minimum pressure in the deaerator, and these heating steams come into contact with condensate and condense in the deaeration chamber of the deaerator.
It becomes part of the water supply for boilers or nuclear reactors. The water level in the deaerator depends on the amount of condensate flowing in from the condenser, the amount sent as feed water for the boiler or reactor, the amount of steam flowing in for heating, and the flow rate of recovered condensate from the boiler or reactor side. In addition to this, when the turbine is started or stopped, the water stored in the deaerator fluctuates due to fluctuations in the pressure inside the deaerator, and this causes the deaerator water level transmitter to indicate that the water level has apparently decreased. It may give a false signal. Conventional control methods for keeping the water level in the deaerator constant include, for example, as shown in Japanese Patent Application Laid-open No. 74504/1983.
The turbine load signal is used as a leading signal for deaerator water level control to improve followability to sudden changes in turbine load. If the deaerator water level transmitter output fluctuates significantly and the deaerator water level signal continues to be lower than the set position of the water level controller, the proportional + integral action of the water level controller will eventually cause the deaerator to If the water stored in the deaerator begins to flash, the condensate flow rate control valve for water level control will be fully open and the condensate flow rate will become excessive, causing the condensate pump or condensate boost pump to run out. It was necessary to manually switch the deaerator water level controller to prevent the condensate flow rate control valve from opening fully.

一方、特開昭54−79306号公報に示されるよう
に、タービンの負荷急減、又は、遮断を検出した
時にのみ脱気器の圧力急低下をおさえるため、復
水流量調節弁開度を制限するものがあるが、通常
の起動、停止過程で復水流量調節弁開度を制限す
るものではない。このため、通常の起動、停止過
程で脱気器水位が規定水位よりも低い状態が続く
と、復水流量調節弁が全開となり、復水ポンプ、
又は、復水昇圧ポンプがランアウトする恐れがあ
るため、脱気器の貯水タンク水位が低下した場合
には脱気器水位調節計を手動に切換えて、復水流
量調節弁が全開するのを未然に防止する必要があ
つた。
On the other hand, as shown in Japanese Patent Application Laid-open No. 54-79306, the opening degree of the condensate flow rate control valve is limited in order to suppress a sudden drop in deaerator pressure only when a sudden load reduction or shutdown of the turbine is detected. However, it does not limit the opening degree of the condensate flow rate control valve during normal startup and shutdown processes. Therefore, if the deaerator water level continues to be lower than the specified water level during normal startup and shutdown processes, the condensate flow rate control valve will be fully opened, and the condensate pump and
Alternatively, if the water level in the deaerator water storage tank drops, the deaerator water level controller should be switched to manual to prevent the condensate flow rate control valve from fully opening, as there is a risk of the condensate boost pump running out. It was necessary to prevent this.

〔発明の目的〕[Purpose of the invention]

本発明の目的は復水流量調節弁の開き過ぎによ
つて復水ポンプ又は復水昇圧ポンプがランアウト
することを未然に防止し、安定した脱気器の水位
制御装置を提供することにある。
An object of the present invention is to provide a stable water level control device for a deaerator that prevents a condensate pump or a condensate booster pump from running out due to excessive opening of a condensate flow rate control valve.

〔発明の概要〕[Summary of the invention]

本発明の要点は、復水ポンプ、又は、復水昇圧
ポンプの最大吐出許容流量相当以上の復水を流さ
ないよう復水流量調節弁の開度を制限することに
ある。
The gist of the present invention is to limit the opening degree of the condensate flow rate control valve so as not to flow condensate in excess of the maximum allowable discharge flow rate of the condensate pump or the condensate boost pump.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面によつて説明す
る。第1図において、復水器1に貯留された復水
は、復水ポンプ2a,2b,2cによつて加圧さ
れ、復水管11、復水流量調節弁21、低圧ヒー
タ3、復水流量発信器22を通つて脱気器4の脱
気室4aに送られる。一方、タービン9からの抽
気は、抽気管18を通つて脱気器4の脱気室4a
に流入し、復水を混合加熱脱気し、飽和水として
脱気器4の貯水タンク4bに貯水する。また、貯
水タンク4bの貯水は脱気器降水管12より降下
して給水ポンプ5によつて加圧され、給水管1
3、高圧ヒータ6、給水流量発信器25、ウオタ
ーセパレートドレンクーラ8を通つてボイラ7に
給水される。ボイラ7の中では加熱器7aを経て
ウオターセパレータ7bに送られ、ここで蒸気と
分離される。分離された蒸気は加熱器7c主蒸気
管17を通つてタービン9に送られ、タービン9
内で仕事をし、発電機10により発電を行なう。
仕事をした蒸気は復水器1で凝縮して、その底部
に貯水され、再び復水ポンプ2a,2b,2cに
よつて脱気器4へ循環される。ボイラのバーナ点
火後のプラント起動過程、停止過程や低負荷時に
はウオターセパレータ7bでドレンが分離され、
貯水される。このドレンはウオターセパレータド
レン管14により、ウオターセパレータドレンク
ーラ8に送られ、ここでボイラ7への給水を加熱
し、ドレン自身は冷却されてドレン回収管15、
回収ドレン流量調節弁29を通つて脱気器4に回
収される。このドレンの一部は脱気器内でフラツ
シユして復水管11より流入する復水を混合加熱
し、飽和水となつて脱気器貯水タンク4bに貯水
され、再び給水ポンプ5によりボイラ7に送られ
る。起動過程や停止過程では、過渡的にウオター
セパレータ7bのドレン流量が多く、脱気器4で
回収できない場合もあるが、この時には、ドレン
ダンプ管16に設けたドレンダンプ調節弁28が
開き、余分なドレンを復水器1に排出する。ボイ
ラのバーナ点火前の起動過程やウオターセパレー
タ7bより脱気器4にドレンを回収していない場
合は、補助蒸気源30より脱気器圧力調節弁3
1、補助蒸気管32を経由して脱気器4に蒸気を
吹込み、流入する復水を混合加熱脱気し飽和水と
して脱気器4の貯水タンク4bに貯水する。な
お、24は脱気器水位発信器、26は発電機出力
発信器である。
An embodiment of the present invention will be described below with reference to the drawings. In FIG. 1, condensate stored in a condenser 1 is pressurized by condensate pumps 2a, 2b, and 2c, and includes a condensate pipe 11, a condensate flow rate control valve 21, a low-pressure heater 3, and a condensate flow rate. It is sent to the deaeration chamber 4a of the deaerator 4 through the transmitter 22. On the other hand, the bleed air from the turbine 9 passes through the bleed pipe 18 to the deaeration chamber 4a of the deaerator 4.
The condensate is mixed, heated and degassed, and stored as saturated water in the water storage tank 4b of the deaerator 4. Further, the water stored in the water storage tank 4b descends from the deaerator downcomer pipe 12 and is pressurized by the water supply pump 5, and the water in the water supply pipe 1
3. Water is supplied to the boiler 7 through the high pressure heater 6, water supply flow rate transmitter 25, and water separate drain cooler 8. In the boiler 7, the water is sent to a water separator 7b via a heater 7a, where it is separated from steam. The separated steam is sent to the turbine 9 through the heater 7c and the main steam pipe 17.
They work inside the building and generate electricity using the generator 10.
The steam that has done work is condensed in the condenser 1, stored at its bottom, and circulated again to the deaerator 4 by condensate pumps 2a, 2b, 2c. Drainage is separated by the water separator 7b during the plant startup process after the boiler burner ignition, during the plant shutdown process, and during low load.
Water is stored. This drain is sent to the water separator drain cooler 8 through the water separator drain pipe 14, where it heats the water supplied to the boiler 7, and the drain itself is cooled and the drain recovery pipe 15,
The collected drain is collected into the deaerator 4 through the flow control valve 29. A part of this drain is flashed in the deaerator, mixes and heats the condensate flowing in from the condensate pipe 11, becomes saturated water, is stored in the deaerator water storage tank 4b, and is sent to the boiler 7 again by the water supply pump 5. Sent. During the start-up process and the stop process, the drain flow rate in the water separator 7b is transiently large and may not be recovered by the deaerator 4. At this time, the drain dump control valve 28 provided in the drain dump pipe 16 opens and the excess drain is removed. Drain is discharged to condenser 1. During the startup process before the burner ignition of the boiler or when condensate is not recovered from the water separator 7b to the deaerator 4, the deaerator pressure control valve 3 is supplied from the auxiliary steam source 30.
1. Steam is blown into the deaerator 4 via the auxiliary steam pipe 32, and the inflowing condensate is mixed, heated, and deaerated, and is stored in the water storage tank 4b of the deaerator 4 as saturated water. Note that 24 is a deaerator water level transmitter, and 26 is a generator output transmitter.

第2図は本発明による脱気器の水位制御系統図
で脱気器への必要補給水流量はボイラ給水流量を
基本とし、脱気器水位調節計64により補正する
方式とし、脱気器水位発信器24の出力信号は脱
気器水位調節計64に伝えられ、ここで比例+積
分演算を行ない演算器65で給水流量発信器25
の出力信号と加減演算を行ない、脱気器の必要補
給水流量信号を得る。この信号を復水流量制限用
の選択器66に伝える。復水ポンプが一台運転中
の場合は、信号設定器69よりスイツチ70と、
一次遅れ器67を経由して復水ポンプ一台分の定
格流量相当の信号が選択器66に伝達され、演算
器65よりの信号と比較し、いずれか小流量側の
流量信号を選択し、流量設定信号として復水流量
調節計68に伝える。復水ポンプが二台運転中の
場合は、信号設定器71よりスイツチ72と一次
遅れ器67を経由して復水ポンプ二台分の定格流
量相当の信号が選択器66に伝達され、復水ポン
プが三台運転中の場合は、信号設定器73よりス
イツタ47と一次遅れ器67を経由して復水ポン
プ三台分の定格流量相当の信号が選択器66に伝
達されるようになつている。
Figure 2 is a water level control system diagram for a deaerator according to the present invention. The output signal of the transmitter 24 is transmitted to the deaerator water level controller 64, where proportional + integral calculations are performed, and the output signal is transmitted to the water supply flow rate transmitter 25 by the calculator 65.
Perform addition/subtraction calculations with the output signal to obtain the required make-up water flow rate signal for the deaerator. This signal is transmitted to a selector 66 for condensate flow rate restriction. When one condensate pump is in operation, the switch 70 is set from the signal setting device 69.
A signal equivalent to the rated flow rate of one condensate pump is transmitted via the first-order delay device 67 to the selector 66, which compares it with the signal from the calculator 65 and selects one of the flow rate signals on the smaller flow rate side. It is transmitted to the condensate flow rate controller 68 as a flow rate setting signal. When two condensate pumps are in operation, a signal corresponding to the rated flow rate of the two condensate pumps is transmitted from the signal setting device 71 via the switch 72 and the primary lag device 67 to the selector 66, and the condensate When three pumps are in operation, a signal equivalent to the rated flow rate of three condensate pumps is transmitted from the signal setting device 73 to the selector 66 via the switcher 47 and the primary lag device 67. There is.

同時に復水流量発信器22の測定信号も復水流
量調節計68に伝え、復水流量調節計68は復水
流量発信器22の信号と設定信号との偏差を比例
+積分演算を行なつて復水流量調節弁21を制御
し脱気器4の水位を規定値に保つ。脱気器器内圧
力が変動して脱気器貯水のフラツシユにより脱気
器水位発信器24の出力が大きく変動し、万一、
脱気器水位が低下した誤信号が脱気器水位調節計
64に伝えられた場合は、脱気器水位調節計64
の出力は復水流量を増加させる方向に動作する
が、選択器66によつて、その時の復水ポンプ運
転台数に見合つた定格流量以下に制限した信号の
みを復水流量調節計68に伝達するため、復水流
量調節計の設定流量は、その時の復水ポンプの合
計定格流量以上に設定されることはない。
At the same time, the measurement signal of the condensate flow rate transmitter 22 is also transmitted to the condensate flow rate controller 68, and the condensate flow rate controller 68 performs proportional + integral calculations on the deviation between the signal of the condensate flow rate transmitter 22 and the set signal. The condensate flow rate control valve 21 is controlled to maintain the water level in the deaerator 4 at a specified value. In the unlikely event that the pressure inside the deaerator fluctuates and the deaerator water level flushes, the output of the deaerator water level transmitter 24 fluctuates greatly.
If an erroneous signal indicating that the deaerator water level has decreased is transmitted to the deaerator water level controller 64, the deaerator water level controller 64
The output operates in the direction of increasing the condensate flow rate, but the selector 66 transmits to the condensate flow rate controller 68 only a signal that is limited to a rated flow rate or less corresponding to the number of condensate pumps in operation at that time. Therefore, the set flow rate of the condensate flow rate controller is never set higher than the total rated flow rate of the condensate pump at that time.

尚、選択器66の入力信号をモニタスイツチ6
1で常に監視し、一次遅れ器67側の信号が大き
くなつた場合は、警報を発する。
Note that the input signal of the selector 66 is input to the monitor switch 6.
1, and if the signal on the primary delay device 67 side becomes large, an alarm is issued.

実施例では、復水ポンプの運転台数によつて復
水流量の制限信号を設定したが、本発明はこれに
限るものではなく、第3図に示すように、発電機
の出力信号を関数演算器80で演算し、第4図の
ように発電機出力に合せて復水ポンプ運転台数を
増加させるようプラントは運転される為、発電機
出力に見合つた復水流量に約10%の余裕を加える
ことによつて、復水流量の制限信号を求めること
ができる。又、選択器66は復水流量調節計の設
定流量信号回路に入れたが、これに限るものでは
なく、第5図のように流量調節計68の出力側に
設置することによつて復水流量調節弁21の開き
すぎを防止することができる。
In the embodiment, the condensate flow rate limit signal was set based on the number of operating condensate pumps, but the present invention is not limited to this. As shown in FIG. 3, the generator output signal is calculated by a function. Since the plant is operated to increase the number of condensate pumps in operation according to the generator output as shown in Figure 4, the condensate flow rate is calculated by the generator 80 and is increased by about 10% to match the generator output. By adding this, a condensate flow rate restriction signal can be obtained. Further, although the selector 66 is placed in the set flow rate signal circuit of the condensate flow rate controller, the present invention is not limited to this, and by installing it on the output side of the flow rate controller 68 as shown in FIG. It is possible to prevent the flow rate control valve 21 from opening too much.

また、説明では発電機出力信号を関数演算して
復水流量制限信号としたが、これに限るものでは
なく発電機出力と関数関係にあるタービン第一段
圧力、タービン抽気圧力主蒸気流量、給水流量の
いずれかの信号によつて求めることもできる。
In addition, in the explanation, the generator output signal is functionally calculated to generate a condensate flow rate limit signal, but this is not limited to the following: Turbine first stage pressure, turbine extraction pressure, main steam flow rate, and water supply water flow rate, which have a functional relationship with the generator output. It can also be determined by any signal of flow rate.

第5図は本発明の他の実施例の系統図である。 FIG. 5 is a system diagram of another embodiment of the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、復水ポンプ、又は、復水昇圧
ポンプの最大許容流量以内に、復水流量を制限す
ることができ、プラントの起動過程、停止過程、
負荷変化中のいずれの運転条件でも、復水ポン
プ、又は、復水昇圧ポンプがランアウトさせるこ
となく、脱気器を安定して運転できる。
According to the present invention, the condensate flow rate can be limited to within the maximum allowable flow rate of the condensate pump or the condensate booster pump, and the plant start-up process, shutdown process,
Under any operating conditions during load changes, the deaerator can be operated stably without causing the condensate pump or the condensate boost pump to run out.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す火力発電プラ
ントの配管系統図、第2図と第3図は本発明にな
る脱気器の水位制御系統図、第4図は本発明の復
水流量制限設定図、第5図は本発明の他の実施例
の系統図である。 21…復水流量調節弁、22…復水流量発信
器、68…復水流量調節計。
Fig. 1 is a piping system diagram of a thermal power plant showing an embodiment of the present invention, Figs. 2 and 3 are water level control system diagrams of a deaerator of the present invention, and Fig. 4 is a condensate water level control system diagram of the present invention. The flow rate restriction setting diagram, FIG. 5, is a system diagram of another embodiment of the present invention. 21... Condensate flow rate control valve, 22... Condensate flow rate transmitter, 68... Condensate flow rate regulator.

Claims (1)

【特許請求の範囲】 1 復水器の復水を複数の並列ポンプを介して脱
気器に与える復水系統に設けられた脱気器水位制
御装置であつて、脱気器水位を用いて求めた制御
信号により脱気器への復水流量を調節する調節手
段を含む脱気器水位制御装置において、 前記複数の並列ポンプの運転台数で定まる最大
吐出許容流量に応じて前記脱気器水位を用いて求
めた制御信号を制限する制限手段を付与したこと
を特徴とする脱気器水位制御装置。 2 タービンに結合された発電機を駆動したあと
の復水を復水器から複数の並列ポンプを介して脱
気器に与える復水系統に設けられた脱気器水位制
御装置であつて、脱気器水位を用いて求めた制御
信号により脱気器への復水流量を調節する調節手
段を含む脱気器水位制御装置において、 前記発電機の出力又はこれと関数関係にあるプ
ロセス量を検出し、検出値に応じて前記脱気器水
位を用いて求めた制御信号を制限する制限手段を
付与したことを特徴とする脱気器水位制御装置。
[Scope of Claims] 1. A deaerator water level control device installed in a condensate system that supplies condensate from a condenser to a deaerator via a plurality of parallel pumps, which controls the deaerator water level using the deaerator water level. In a deaerator water level control device including an adjusting means for adjusting the flow rate of condensate to the deaerator based on the obtained control signal, the deaerator water level is adjusted according to a maximum allowable discharge flow rate determined by the number of operating units of the plurality of parallel pumps. 1. A deaerator water level control device characterized by being provided with a limiting means for limiting a control signal obtained using. 2 A deaerator water level control device installed in a condensate system that supplies condensate after driving a generator coupled to a turbine from a condenser to a deaerator via a plurality of parallel pumps. In a deaerator water level control device including a control means for adjusting the flow rate of condensate to the deaerator based on a control signal obtained using the gas water level, the output of the generator or a process quantity having a functional relationship therewith is detected. A deaerator water level control device, further comprising a limiting means for limiting a control signal obtained using the deaerator water level according to a detected value.
JP20824984A 1984-10-05 1984-10-05 Water level controller of deaerator Granted JPS61205307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20824984A JPS61205307A (en) 1984-10-05 1984-10-05 Water level controller of deaerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20824984A JPS61205307A (en) 1984-10-05 1984-10-05 Water level controller of deaerator

Publications (2)

Publication Number Publication Date
JPS61205307A JPS61205307A (en) 1986-09-11
JPH052801B2 true JPH052801B2 (en) 1993-01-13

Family

ID=16553121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20824984A Granted JPS61205307A (en) 1984-10-05 1984-10-05 Water level controller of deaerator

Country Status (1)

Country Link
JP (1) JPS61205307A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479306A (en) * 1977-12-05 1979-06-25 Mitsubishi Heavy Ind Ltd Method of ensuring effective net suction head of pump
JPS54142443A (en) * 1978-04-28 1979-11-06 Hitachi Ltd Pressure controller of air separator in compound power plant
JPS5774504A (en) * 1980-09-02 1982-05-10 Gen Electric Water level controller for deaerator
JPS58222905A (en) * 1982-06-22 1983-12-24 Toshiba Corp Feeding and condensing recirculation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479306A (en) * 1977-12-05 1979-06-25 Mitsubishi Heavy Ind Ltd Method of ensuring effective net suction head of pump
JPS54142443A (en) * 1978-04-28 1979-11-06 Hitachi Ltd Pressure controller of air separator in compound power plant
JPS5774504A (en) * 1980-09-02 1982-05-10 Gen Electric Water level controller for deaerator
JPS58222905A (en) * 1982-06-22 1983-12-24 Toshiba Corp Feeding and condensing recirculation system

Also Published As

Publication number Publication date
JPS61205307A (en) 1986-09-11

Similar Documents

Publication Publication Date Title
EP0398070A2 (en) A combined cycle power plant
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
KR880002362B1 (en) Deaerator level control apparatus
JPS6136121B2 (en)
EP0155706B1 (en) Method and apparatus for controlling an operation of plant
JPH052801B2 (en)
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
CN112709978A (en) High-energy heat-mass recovery system of thermal power plant and working method
JPS6152361B2 (en)
JP3664759B2 (en) Flash prevention device
JP2692972B2 (en) Water heater Drain pump up device
JP2519282B2 (en) Deaerator water level control system
CN214249553U (en) High-energy heat-mass recovery system of thermal power plant
JPS6132563B2 (en)
KR102173808B1 (en) Method for preventing reactor trip during vacuum loss of condenser
JPS5912922B2 (en) Deaerator water level control device
JPS5842777Y2 (en) Condensate pressurization equipment for power generation plants
JPS6124679B2 (en)
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPH11148603A (en) Controller for coal/residual oil gassifying combined power generation plant
SU1222978A1 (en) Boiler plant
JPH0315081B2 (en)
SU1344918A1 (en) Steam heat-utilising circuit of combination power plant
JPH0554002B2 (en)
SU765515A1 (en) Power unit

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term