JPH03185771A - Photodetective element - Google Patents

Photodetective element

Info

Publication number
JPH03185771A
JPH03185771A JP1325660A JP32566089A JPH03185771A JP H03185771 A JPH03185771 A JP H03185771A JP 1325660 A JP1325660 A JP 1325660A JP 32566089 A JP32566089 A JP 32566089A JP H03185771 A JPH03185771 A JP H03185771A
Authority
JP
Japan
Prior art keywords
light
cap layer
spectral sensitivity
layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1325660A
Other languages
Japanese (ja)
Other versions
JP2844097B2 (en
Inventor
Morio Wada
守夫 和田
Masahito Seko
世古 雅人
Yoichi Sekiguchi
関口 陽一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optical Measurement Technology Development Co Ltd
Original Assignee
Optical Measurement Technology Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optical Measurement Technology Development Co Ltd filed Critical Optical Measurement Technology Development Co Ltd
Priority to JP1325660A priority Critical patent/JP2844097B2/en
Publication of JPH03185771A publication Critical patent/JPH03185771A/en
Application granted granted Critical
Publication of JP2844097B2 publication Critical patent/JP2844097B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve a photodetective element in spectral sensitivity characteristic without deteriorating the formation of electrodes in reliability by a method wherein the thickness of an InP cap layer of a photodetective region is made smaller than that of an electrode forming region. CONSTITUTION:A photodetective element is provided with an N<->-type GaInAs light absorbing layer 3 which absorbs an incident light and converts it into an electric signal, an N-type InP cap layer 4 provided to the light incident side of the light absorbing layer 3, antireflection films 8 and 9, and a P<+>-side electrode 6 provided in contact with the cap layer 4, where the cap layer 4 is formed of material whose band gap is larger than that of the material of the light absorbing layer 3. The light receiving region of the cap layer 4 is formed thinner than the region of the cap layer 4 where the electrode 6 is provided. Therefore, the photodetective element of this design becomes flat in spectral sensitivity characteristic and can be prevented from decreasing in spectral sensitivity to light rays whose wavelength is 1mum or below, and the diffusion effect of the electrode metal is prevented from reaching to the junction of the photodetective element. By this setup, a photodetective element which is large in bandwidth of detectable light and flat in spectral sensitivity characteristic can be obtained without deteriorating the formation of electrodes in reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は■−V族半導体結晶のへテロ接合を用いた受光
素子に利用する。特に、分光感度特性の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applied to a light receiving element using a heterojunction of a -V group semiconductor crystal. In particular, it relates to improving spectral sensitivity characteristics.

〔概 要〕〔overview〕

本発明は、■−V族半導体結晶のへテロ接合を用い、受
光面にキャップ層および反射防止膜が設けられた受光素
子において、 受光領域のInPキャップ層の厚さを電極形成領域より
薄くすることにより、 電極形成の信頼性を損ねることなく分光感度特性を改善
するものである。
The present invention uses a heterojunction of ■-V group semiconductor crystal, and in a light-receiving element in which a cap layer and an antireflection film are provided on the light-receiving surface, the thickness of the InP cap layer in the light-receiving region is made thinner than in the electrode formation region. This improves the spectral sensitivity characteristics without impairing the reliability of electrode formation.

〔従来の技術〕[Conventional technology]

従来から、近赤外など波長の比較的長い光を受光するた
めには、特殊な場合を除き、ゲルマニウムGeやガリウ
ム・インジウム・ヒ素リンGa1nAsPを材料とする
受光素子が用いられてきた。特にGa、+111−xA
syP+−y (ただしX%yは混晶比〉は、その混晶
比を適当に選択することにより、格子定数がInP結晶
に一致するようにして、バンドギャップエネルギを変化
させることができる。これにより、はぼ1〜1.7μm
の波長帯域において、必要な分光感度波長帯域の光吸収
層をInP結晶基板上にエピタキシャル成長させること
ができる。さらにこのGajr+1−JSyP I−7
層上にInPキャップ層を形成した受光素子も公知であ
る。また最近では、暗電流、周波数応答特性、増倍雑音
特性などの電気的特性や約1.5μmより長波長側の分
光感度特性の点で、Ge受光素子より優れたGa1nA
sP受光素子が製造されている。詳しくは、酒井士部 
他、電子通信学会論文誌、第J62−C巻、第10号、
’ 79/10に示されている。
Conventionally, in order to receive light with a relatively long wavelength such as near-infrared light, a light receiving element made of germanium Ge or gallium indium arsenide phosphide Ga1nAsP has been used, except in special cases. Especially Ga, +111-xA
syP+-y (where X%y is the mixed crystal ratio) By appropriately selecting the mixed crystal ratio, the band gap energy can be changed so that the lattice constant matches that of InP crystal. Depending on the size, the diameter is 1 to 1.7 μm.
A light absorption layer having a required spectral sensitivity wavelength band can be epitaxially grown on an InP crystal substrate. Furthermore, this Gajr+1-JSyP I-7
A light receiving element having an InP cap layer formed thereon is also known. In addition, recently, Ga1nA is superior to Ge photodetectors in terms of electrical characteristics such as dark current, frequency response characteristics, and multiplication noise characteristics, as well as spectral sensitivity characteristics at wavelengths longer than about 1.5 μm.
An sP photodetector has been manufactured. For more information, see Shibu Sakai
et al., Journal of the Institute of Electronics and Communication Engineers, Volume J62-C, No. 10,
'79/10.

第5図は従来例受光素子の断面図を示す。FIG. 5 shows a cross-sectional view of a conventional light receiving element.

この受光素子は、n+形[nP基板l5InPバッファ
層2、n−形Ga1nAs光吸収層3およびn形1nP
キャップ層4がエピタキシャルに形成された構造をもつ
。キャップ層4から光吸収層3にかけては、Zn拡散に
よりp゛領域5が形成される。p+領域5の表面にはp
゛側電極6が設けられ、基板1の裏面にはn1側電極7
が設けられる。キャップ層4の表面には、反射防止膜と
してSi、N、膜8およびSi口、膜9が設けられる。
This light-receiving element consists of an n+ type [nP substrate l5InP buffer layer 2, an n-type Ga1nAs light absorption layer 3, and an n-type 1nP
The cap layer 4 has a structure formed epitaxially. A p' region 5 is formed from the cap layer 4 to the light absorption layer 3 by Zn diffusion. On the surface of p+ region 5, p
An n1 side electrode 6 is provided on the back surface of the substrate 1.
is provided. On the surface of the cap layer 4, a Si, N, film 8 and a Si film 9 are provided as antireflection films.

Gajnl −JsyP l−yのうち特に混晶比がx
 =0.47、y=1のもの、すなわちGao、 <t
lno、 ss八へは、格子定数がInPに一致するも
ののうち、バンドギャップエネルギが室温で0.75e
Vと最も小さい。したがってこれを光吸収層3として用
いると、約0.9〜1.7μmの分光感度波長が得られ
る。
Gajnl -JsyP ly, especially when the mixed crystal ratio is x
=0.47, that of y=1, i.e. Gao, <t
For lno, ss8, among those whose lattice constants match those of InP, the band gap energy is 0.75e at room temperature.
V and the smallest. Therefore, when this is used as the light absorption layer 3, a spectral sensitivity wavelength of about 0.9 to 1.7 μm can be obtained.

第6図はこの受光素子の分光感度特性の理論計算値を示
す。
FIG. 6 shows theoretically calculated values of the spectral sensitivity characteristics of this light receiving element.

この特性は、伊藤良−監修、「化合物半導体デバイスハ
ンドブック」、昭和31年9日20日、サイエンスフォ
ーラム社刊に示された理論計算方法により求めたもので
あり、キャップN4の厚さを1μmとした。また、キャ
ップ層4を基板とする反射防止膜の透過率対波長特性が
第7図に示した曲線を描くものとした。
This characteristic was obtained using the theoretical calculation method shown in "Compound Semiconductor Device Handbook", supervised by Ryo Ito, published by Science Forum on September 20, 1955, and the thickness of cap N4 was assumed to be 1 μm. did. Further, the transmittance versus wavelength characteristic of the antireflection film using the cap layer 4 as a substrate was assumed to draw the curve shown in FIG.

第6図に示した特性において、短波長側、すなわち1μ
m以下の分光感度の低下は、キャップN4の光吸収によ
る。
In the characteristics shown in Figure 6, on the short wavelength side, that is, 1μ
The decrease in spectral sensitivity below m is due to light absorption by the cap N4.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の受光素子では、二つの大きな問題がある
However, conventional light receiving elements have two major problems.

第一の問題点は、InPキャップ層が約1〜1.7μm
の波長帯で透明な窓となるため、反射防止膜が実際には
Sl[12膜、Si、N4膜および]nPキャップ層の
三層構造となることである。このため、入射光の反射お
よび干渉が生じる。
The first problem is that the InP cap layer is approximately 1 to 1.7 μm thick.
Since it becomes a transparent window in the wavelength range of , the antireflection film actually has a three-layer structure of Sl[12 film, Si, N4 film, and ]nP cap layer. This causes reflection and interference of the incident light.

第8図に分光感度特性の一例を示す。横軸は波長であり
、縦軸は外部量子効率を示す。外部量子効率の値は、5
102膜、Si、N、膜およびlnPキャップ層の厚さ
をそれぞれ0.14μm、0.13μCI、0.9μm
とし、Ga1nAs光吸収層の厚さを1.3μmとした
ときの測定値および計算値を示す。実線が測定値であり
、破線が計算値である。この計算値は、上述した酒井等
の論文に示されている。外部量子効率η。0は、 η。1=分光感度/絶対分光感度 により求められ、理論計算値とほぼ一致する。
FIG. 8 shows an example of spectral sensitivity characteristics. The horizontal axis represents wavelength, and the vertical axis represents external quantum efficiency. The value of external quantum efficiency is 5
The thicknesses of the 102 film, Si, N, film and lnP cap layer were 0.14 μm, 0.13 μCI, and 0.9 μm, respectively.
The measured values and calculated values are shown when the thickness of the Ga1nAs light absorption layer is 1.3 μm. The solid line is the measured value, and the broken line is the calculated value. This calculated value is shown in the paper by Sakai et al. mentioned above. External quantum efficiency η. 0 is η. 1=Spectral sensitivity/absolute spectral sensitivity, which almost matches the theoretically calculated value.

第8図に示したように、波長的1〜1.7μmの分光感
度は、5102膜、513NJ膜および1nPキャップ
層の三層構造により入射光の反射および干渉が生じるた
め、緩やかな凹凸を生じてしまう。
As shown in Figure 8, the spectral sensitivity in the wavelength range of 1 to 1.7 μm is due to reflection and interference of incident light due to the three-layer structure of the 5102 film, 513NJ film, and 1nP cap layer, resulting in gentle unevenness. It ends up.

反射防止膜としてSi3N、膜だけを用いた場合でも、
Si3N、膜とInPキャップ層との二層構造により同
様に分光感度特性の凹凸が生じる。
Even when using only Si3N film as an anti-reflection film,
The two-layer structure of the Si3N film and the InP cap layer similarly causes irregularities in the spectral sensitivity characteristics.

同一波長を同一条件で受光する場合には、分光感度が波
長により変動しても問題となることはない。しかし、例
えば受光素子の温度が変動すると、特性が波長方向に移
動し、入射光強度が同じでも受光出力が変動してしまう
。したがって、分光感度はフラットであることが望まし
い。
When the same wavelength is received under the same conditions, there is no problem even if the spectral sensitivity varies depending on the wavelength. However, if the temperature of the light-receiving element changes, for example, the characteristics shift in the wavelength direction, and the light-receiving output changes even if the incident light intensity remains the same. Therefore, it is desirable that the spectral sensitivity is flat.

第二の問題点は、InPは波長約1μm以下における吸
収係数が大きく、InPキャップ層による入射光の吸収
が生じて分光感度が低下することである。
The second problem is that InP has a large absorption coefficient at wavelengths of about 1 μm or less, and the InP cap layer absorbs incident light, resulting in a decrease in spectral sensitivity.

これを解決するには、InPキャーツブ層を薄くすれば
よい。しかし、InPキャップ層を薄くすると、電極形
成時の熱処理(シンタリング〉による電極金属の拡散が
生じ、その後の経時変化により素子の信頼性が低下する
などの問題が生じる。
To solve this problem, the InP cathode layer can be made thinner. However, if the InP cap layer is made thin, problems arise such as diffusion of the electrode metal due to heat treatment (sintering) during electrode formation, and subsequent deterioration over time, resulting in decreased reliability of the device.

本発明は、以上の課題を解決し、■−V族半導体結晶の
へテロ接合を用いた受光素子の電極形成時の信頼性を損
なうことなく、受光波長帯域が広く平坦な分光感度特性
をもつ受光素子を提供することを目的とする。
The present invention solves the above problems and has flat spectral sensitivity characteristics with a wide receiving wavelength band without impairing reliability during electrode formation of a light receiving element using a heterojunction of a -V group semiconductor crystal. The purpose is to provide a light receiving element.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の受光素子は、キャップ層の受光領域が電極の形
成された領域に比較して薄く形成されたことを特徴とす
る。
The light-receiving element of the present invention is characterized in that the light-receiving region of the cap layer is formed thinner than the region where the electrodes are formed.

〔作 用〕[For production]

キャリアの表面再結合の影響が大きくなって分光感度が
低下し′ない程度にキャップ層を薄くすることにより、
分光感度特性が平坦となり、しかも波長約1μm以下に
おける分光感度の低下を抑えることができる。また、電
極が形成される領域については厚くし、電極金属の拡散
の影響が受光素子の接合部に達しないようにする。
By making the cap layer thin enough to prevent the spectral sensitivity from decreasing due to the influence of surface recombination of carriers,
The spectral sensitivity characteristics become flat, and furthermore, a decrease in spectral sensitivity at wavelengths of about 1 μm or less can be suppressed. Furthermore, the region where the electrode is formed is made thicker so that the influence of diffusion of the electrode metal does not reach the junction of the light receiving element.

〔実施例〕〔Example〕

第1図は本発明第一実施例受光素子の断面図を示す。 FIG. 1 shows a sectional view of a light receiving element according to a first embodiment of the present invention.

この受光素子は、入射光を吸収して電気信号に変換する
n−形Ga1nAs光吸収層3と、この光吸収層3の入
射側に設けられたn形1nPキャップ層4および反射防
止膜と、キャップ層4に接して形成されたp゛側電極6
とを備え、キャップ層4は光吸収N3よりバンドギャッ
プの大きい材料で形成される。
This light receiving element includes an n-type Ga1nAs light absorption layer 3 that absorbs incident light and converts it into an electrical signal, an n-type 1nP cap layer 4 and an antireflection film provided on the incident side of this light absorption layer 3, P' side electrode 6 formed in contact with cap layer 4
The cap layer 4 is formed of a material having a larger band gap than the light absorbing material N3.

光吸収層3は、n゛形1nP基板1上に、InPバッフ
ァ層2を介して形成される。キャップ層4から光吸収層
3にかけては、Zn拡散によりp+領域5が形成される
。基板1の裏面にはn゛側電極7が設けられる。反射防
止膜としては、SI3N4膜8および5I02膜9の二
層構造を用いる。
The light absorption layer 3 is formed on the n-type 1nP substrate 1 with an InP buffer layer 2 interposed therebetween. A p+ region 5 is formed from the cap layer 4 to the light absorption layer 3 by Zn diffusion. An n'-side electrode 7 is provided on the back surface of the substrate 1. As the antireflection film, a two-layer structure of SI3N4 film 8 and 5I02 film 9 is used.

ここで本実施例の特徴とするところは、キャップ層4の
厚さに変化が設けられ、受光領域が電極6の形成された
領域(以下「電極形成領域」という)に比較して薄く形
成されたことにある。受光領域の厚さは、例えば0.1
μm以下にするー。また、電極形成領域の厚さは、例え
ば1μm以上にする。
Here, the feature of this embodiment is that the thickness of the cap layer 4 is varied, and the light receiving area is formed thinner than the area where the electrode 6 is formed (hereinafter referred to as "electrode formation area"). That's true. The thickness of the light receiving area is, for example, 0.1
Make it less than μm. Further, the thickness of the electrode formation region is, for example, 1 μm or more.

第2図は入射光波長に対する透過率の計算値の一例を示
す。破線はSi3N4膜8および5i02膜9からなる
反射防止膜の透過率を示し、四つの実線はキャップ層4
を透過して光吸収層3に達する透過率を示す。
FIG. 2 shows an example of calculated values of transmittance with respect to the wavelength of incident light. The broken line shows the transmittance of the antireflection film made of the Si3N4 film 8 and the 5i02 film 9, and the four solid lines show the transmittance of the cap layer 4.
It shows the transmittance that passes through and reaches the light absorption layer 3.

この例では、反射防止膜の反射率が波長1.5μmの入
射光に対して最小となるように、Si、N、膜8の厚さ
を0.13μm、 5I02膜9の厚さを0.lhmと
した。
In this example, the thickness of the Si, N, and film 8 is 0.13 μm, and the thickness of the 5I02 film 9 is 0.1 μm, so that the reflectance of the antireflection film is the minimum for incident light with a wavelength of 1.5 μm. lhm.

反射防止膜を透過した入射光は、0.9μm以上の波長
の光に対して透明なInPのキャップ層4を通って、光
吸収層3に導入される。このとき、キャップN4でも光
の干渉が生じ、光吸収層3への透過率が変化する。第2
図には、キャップ層4の膜厚が0.05μm、 0.1
 μm、0.5.cc+++および1μmの場合につい
て、光吸収層3への透過率を示した。図示したように、
キャップ層4の膜厚が増加するにつれて、透過率が大き
く変動するようになる。特にキャップ層4の膜厚が1μ
mを越える場合には、素子の分光感度波長帯域で透過率
が大きく変化することになる。これに対して膜厚を0.
5μm以下に薄くした場合には、透過率の変化が小さく
緩やかになる。
The incident light that has passed through the antireflection film is introduced into the light absorption layer 3 through the InP cap layer 4, which is transparent to light with a wavelength of 0.9 μm or more. At this time, light interference also occurs in the cap N4, and the transmittance to the light absorption layer 3 changes. Second
In the figure, the film thickness of the cap layer 4 is 0.05 μm and 0.1 μm.
μm, 0.5. The transmittance to the light absorption layer 3 is shown for the case of cc+++ and 1 μm. As shown,
As the thickness of the cap layer 4 increases, the transmittance varies greatly. In particular, the film thickness of cap layer 4 is 1μ
If it exceeds m, the transmittance will change significantly in the spectral sensitivity wavelength band of the element. In contrast, the film thickness was set to 0.
When the thickness is reduced to 5 μm or less, the change in transmittance becomes small and gradual.

第3図はキャップ層4の膜厚を変化させたときの分光感
度特性の計算値を示す。横軸は波長であり、縦軸は外部
量子効率を示す。
FIG. 3 shows calculated values of the spectral sensitivity characteristics when the film thickness of the cap layer 4 is changed. The horizontal axis represents wavelength, and the vertical axis represents external quantum efficiency.

キャップ層4を薄くすると光吸収も小さくなり、光吸収
層3に達する波長0.9μm以下の光が増加する。これ
により、分光感度波長領域が短波長側にも拡張される。
When the cap layer 4 is made thinner, the light absorption also becomes smaller, and the amount of light having a wavelength of 0.9 μm or less that reaches the light absorption layer 3 increases. This expands the spectral sensitivity wavelength range to the shorter wavelength side.

キャップ層4の電極形成領域は、電極形成時のシンタリ
ングその他の熱処理によって電極金属が拡散しても接合
に達しないように、受光領域より厚くなっている。これ
により、従来の素子と同等の信頼性を保つことができる
The electrode formation region of the cap layer 4 is thicker than the light receiving region so that even if the electrode metal is diffused due to sintering or other heat treatment during electrode formation, it will not reach the junction. Thereby, reliability equivalent to that of conventional elements can be maintained.

本実施例の素子を製造するには、例えばキャップ層4を
選択的にエツチングして薄くしてもよく、電極形成領域
のみを選択的にエピタキシャル成長させてもよい。
To manufacture the device of this embodiment, for example, the cap layer 4 may be selectively etched to make it thinner, or only the electrode formation region may be selectively grown epitaxially.

第4図は本発明第二実施例受光素子の断面図を示す。FIG. 4 shows a sectional view of a light receiving element according to a second embodiment of the present invention.

この実施例は、キャップ層4と電極6との間に、接触抵
抗を小さくするためのGalnAs層10が形成された
ことが第一実施例と異なる。このGaInAs層10は
電極のオーム性接合の抵抗を下げる効果があり、電極形
成領域だけに設けられ、受光領域には設けられていない
。この実施例の場合にも、電極形成領域が受光領域より
厚く形成される。
This embodiment differs from the first embodiment in that a GalnAs layer 10 is formed between the cap layer 4 and the electrode 6 to reduce contact resistance. This GaInAs layer 10 has the effect of lowering the resistance of the ohmic junction of the electrode, and is provided only in the electrode formation region and not in the light receiving region. Also in this embodiment, the electrode forming area is formed thicker than the light receiving area.

以上の実施例では、反射防止膜としてSi、N、膜と5
in2膜との二層構造を用いた例を示したが、他の膜、
例えばSi3N4の単層膜を用いた場合でも本発明を同
様に実施できる。
In the above embodiments, the antireflection film includes Si, N, and 5
Although we have shown an example using a two-layer structure with in2 membrane, other membranes,
For example, the present invention can be implemented in the same way even when a single layer film of Si3N4 is used.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の受光素子は、受光領域の
InPキャップ層の厚さを電極形成領域より薄くするこ
とにより、電極形成の信頼性を損ねることなく分光感度
特性を改善できる効果がある。
As explained above, the light-receiving element of the present invention has the effect of improving the spectral sensitivity characteristics without impairing the reliability of electrode formation by making the thickness of the InP cap layer in the light-receiving region thinner than in the electrode formation region. .

また、本発明の受光素子は、従来の素子に比較して受光
領域の選択的エツチングまたは電極形成領域の選択的エ
ピタキシャル成長が必要となるが、素子の製造は容易で
ある。
Further, although the light receiving element of the present invention requires selective etching of the light receiving region or selective epitaxial growth of the electrode forming region compared to conventional elements, the device is easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明第一実施例受光素子の断面図。 第2図は入射光波長に対する透過率の計算値の一例を示
す図。 第3図はキャップ層の膜厚を変化させたときの分光感度
特性の計算値を示す図。 第4図は本発明第二実施例受光素子の断面図。 第5図は従来例受光素子の断面図を示す。 第6図はこの受光素子の分光感度特性の理論計算値を示
す図。 第7図は反射防止膜の透過率対波長特性を示す図。 第8図はキャップ層がある場合の分光感度特性の一例を
示す図。 1・・・基板、2・・・バッファ層、3・・・光吸収層
、4・・・キャップ層、5・・・p゛領域6.7・・・
電極、8・Si、N、膜、9−5iO□膜、1O−Ga
TnAs層。
FIG. 1 is a sectional view of a light receiving element according to a first embodiment of the present invention. FIG. 2 is a diagram showing an example of calculated values of transmittance with respect to the wavelength of incident light. FIG. 3 is a diagram showing calculated values of spectral sensitivity characteristics when changing the film thickness of the cap layer. FIG. 4 is a sectional view of a light receiving element according to a second embodiment of the present invention. FIG. 5 shows a cross-sectional view of a conventional light receiving element. FIG. 6 is a diagram showing theoretically calculated values of the spectral sensitivity characteristics of this light receiving element. FIG. 7 is a diagram showing the transmittance versus wavelength characteristics of an antireflection film. FIG. 8 is a diagram showing an example of spectral sensitivity characteristics when there is a cap layer. DESCRIPTION OF SYMBOLS 1...Substrate, 2...Buffer layer, 3...Light absorption layer, 4...Cap layer, 5...p' region 6.7...
Electrode, 8.Si, N, film, 9-5iO□ film, 1O-Ga
TnAs layer.

Claims (1)

【特許請求の範囲】 1、入射光を吸収して電気信号に変換する光吸収層と、 この光吸収層の入射側に設けられたキャップ層および反
射防止膜と、 前記キャップ層に接して形成された電極と を備え、 上記キャップ層は上記光吸収層よりバンドギャップの大
きい材料で形成された 受光素子において、 上記キャップ層の受光領域が電極の形成された領域に比
較して薄く形成された ことを特徴とする受光素子。
[Scope of Claims] 1. A light absorption layer that absorbs incident light and converts it into an electrical signal; a cap layer and an antireflection film provided on the incident side of the light absorption layer; and formed in contact with the cap layer. and a light-receiving element in which the cap layer is formed of a material having a larger band gap than the light-absorbing layer, and the light-receiving area of the cap layer is formed thinner than the area in which the electrode is formed. A light receiving element characterized by:
JP1325660A 1989-12-14 1989-12-14 Light receiving element Expired - Fee Related JP2844097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1325660A JP2844097B2 (en) 1989-12-14 1989-12-14 Light receiving element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1325660A JP2844097B2 (en) 1989-12-14 1989-12-14 Light receiving element

Publications (2)

Publication Number Publication Date
JPH03185771A true JPH03185771A (en) 1991-08-13
JP2844097B2 JP2844097B2 (en) 1999-01-06

Family

ID=18179297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1325660A Expired - Fee Related JP2844097B2 (en) 1989-12-14 1989-12-14 Light receiving element

Country Status (1)

Country Link
JP (1) JP2844097B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100636093B1 (en) * 1999-07-12 2006-10-19 삼성전자주식회사 Photo-detector device and method manufacturing thereof
JP2010056147A (en) * 2008-08-26 2010-03-11 Hamamatsu Photonics Kk Semiconductor light receiving element
JP2013518414A (en) * 2010-01-21 2013-05-20 ローパー サイエンティフィック インコーポレイテッド Solid backside illuminated photon sensor and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254473A (en) * 1986-04-28 1987-11-06 Sumitomo Electric Ind Ltd Iii-v multi-element compound semiconductor pin photo diode
JPS63227053A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Semiconductor photodetector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62254473A (en) * 1986-04-28 1987-11-06 Sumitomo Electric Ind Ltd Iii-v multi-element compound semiconductor pin photo diode
JPS63227053A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Semiconductor photodetector

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100636093B1 (en) * 1999-07-12 2006-10-19 삼성전자주식회사 Photo-detector device and method manufacturing thereof
JP2010056147A (en) * 2008-08-26 2010-03-11 Hamamatsu Photonics Kk Semiconductor light receiving element
JP2013518414A (en) * 2010-01-21 2013-05-20 ローパー サイエンティフィック インコーポレイテッド Solid backside illuminated photon sensor and method for manufacturing the same

Also Published As

Publication number Publication date
JP2844097B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
US7148463B2 (en) Increased responsivity photodetector
JPS6016474A (en) Hetero multiple junction type photo detector
US5777390A (en) Transparent and opaque metal-semiconductor-metal photodetectors
US20070057299A1 (en) Systems and methods having a metal-semiconductor-metal (msm) photodetector with buried oxide layer
JP2000323746A (en) Avalanche photodiode and its manufacture
JP2002231992A (en) Semiconductor light receiving element
JPH03185771A (en) Photodetective element
JPH05291605A (en) Semiconductor photodetector
JPH03291979A (en) Avalanche photodiode
JPH09223805A (en) Semiconductor waveguide type light receiver
JPS639163A (en) Semiconductor photodetector
JPH04342174A (en) Semiconductor photoelectric receiving element
JP3442493B2 (en) Semiconductor light receiving element and method of manufacturing the same
JPS6398158A (en) Photodiode
JPS62282469A (en) Semiconductor photodetector
KR20010009571A (en) Photo-detector device and method manufacturing thereof
JPH05102513A (en) Semiconductor phtodetector
JPH0316275A (en) Manufacture of semiconductor photodetector
JPH01264273A (en) Semiconductor photodetector
JP2991555B2 (en) Semiconductor light receiving element
JPS63187671A (en) 1.3mum-range semiconductor photodetector
JP4168678B2 (en) Semiconductor photo detector
JPH05308150A (en) Semiconductor photodetector
JPH1074974A (en) Semiconductor light-receiving element
JP2001111097A (en) Msm-type photodiode

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees