JPH03179762A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03179762A
JPH03179762A JP31755289A JP31755289A JPH03179762A JP H03179762 A JPH03179762 A JP H03179762A JP 31755289 A JP31755289 A JP 31755289A JP 31755289 A JP31755289 A JP 31755289A JP H03179762 A JPH03179762 A JP H03179762A
Authority
JP
Japan
Prior art keywords
substrate
film
single crystal
polycrystalline
island
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31755289A
Other languages
Japanese (ja)
Inventor
Yutaka Akiyama
豊 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP31755289A priority Critical patent/JPH03179762A/en
Publication of JPH03179762A publication Critical patent/JPH03179762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To improve a wiring in coverage between single crystal Si islands by a method wherein insulator or silicon is selectively formed on an isolation insulating film whose oxidation speed is the slowest of those of thermal oxide films formed on a substrate at a thermal treatment, and then a semiconductor element is formed on the single crystal silicon island. CONSTITUTION:A dielectric isolated substrate provided with an N-type single crystal Si island 3 is provided to a groove provided to a polycrystalline Si 1 through the intermediary of an isolating SiO2 film 2, an an SiO2 film 4 is formed on the surface of the substrate concerned so thin as not to induce a steep recessed groove on the isolating SiO2 film. Then, a polycrystalline Si 5 is formed on the surface of the substrate. In succession, the polycrystalline Si 5 is selectively removed by etching so as to make the upside of the isolating SiO2 film 2 protrude, and an Si pattern 6 is formed. Next, to form a semiconductor element on the single crystal Si island 3, the oxide film 4 is made thick by a heat treatment so as to serve as a diffusion preventive thick film in a base diffusion process, a P<+> region 7 is formed as a base region, and an N<+> contact region 8 is formed through an N-type forming process. Then, a wiring material of Al or the like is patterned into a wiring 9.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体装置の製造方法に関し、特に誘電体分
離基板を用いた半導体装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device using a dielectric isolation substrate.

(従来の技術) 従来、このような誘電体分離基板は例えば特開昭60−
143646号公報に開示され、一般にこのような誘電
体分離基板を用いた半導体装置は次のように形成される
(Prior Art) Conventionally, such a dielectric isolation substrate has been disclosed in, for example, Japanese Patent Application Laid-Open No. 1986-
A semiconductor device disclosed in Japanese Patent No. 143646 and using such a dielectric isolation substrate is generally formed as follows.

まずN型の単結晶シリコン(以下Stという)基板を用
意し、所望の単結晶St島を形成する為のホトリン及び
異方性エツチングを行うことにより溝を形成し、電気的
に絶縁する為のS iO2を形成することにより分離酸
化を行う。次に、表面に支持領域となる多結晶シリコン
層を形成した後、単結晶St基板裏面側よう研磨を行な
い誘電体分離基板を作成する。次にこの誘電体分離基板
に半導体素子としてダイオードを形成する場合、まずこ
の基板を温度1060℃、時間60分の水蒸気酸化処理
にて、パターン外の拡散防止膜に適当なS iO245
00Aを形成する。次にペースホトリソ、ペースデポジ
ションを行い、温度1120℃、時間30分の水蒸気酸
化によるペースドライブイン工程を経てペース部を形成
する。このとき、ペース部上は5oool。
First, an N-type single crystal silicon (hereinafter referred to as St) substrate is prepared, and grooves are formed by photolithography and anisotropic etching to form desired single crystal St islands, and trenches are formed for electrical insulation. Separate oxidation is performed by forming SiO2. Next, after forming a polycrystalline silicon layer to serve as a support region on the front surface, the back surface of the single-crystal St substrate is polished to create a dielectric isolation substrate. Next, when forming a diode as a semiconductor element on this dielectric isolation substrate, firstly, this substrate is subjected to steam oxidation treatment at a temperature of 1060°C for 60 minutes to form an appropriate SiO245 film on the diffusion prevention film outside the pattern.
00A is formed. Next, paste photolithography and paste deposition are performed, and a paste portion is formed through a paste drive-in process using steam oxidation at a temperature of 1120° C. for 30 minutes. At this time, the pace section was 5oool.

ノセターン外は7000X程度のS t O2厚となっ
ている。
Outside the nosetan, the S t O2 thickness is about 7000X.

次に、炉ホトリソ、N+デポジション及び温度950℃
、時間50分の水蒸気酸化によるN+ドライブイン工程
を経て配線とオーミック接触を形成するN+領領域形成
する。このとき、−領域上は4000え、パターン外は
7500Xの5102厚となっている。しかる後、コン
タクトホトリソを行ない、At蒸着を経て、Atホトリ
ソ、Atシンターを行ない配線パターンを形成するもの
である。
Next, furnace photolithography, N+ deposition and temperature 950℃
, an N+ drive-in process using steam oxidation for 50 minutes is performed to form an N+ region that forms ohmic contact with the wiring. At this time, the thickness is 4000× on the - region and 5102× 7500× on the outside of the pattern. Thereafter, contact photolithography is performed, At vapor deposition is performed, and Att photolithography and At sintering are performed to form a wiring pattern.

(発明が解決しようとする課題) しかしながら以上のような半導体装置の製造方法による
と、半導体素子形成プロセス、例えば酸化、ベースドラ
イブイン、N+ドライブイン工程にかいて、単結晶St
島上、分離5102上及び多結晶St上に形成される熱
酸化膜のそれぞれの熱酸化速度が異なるため、一番熱酸
化速度が小さい分離8102部を凹とした急峻な溝が形
成されてし筐い、各単結晶St島間で素子配線を形成す
る際、その溝部分で配線の断切れが生じるという課題が
あった。特に、分離酸化膜厚が薄いと、分離酸化膜部に
釦ける溝幅が狭くなシ、その結果レジストのカバーが悪
くなり、配線の断切れ発生率もより高くなっていた。
(Problem to be Solved by the Invention) However, according to the method for manufacturing a semiconductor device as described above, in the semiconductor element formation process, for example, the oxidation, base drive-in, and N+ drive-in steps, single crystal St.
Since the thermal oxidation rates of the thermal oxide films formed on the island, on the isolation 5102, and on the polycrystalline St are different, a steep groove is formed with the isolation 8102 part where the thermal oxidation rate is the lowest being concave. However, when forming element wiring between each single-crystal St island, there was a problem in that the wiring was broken at the groove portion. In particular, when the isolation oxide film is thin, the width of the groove formed in the isolation oxide film becomes narrow, resulting in poor resist coverage and a higher rate of interconnect breakage.

この発明の目的は、誘電体分離基板を用いた半導体装置
を製造するに際し、各単結晶St島間での配線のカバレ
ージが良い製造方法を提供することにある。
An object of the present invention is to provide a manufacturing method that provides good wiring coverage between each single-crystal St island when manufacturing a semiconductor device using a dielectric isolation substrate.

(課題を解決するための手段) 本発明は前記課題を解決するために、半導体装置の製造
に際し、単結晶シリコン基板を準備し、この基板の表面
を選択的にエツチング除去することにより溝を形成し、
この基板の表面に絶縁膜を被着させた後、この絶縁膜上
に多結晶シリコン層を積層し、この基板の裏面を前記溝
の底部に至る筐で研磨することにより前記絶縁膜で分離
された複数の単結晶シリコン島を形成し、研磨により露
出した前記絶縁膜上に選択的に絶縁物又はシリコンを形
成させた後、前記単結晶シリコン島に半導体素子を形成
するようにしたものである。
(Means for Solving the Problems) In order to solve the above problems, the present invention prepares a single crystal silicon substrate and forms grooves by selectively etching away the surface of the substrate when manufacturing a semiconductor device. death,
After depositing an insulating film on the surface of this substrate, a polycrystalline silicon layer is laminated on this insulating film, and the back surface of this substrate is polished with a casing that reaches the bottom of the groove to separate the parts by the insulating film. A plurality of single crystal silicon islands are formed, an insulator or silicon is selectively formed on the insulating film exposed by polishing, and then a semiconductor element is formed on the single crystal silicon islands. .

(作用) 以上のように本発明の半導体装置の製造方法によれば、
熱処理に際して基板上に形成される熱酸化膜の酸化速度
が一番遅い分離絶縁膜上に選択的に絶縁物又はシリコン
を形成した後、単結晶シリコン島に半導体素子を形成し
ているので、半導体素子形成に伴って形成される熱酸化
膜が前記分離酸化膜部分で凹状とならずより平坦な酸化
膜を形成することができる。
(Function) As described above, according to the method for manufacturing a semiconductor device of the present invention,
After selectively forming an insulator or silicon on the isolation insulating film, which has the slowest oxidation rate of the thermal oxide film formed on the substrate during heat treatment, the semiconductor element is formed on the single crystal silicon island. The thermal oxide film formed along with element formation does not become concave in the isolation oxide film portion, and a flatter oxide film can be formed.

(実施例) 第1図(、)〜0)は半導体装置の工程断面図であう、
以下図面を用いて本発明の実施例につき説明する。
(Example) FIG. 1 (, ) to 0) is a cross-sectional view of the process of a semiconductor device.
Embodiments of the present invention will be described below with reference to the drawings.

1ず、第1図(a)に示すように公知の技術により、支
持体としての多結晶St 1の溝内部に分離5IO2膜
2を介してN型の単結晶S1島3を有する誘電体分離基
板を準備し、分離5t02上に急峻な凹型溝が形成され
ない程度に薄く、この基板表面に8102膜4を形成す
る。次に第1図(b)に示されるように、液相成長(L
PCVD)等により基板表面に多結晶Si5を形成する
。次に第1図(c)に示されるように、分離5IO2膜
2上が凸形状になるように、前記多結晶St 5を選択
的にエツチング除去し、Si/#ターン体6を形成する
。次に単結晶S1島3に半導体素子を形成するために、
第1図(d)に示されるように、ペース拡散工程の拡散
防止膜厚になるよう、熱処理によう酸化膜4を厚くし、
このときSiノやターン体6上にも酸化膜が形成される
。次に第1図(、)に示されるように、ペースホトリソ
、デポジション、拡散等公知の方法によυペース領域と
してP+領域7を形成し、同様に第1図(f)に示され
るように、炉形成工程を行ないN+コンタクト領域8を
形成する。
1. First, as shown in FIG. 1(a), by a known technique, a dielectric isolation material having an N-type single crystal S1 island 3 is formed inside a groove of a polycrystalline St 1 serving as a support through an isolation 5IO2 film 2. A substrate is prepared, and the 8102 film 4 is formed on the surface of the substrate to be as thin as not to form a steep concave groove on the separation 5t02. Next, as shown in FIG. 1(b), liquid phase growth (L
Polycrystalline Si5 is formed on the surface of the substrate by, for example, PCVD. Next, as shown in FIG. 1(c), the polycrystalline St 5 is selectively etched away so that the top of the isolation 5IO2 film 2 has a convex shape, and a Si/# turn body 6 is formed. Next, in order to form a semiconductor element on the single crystal S1 island 3,
As shown in FIG. 1(d), the oxide film 4 is thickened by heat treatment so as to have the thickness of the diffusion prevention film in the pace diffusion process.
At this time, an oxide film is also formed on the Si layer and the turn body 6. Next, as shown in FIG. 1(,), a P+ region 7 is formed as a υ pace region by a known method such as pace photolithography, deposition, or diffusion, and similarly as shown in FIG. 1(f), , a furnace forming process is performed to form the N+ contact region 8.

しかる後、At等の配線材をパターンニングすることに
よう配線9を形成することにより第1図(g)に示され
るような断面構造の半導体装置を得ることができる。
Thereafter, by patterning a wiring material such as At to form wiring 9, a semiconductor device having a cross-sectional structure as shown in FIG. 1(g) can be obtained.

このように本発明の実施例によれば、誘電体分熱基板の
熱酸化速度が遅い分離SiO□膜2上にSt・ぞターン
体6を設けているので、素子形成に際しての熱処理工程
において、誘電体分離基板衣WJc酸化速度を一様にす
ることができ、寸た分離S t O2膜2上がSi□タ
ーン体6の膜厚分凸形状にすることができるので、分離
5i02膜2上に形成される配線9のカバレージを制御
することができ、分離S iO2膜2上でのカバレージ
の悪さによる配線9の断切れを防止することができる。
As described above, according to the embodiment of the present invention, since the St. The oxidation rate of the dielectric separation substrate WJc can be made uniform, and the top of the separation S t O2 film 2 can be made into a convex shape corresponding to the film thickness of the Si□ turn body 6. The coverage of the wiring 9 formed on the isolated SiO2 film 2 can be controlled, and breakage of the wiring 9 due to poor coverage on the isolated SiO2 film 2 can be prevented.

尚、本発明の実施例では分離SiO□膜2上に多結晶の
5iz4タ一ン体6を形成したが、S io 2膜等の
絶縁膜を凸形状に形成しても同様の効果を得ることがで
きる。また、分離S iO2膜上に設ける・ぞターン体
の厚さは、素子形成プロセスで形成される熱酸化膜の厚
さに応じて決めることにより、よシ平坦化が可能となる
ことは言う筐でもない。
In the embodiment of the present invention, a polycrystalline 5iz4 tantalum body 6 is formed on the isolated SiO□ film 2, but the same effect can be obtained by forming an insulating film such as an S io 2 film in a convex shape. be able to. Furthermore, by determining the thickness of the diagonal body provided on the isolated SiO2 film according to the thickness of the thermal oxide film formed in the element formation process, it is possible to achieve better planarization of the casing. not.

(発明の効果) 以上詳細に説明したように本発明によれば、誘電体分離
基板を用いた半導体装置の製造に際し、分離絶縁膜上に
多結晶シリコン又は絶縁性のパターン体を形成している
ので、半導体素子形成で熱酸化膜が形成されても分離絶
縁膜上が平坦又は凸形状となシ、分離絶縁膜上にまたが
る配線の断切れ問題を解消することができる。
(Effects of the Invention) As described above in detail, according to the present invention, when manufacturing a semiconductor device using a dielectric isolation substrate, a polycrystalline silicon or insulating pattern body is formed on an isolation insulating film. Therefore, even if a thermal oxide film is formed during semiconductor element formation, the isolation insulating film does not have a flat or convex shape, and the problem of disconnection of wiring extending over the isolation insulating film can be solved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜0)は本発明の詳細な説明するための半
導体装置の工程断面図である。 1・・・多結晶Si、2・・・分離S z O2膜、3
・・・単結晶St島、4・・・S 102膜、5・・・
多結晶st、6・・・Siノぐターン体、7・・・P+
領域、8・・・N+コンタクト領域、9・・・配線。
FIGS. 1(a) to 10) are process cross-sectional views of a semiconductor device for explaining the present invention in detail. 1... Polycrystalline Si, 2... Separated S z O2 film, 3
...Single crystal St island, 4...S 102 film, 5...
Polycrystalline st, 6...Si nog turn body, 7...P+
Area, 8...N+ contact area, 9... Wiring.

Claims (1)

【特許請求の範囲】 単結晶シリコン基板を準備する工程と、 該基板の表面を選択的にエッチング除去することにより
溝を形成する工程と、 該基板の表面に絶縁膜を被着する工程と、 該絶縁膜上に多結晶シリコン層を積層する工程と、 該基板の裏面を前記溝の底部に至るまで研磨することに
より前記絶縁膜で分離された複数の単結晶シリコン島を
形成する工程と、 該研磨により露出した前記絶縁膜上に選択的に多結晶シ
リコン又は絶縁性のパターン体を形成する工程と、 前記単結晶シリコン島に半導体素子を形成する工程とを
備えてなることを特徴とする半導体装置の製造方法。
[Claims] A step of preparing a single-crystal silicon substrate, a step of forming a groove by selectively etching a surface of the substrate, and a step of depositing an insulating film on the surface of the substrate, a step of laminating a polycrystalline silicon layer on the insulating film; a step of polishing the back surface of the substrate to the bottom of the groove to form a plurality of single-crystal silicon islands separated by the insulating film; The method is characterized by comprising the steps of: selectively forming a polycrystalline silicon or insulating pattern on the insulating film exposed by the polishing; and forming a semiconductor element on the single crystal silicon island. A method for manufacturing a semiconductor device.
JP31755289A 1989-12-08 1989-12-08 Manufacture of semiconductor device Pending JPH03179762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31755289A JPH03179762A (en) 1989-12-08 1989-12-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31755289A JPH03179762A (en) 1989-12-08 1989-12-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03179762A true JPH03179762A (en) 1991-08-05

Family

ID=18089530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31755289A Pending JPH03179762A (en) 1989-12-08 1989-12-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03179762A (en)

Similar Documents

Publication Publication Date Title
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JP2699359B2 (en) Semiconductor substrate manufacturing method
US3974006A (en) Method of obtaining high temperature resistant assemblies comprising isolated silicon islands bonded to a substrate
KR100353174B1 (en) Method for fabrication of silicon on insulator substrates
JPH03179762A (en) Manufacture of semiconductor device
JPH01302740A (en) Dielectric isolation semiconductor substrate
JP2666427B2 (en) Method for manufacturing semiconductor device
CA1059647A (en) Method of preparing dielectric insulator separated substrate for semiconductor integrated circuits
JPS5849027B2 (en) Manufacturing method for semiconductor integrated circuit devices
JPH0754826B2 (en) Method for manufacturing semiconductor device
JPH0370155A (en) Manufacture of dielectric separating type semiconductor device
JPS6362252A (en) Manufacture of dielectric isolation substrate
JPH08222625A (en) Manufacture of dielectric isolation board
JPS5939044A (en) Manufacture of substrate for insulating isolation integrated circuit
JPH04307735A (en) Manufacture of semiconductor device
JPH0330356A (en) Manufacture of insulating-layer isolated substrate
JPS6226181B2 (en)
JPH0212854A (en) Manufacture of dielectric isolated semiconductor integrated circuit substrate
JPS6298639A (en) Manufacture of dielectric isolated substrate
JPH05175325A (en) Dielectric isolation board and manufacturing method
JPH01238033A (en) Dielectric isolation type semiconductor substrate and its manufacture
JPH04373146A (en) Manufacture of complementary type dielectric isolation substrate
JPH02268443A (en) Semiconductor device
JPS6221269B2 (en)
JPS62124753A (en) Manufacture of dielectric isolation substrate