JPH08222625A - Manufacture of dielectric isolation board - Google Patents

Manufacture of dielectric isolation board

Info

Publication number
JPH08222625A
JPH08222625A JP2148495A JP2148495A JPH08222625A JP H08222625 A JPH08222625 A JP H08222625A JP 2148495 A JP2148495 A JP 2148495A JP 2148495 A JP2148495 A JP 2148495A JP H08222625 A JPH08222625 A JP H08222625A
Authority
JP
Japan
Prior art keywords
substrate
dielectric isolation
single crystal
main surface
crystal silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2148495A
Other languages
Japanese (ja)
Inventor
Koji Sakuraba
康二 桜庭
Shoji Hayashi
昭二 林
Yuji Shinno
裕二 新野
Hirotaka Sakaniwa
弘孝 坂庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2148495A priority Critical patent/JPH08222625A/en
Publication of JPH08222625A publication Critical patent/JPH08222625A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE: To eliminate a bent of a substrate at the time of heat treating at a high temperature by forming an insulating film on a single crystalline silicon substrate having grooves, then removing the film of the part which is not used as an integrated circuit, and simultaneously depositing a single crystalline silicon layer together with a polycrystalline silicon layer on the other part. CONSTITUTION: Insulating films 3, 4 are formed on a single crystalline silicon substrate 1 having grooves 2 on one main surface, and a polycrystalline silicon 6 is deposited on the main surface having the grooves 2 by a vapor growing method. Then, the surface of the silicon layer 6 is ground and polished to be flattened mirror surface, and a dielectric isolation substrate 13 is manufactured via the step of laminating the mirror surface and the main surface of a single crystalline silicon substrate 10. In this case, the film 3 of the part 5 which is not used as an integrated circuit on the main surface having the grooves 3 is removed, and a single crystalline silicon 7 is deposited at the part simultaneously by a vapor growing method to prevent the vent of the substrate 13. For example, the insulating film removed part of the part 5 which is not used as the integrated circuit is arranged on the entirety of the substrate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の製造方法
に係り、特に誘電体分離基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a dielectric isolation substrate.

【0002】[0002]

【従来の技術】従来の誘電体分離基板の製造方法は、図
4に示すように(a)単結晶シリコン基板1の一主面上
に所要の数および形状の分離溝2をエッチング等により
形成し、この分離溝2を形成した面に絶縁膜3を被着形
成し、次に、(b)絶縁膜3上に気相成長法にて多結晶
シリコン層6を堆積し、(c)多結晶シリコン層6の表
面に研削,研磨を実施して分離用基板9を製造する。
2. Description of the Related Art In the conventional method for manufacturing a dielectric isolation substrate, as shown in FIG. 4, (a) isolation grooves 2 of a required number and shape are formed on one main surface of a single crystal silicon substrate 1 by etching or the like. Then, the insulating film 3 is deposited on the surface where the separation groove 2 is formed, and then (b) the polycrystalline silicon layer 6 is deposited on the insulating film 3 by vapor phase epitaxy, The surface of the crystalline silicon layer 6 is ground and polished to manufacture the separation substrate 9.

【0003】さらに、(d)分離用基板9の研磨された
表面と、もう一方の支持体単結晶シリコン基板10とを
貼り合わせ、(e)分離用基板9のもう一方の面を研
削,研磨して誘電体分離基板13を製造する。
Further, (d) the polished surface of the separation substrate 9 and the other support single crystal silicon substrate 10 are bonded together, and (e) the other surface of the separation substrate 9 is ground and polished. Then, the dielectric isolation substrate 13 is manufactured.

【0004】なお、この種の製造方法として関連するも
のは、例えば特公昭58−45182 号が挙げられる。
A related manufacturing method of this kind is, for example, Japanese Patent Publication No. 58-45182.

【0005】[0005]

【発明が解決しようとする課題】従来の技術は、絶縁膜
を被着した分離用基板上に気相成長法により多結晶シリ
コン層のみを堆積し、表面を研削,研磨して、その後に
支持体層となる単結晶シリコン基板を貼り合わせし、分
離用基板のもう一方の面を研削,研磨して誘電体分離基
板を製造するため、分離用基板上に気相成長法で高温か
ら室温まで温度を下げたときや集積回路を形成する製造
工程において高温熱処理の時に、単結晶シリコンと多結
晶シリコンとの熱膨張係数の違いおよび多結晶シリコン
の収縮等により基板自体に湾曲が生じるという問題点が
あった。
According to the conventional technique, only a polycrystalline silicon layer is deposited by a vapor phase epitaxy method on a separation substrate coated with an insulating film, the surface is ground and polished, and then supported. Since a single crystal silicon substrate to be a body layer is bonded and the other surface of the separation substrate is ground and polished to manufacture a dielectric separation substrate, the separation substrate is grown from high temperature to room temperature by vapor phase epitaxy. The problem that the substrate itself is curved when the temperature is lowered or during high-temperature heat treatment in the manufacturing process for forming an integrated circuit due to the difference in the coefficient of thermal expansion between single crystal silicon and polycrystalline silicon and the contraction of polycrystalline silicon. was there.

【0006】この基板の湾曲は、集積回路のパターン形
成工程での拡散層の窓空け、特に、微細加工技術が必須
となるコンタクトの窓空けおよび電極配線形成時、精度
や均一性を著しく悪くし、製品歩留を低下させる要因と
なっていた。
The curvature of the substrate significantly deteriorates accuracy and uniformity when forming a window of a diffusion layer in a pattern forming process of an integrated circuit, particularly when forming a contact window and an electrode wiring in which fine processing technology is essential. However, it has been a factor that reduces the product yield.

【0007】本発明の目的は、上記した基板に湾曲が生
じない構造の誘電体分離基板を提供するものである。
An object of the present invention is to provide a dielectric isolation substrate having a structure in which the above-mentioned substrate does not bend.

【0008】[0008]

【課題を解決するための手段】気相成長法で高温から室
温まで温度を下げたとき、また集積回路を形成する製造
工程の高温熱処理時に生じる誘電体分離基板の湾曲は、
単結晶シリコンと多結晶シリコンとの熱膨張係数の違う
バイメタル構造および多結晶シリコンの収縮等により発
生する。従って、多結晶シリコン層に部分的に単結晶シ
リコン層を形成し、その配列を最適化することにより基
板自体の湾曲を防止できることに着目した。
The curvature of the dielectric isolation substrate, which occurs when the temperature is lowered from high temperature to room temperature by the vapor phase growth method and during high temperature heat treatment in the manufacturing process for forming an integrated circuit,
It is caused by a bimetal structure having different thermal expansion coefficients between single crystal silicon and polycrystalline silicon, and contraction of polycrystalline silicon. Therefore, it has been noted that the curvature of the substrate itself can be prevented by partially forming the single crystal silicon layer in the polycrystalline silicon layer and optimizing the arrangement thereof.

【0009】すなわち、本発明は、一主面上に溝を有す
る単結晶シリコン基板に絶縁膜を被着形成後、集積回路
として使用しない部分の絶縁膜を除去すると、気相成長
時に、絶縁膜が形成されている部分は多結晶シリコン層
が堆積され、絶縁膜が除去されている部分は下地となる
単結晶シリコンと同様の単結晶シリコン層が堆積される
ため、熱膨張係数の違いおよび多結晶シリコンの収縮が
緩和されること、および上記構造を誘電体分離基板全体
に配列することにより湾曲を防止できる。
That is, according to the present invention, after depositing an insulating film on a single crystal silicon substrate having a groove on one main surface and then removing the insulating film in a portion which is not used as an integrated circuit, the insulating film is deposited during vapor phase growth. A polycrystalline silicon layer is deposited on the portion where the insulating film is formed, and a single crystal silicon layer similar to the underlying single crystal silicon is deposited on the portion where the insulating film is removed. Curvature can be prevented by alleviating the shrinkage of crystalline silicon and by arranging the above structure over the entire dielectric isolation substrate.

【0010】[0010]

【作用】気相成長法で高温から室温まで温度を下げたと
き、また集積回路を形成する製造工程の高温熱処理時に
生じる誘電体分離基板の湾曲は、単結晶シリコンと多結
晶シリコンとの熱膨張係数の違うバイメタル構造および
多結晶シリコンの収縮により発生する。
[Function] When the temperature is lowered from a high temperature to room temperature by the vapor phase growth method and when the high temperature heat treatment is performed in the manufacturing process for forming an integrated circuit, the curvature of the dielectric isolation substrate is caused by the thermal expansion of single crystal silicon and polycrystalline silicon. It is caused by the bimetal structure with different coefficients and the shrinkage of polycrystalline silicon.

【0011】熱膨張係数は、単結晶シリコンが3.0×
10-6-1 、多結晶シリコンが約4.5×10-5-1
であるから、高温の熱処理から室温まで温度を下げてい
くと収縮率は、多結晶シリコンの方が単結晶シリコンよ
りも大となる。すなわち、多結晶シリコン層の間に単結
晶シリコン層が存在することにより熱膨張係数の違いお
よび多結晶シリコンの収縮が緩和され基板自体の湾曲を
防止できる。
The coefficient of thermal expansion is 3.0 × for single crystal silicon.
10 -6-1 , polycrystalline silicon is about 4.5 × 10 -5-1
Therefore, when the temperature is lowered from the high temperature heat treatment to room temperature, the shrinkage rate of the polycrystalline silicon becomes larger than that of the single crystal silicon. That is, the presence of the single crystal silicon layer between the polycrystal silicon layers alleviates the difference in the coefficient of thermal expansion and the contraction of the polycrystal silicon to prevent the substrate itself from being curved.

【0012】[0012]

【実施例】以下、本発明を図面に示す実施例に基づいて
詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the embodiments shown in the drawings.

【0013】図1は、本発明の一実施例である誘電体分
離基板の製造方法を説明するための断面図である。
(a)単結晶シリコン基板1の一主面上に所要の数およ
び形状の分離溝2をエッチング等により形成し、この分
離溝2を形成した面に熱酸化等により絶縁膜3を被着形
成し、次に、(b)集積回路として使用しない部分5の
絶縁膜をホトエッチングにより除去する。
FIG. 1 is a sectional view for explaining a method of manufacturing a dielectric isolation substrate which is an embodiment of the present invention.
(A) A required number and shape of isolation trenches 2 are formed on one main surface of the single crystal silicon substrate 1 by etching or the like, and an insulating film 3 is deposited on the surface having the isolation trenches 2 by thermal oxidation or the like. Then, (b) the insulating film of the portion 5 not used as an integrated circuit is removed by photoetching.

【0014】次に、(c)気相成長法により絶縁膜3の
表面に多結晶シリコン層6をホトエッチングにより絶縁
膜3を除去した集積回路として使用しない部分5の表面
に単結晶シリコン層7を堆積し、(d)多結晶シリコン
層6と単結晶シリコン層7の表面に研削,研磨を実施し
て分離用基板9を製造する。
Next, (c) the polycrystalline silicon layer 6 is formed on the surface of the insulating film 3 by vapor phase epitaxy, and the monocrystalline silicon layer 7 is formed on the surface of the portion 5 where the insulating film 3 is removed by photoetching and is not used as an integrated circuit. Are deposited, and (d) the surfaces of the polycrystalline silicon layer 6 and the single crystal silicon layer 7 are ground and polished to manufacture the separation substrate 9.

【0015】さらに、(e)分離用基板9の研磨された
表面8と、もう一方の支持体単結晶シリコン基板10と
を貼り合わせ、(f)分離用基板9のもう一方の面を研
削,研磨して誘電体分離基板13を製造する。
Further, (e) the polished surface 8 of the separation substrate 9 and the other support single crystal silicon substrate 10 are bonded together, and (f) the other surface of the separation substrate 9 is ground, The dielectric isolation substrate 13 is manufactured by polishing.

【0016】また、集積回路として使用しない部分5の
絶縁膜のホトエッチングによる除去例の平面図を図2に
示す。誘電体分離基板21の全面に格子状に配置するこ
とにより湾曲低減効果が基板全体で一様となるので基板
自体の湾曲を大幅に防止することができる。
FIG. 2 is a plan view showing an example of removing the insulating film of the portion 5 which is not used as an integrated circuit by photoetching. By arranging the dielectric isolation substrate 21 in a lattice pattern over the entire surface, the effect of reducing the curvature becomes uniform over the entire substrate, so that the curvature of the substrate itself can be largely prevented.

【0017】図3は、本発明の他の実施例を示す断面図
である。集積回路として使用しない部分5の絶縁膜をホ
トエッチングにより除去した分離用基板9の研削,研磨
された表面と、もう一方の接着層となるシリコン熱酸化
膜を形成した支持体単結晶シリコン基板10とを貼り合
わせた誘電体分離基板14においても基板自体の湾曲を
防止することができる。
FIG. 3 is a sectional view showing another embodiment of the present invention. A support single crystal silicon substrate 10 having a ground and polished surface of a separation substrate 9 obtained by removing the insulating film of a portion 5 not used as an integrated circuit by photoetching, and a silicon thermal oxide film serving as the other adhesive layer. Also in the dielectric isolation substrate 14 in which and are bonded together, the substrate itself can be prevented from being curved.

【0018】また、本発明者の検討によれば、基板内の
多結晶シリコン層と単結晶シリコン層との面積比(=単
結晶シリコン層面積/多結晶シリコン層面積)を0.1
0 〜0.30 にすると誘電体分離基板の湾曲を顕著に
防止することができる。
According to a study by the present inventor, the area ratio (= single crystal silicon layer area / polycrystalline silicon layer area) between the polycrystalline silicon layer and the single crystal silicon layer in the substrate is 0.1.
When it is set to 0 to 0.30, it is possible to remarkably prevent the dielectric isolation substrate from being curved.

【0019】[0019]

【発明の効果】本発明によれば、気相成長時、また集積
回路を形成する製造工程の高温熱処理時に単結晶シリコ
ンと多結晶シリコンとの熱膨張係数および収縮率の違い
により生じる誘電体分離基板の湾曲は、分離用基板の分
離溝を有する面の絶縁膜上に気相成長法によって堆積し
た多結晶シリコン層中に単結晶シリコン層を基板全面に
格子状に配置することにより、基板自体の湾曲を防止す
ることが可能となり集積回路パターン形成工程での加工
精度が向上し安定した製品歩留を得ることができる。
According to the present invention, dielectric separation caused by a difference in thermal expansion coefficient and contraction rate between single crystal silicon and polycrystalline silicon during vapor phase growth and high temperature heat treatment in a manufacturing process for forming an integrated circuit. The curvature of the substrate is caused by arranging a single crystal silicon layer in a lattice pattern on the entire surface of the substrate in the polycrystalline silicon layer deposited by the vapor phase growth method on the insulating film on the surface of the separation substrate having the separation groove. Can be prevented, the processing accuracy in the integrated circuit pattern forming process is improved, and a stable product yield can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)〜(f)は本発明に係る誘電体分離基板の
製造工程を順次示す断面図である。
1A to 1F are cross-sectional views sequentially showing manufacturing steps of a dielectric isolation substrate according to the present invention.

【図2】本発明に係る誘電体分離基板の配置図である。FIG. 2 is a layout view of a dielectric isolation substrate according to the present invention.

【図3】本発明に係る誘電体分離基板の断面図である。FIG. 3 is a sectional view of a dielectric isolation substrate according to the present invention.

【図4】(a)〜(e)は従来の誘電体分離基板の製造工
程を順次示す断面図である。
4A to 4E are cross-sectional views sequentially showing a manufacturing process of a conventional dielectric isolation substrate.

【符号の説明】[Explanation of symbols]

1,10…単結晶シリコン基板、2…分離溝、3,4…
絶縁膜、5…集積回路として使用しない部分、6,7…
多結晶シリコン層、8…貼り合わせ面、9…分離用基
板、11,12…シリコン熱酸化膜、13,14,21
…誘電体分離基板。
1, 10 ... Single crystal silicon substrate, 2 ... Separation groove, 3, 4 ...
Insulating film, 5 ... Portion not used as an integrated circuit, 6, 7 ...
Polycrystalline silicon layer, 8 ... Bonding surface, 9 ... Separation substrate, 11, 12 ... Silicon thermal oxide film, 13, 14, 21
... dielectric isolation substrate.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 坂庭 弘孝 茨城県日立市幸町三丁目1番1号 株式会 社日立製作所日立工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirotaka Sakaniwa 3-1-1, Saiwaicho, Hitachi-shi, Ibaraki Hitachi Ltd. Hitachi factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】単結晶シリコン基板の一主面と、一主面上
に溝を有する単結晶シリコン基板に絶縁膜を形成し、溝
を有する主面上に、気相成長法により多結晶シリコンを
堆積し、次にその堆積層の表面に研削,研磨を実施し
て、平坦化かつ鏡面とした面とを貼り合わせることを含
む誘電体分離基板の製造法において、溝を有する主面上
の集積回路として使用しない部分の絶縁膜を除去して、
その部分に上記気相成長法で同時に単結晶シリコンを堆
積することにより基板の湾曲を防止することを特徴とす
る誘電体分離基板の製造方法。
1. An insulating film is formed on a main surface of a single crystal silicon substrate and a single crystal silicon substrate having a groove on the main surface, and polycrystalline silicon is formed on the main surface having the groove by a vapor phase growth method. On the main surface having a groove in a method of manufacturing a dielectric isolation substrate, which comprises laminating a surface of the deposited layer, and then performing grinding and polishing to bond the flattened and mirror-finished surface. Remove the insulating film that is not used as an integrated circuit,
A method for producing a dielectric isolation substrate, characterized in that the substrate is prevented from being curved by simultaneously depositing single crystal silicon on the portion by the vapor phase growth method.
【請求項2】請求項1において、溝を有する主面上の集
積回路として使用しない部分の絶縁膜除去部を基板全体
に配列することにより基板の湾曲を防止することを特徴
とする誘電体分離基板の製造方法。
2. The dielectric isolation according to claim 1, wherein the portion of the main surface having the groove which is not used as an integrated circuit is arranged over the entire substrate to prevent the substrate from being curved. Substrate manufacturing method.
【請求項3】請求項1において、気相成長にて堆積する
多結晶シリコン層と単結晶シリコン層の面積比を0.1
0〜0.30として基板の湾曲を防止することを特徴と
する誘電体分離基板の製造方法。
3. The area ratio between the polycrystalline silicon layer and the single crystal silicon layer deposited by vapor phase epitaxy according to claim 1, wherein the area ratio is 0.1.
A method of manufacturing a dielectric isolation substrate, characterized in that the substrate is prevented from being curved as 0 to 0.30.
【請求項4】請求項1において、スクライブエリアを単
結晶シリコン化して基板の湾曲を防止することを特徴と
する誘電体分離基板の製造方法。
4. The method for manufacturing a dielectric isolation substrate according to claim 1, wherein the scribe area is made of single crystal silicon to prevent the substrate from being curved.
JP2148495A 1995-02-09 1995-02-09 Manufacture of dielectric isolation board Pending JPH08222625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2148495A JPH08222625A (en) 1995-02-09 1995-02-09 Manufacture of dielectric isolation board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2148495A JPH08222625A (en) 1995-02-09 1995-02-09 Manufacture of dielectric isolation board

Publications (1)

Publication Number Publication Date
JPH08222625A true JPH08222625A (en) 1996-08-30

Family

ID=12056259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2148495A Pending JPH08222625A (en) 1995-02-09 1995-02-09 Manufacture of dielectric isolation board

Country Status (1)

Country Link
JP (1) JPH08222625A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122864B2 (en) 2003-03-17 2006-10-17 Kabushiki Kaisha Toshiba Semiconductor substrate having a partial SOI structure, method of manufacturing the same, a semiconductor device having a partial SOI structure, and method of manufacturing the same
JP2011192882A (en) * 2010-03-16 2011-09-29 Nec Corp Semiconductor structure, semiconductor device, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122864B2 (en) 2003-03-17 2006-10-17 Kabushiki Kaisha Toshiba Semiconductor substrate having a partial SOI structure, method of manufacturing the same, a semiconductor device having a partial SOI structure, and method of manufacturing the same
US7294562B2 (en) 2003-03-17 2007-11-13 Kabushiki Kaisha Toshiba Semiconductor substrate, method of manufacturing the same, semiconductor device, and method of manufacturing the same
JP2011192882A (en) * 2010-03-16 2011-09-29 Nec Corp Semiconductor structure, semiconductor device, and method of manufacturing the same

Similar Documents

Publication Publication Date Title
JP2608351B2 (en) Semiconductor member and method of manufacturing semiconductor member
JPH01315159A (en) Dielectric-isolation semiconductor substrate and its manufacture
JPH07118505B2 (en) Method for manufacturing dielectric isolation substrate
JPH02191320A (en) Crystal product and its manufacture
JP2699359B2 (en) Semiconductor substrate manufacturing method
JP2763107B2 (en) Dielectric-isolated semiconductor substrate and method of manufacturing the same
JPH08222625A (en) Manufacture of dielectric isolation board
JPH0964319A (en) Soi substrate and its manufacture
JP2766417B2 (en) Manufacturing method of bonded dielectric separation wafer
JPS6047239B2 (en) Method for manufacturing single crystal silicon thin film
JP2857456B2 (en) Method for manufacturing semiconductor film
JP2754295B2 (en) Semiconductor substrate
JP2681420B2 (en) Method for manufacturing dielectric substrate
JPS5918654A (en) Manufacture of dielectric isolation substrate
JPH0324719A (en) Forming method of single crystal film and crystal products
JPS62124753A (en) Manufacture of dielectric isolation substrate
JPH05175325A (en) Dielectric isolation board and manufacturing method
JPH0669024B2 (en) Method for manufacturing semiconductor device
JPH0616537B2 (en) Method for manufacturing semiconductor substrate
JPH06151572A (en) Dielectric-isolation substrate and its manufacture
JP3614927B2 (en) Method for manufacturing bonded semiconductor substrate
JPH11121611A (en) Manufacture of dielectric separation substrate
JPH0555359A (en) Soi semiconductor substrate and manufacture thereof
JP2000183156A (en) Dielectric isolation substrate and semiconductor integrated circuit device using the same
JPH03142854A (en) Dielectric isolated substrate and manufacture thereof