JPH03178520A - Bridge circuit for semiconductor switching element - Google Patents

Bridge circuit for semiconductor switching element

Info

Publication number
JPH03178520A
JPH03178520A JP1313290A JP31329089A JPH03178520A JP H03178520 A JPH03178520 A JP H03178520A JP 1313290 A JP1313290 A JP 1313290A JP 31329089 A JP31329089 A JP 31329089A JP H03178520 A JPH03178520 A JP H03178520A
Authority
JP
Japan
Prior art keywords
circuit
fuse
gate
terminal side
mct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1313290A
Other languages
Japanese (ja)
Other versions
JP2807297B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1313290A priority Critical patent/JP2807297B2/en
Priority to DE69025045T priority patent/DE69025045T2/en
Priority to EP90122961A priority patent/EP0431492B1/en
Priority to US07/619,917 priority patent/US5123746A/en
Priority to CN90109782A priority patent/CN1018499B/en
Priority to KR1019900019824A priority patent/KR930008464B1/en
Publication of JPH03178520A publication Critical patent/JPH03178520A/en
Application granted granted Critical
Publication of JP2807297B2 publication Critical patent/JP2807297B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/088Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the simultaneous control of series or parallel connected semiconductor devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Protection Of Static Devices (AREA)
  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To decrease the number of driving power supplies for a semiconductor switching element by a method wherein the control terminal side and the current outflow or inflow terminal side are connected in common, a first or second semiconductor element group supplying a section between both terminals with a control signal is provided, and the current outflow or inflow terminal of the first or second semiconductor element group is connected in common and used as an output terminal. CONSTITUTION:A power supply is bonded with the collectors of IGBTs 41a, 41b, 41c respectively through fuses 31a, 31b, 31c from the positive pole side of a DC bus. The emitter sides of the IGBTs 41a, 41b, 41c are connected in parallel, and connected to sections, in which the anode sides of MCTs 54a, 54b, 54c are connected in parallel, and employed as the output terminals of a bridge.

Description

【発明の詳細な説明】 〔発明の目的〕 関する。[Detailed description of the invention] [Purpose of the invention] related.

(従来の技術) 電圧形インバータの主回路および駆動回路は、インバー
タブリッジの素子として、IGBTや、MOS F E
 T、バイポーラトランジスタ、MCT等の自己消弧素
子を使用することが一般的となっている。
(Prior art) The main circuit and drive circuit of a voltage source inverter include IGBTs and MOS FEEs as inverter bridge elements.
It has become common to use self-extinguishing elements such as transistors, bipolar transistors, and MCTs.

例えば、第5図に示すような回路構成となっており、直
流電源1とフィルタ用コンデンサ2とから成る電源から
、高速ヒユーズ3を介してトランジスタブリッジ4によ
り交流に変換し負荷5に供給する。
For example, the circuit has a circuit configuration as shown in FIG. 5, in which a power source consisting of a DC power source 1 and a filter capacitor 2 is converted into AC by a transistor bridge 4 via a high-speed fuse 3, and is supplied to a load 5.

トランジスタブリッジ4ば、IGBT41゜44.42
,45,43.46により3相プリ。
Transistor bridge 4ba, IGBT41°44.42
, 45, 43. 46 provides three-phase pre.

ジを構成している。It makes up the ji.

各IGI:ITの駆動は、IGBT41に対しては、駆
動電源11.駆動回路21から成る。駆動信号をゲート
G41に加える。
Each IGI:IT is driven by a drive power supply 11. It consists of a drive circuit 21. A drive signal is applied to gate G41.

IGBT42.43に対しては、それぞれ、駆動電源1
2.13.駆動回路22.23によりゲートG42.G
43に加える。
For IGBT42 and 43, drive power supply 1
2.13. Drive circuit 22.23 drives gate G42. G
Add to 43.

IGBT44,45,46に対しては、エミッタ側が共
通なため、駆動電源14を共通にし、駆動回路24.2
5.26により、ゲートG44゜G45.G46にゲー
ト駆動信号を加える。
For the IGBTs 44, 45, and 46, since the emitter side is common, the drive power supply 14 is shared, and the drive circuit 24.2
5.26, gate G44°G45. Add gate drive signal to G46.

インバータの容量が増大するとIGBT44゜45.4
6の電流が大きくなり、エミッタ側を共通接続した配線
の電圧降下(電流変化時、J、di/dt分の電圧が発
生する)が大きくなり、駆動電源14を共通にして使用
するとノイズが他のIGBTのゲートに印加され誤動作
を発生することになる。
When the inverter capacity increases, IGBT44゜45.4
6 becomes large, the voltage drop in the wiring that connects the emitter side in common (when the current changes, a voltage corresponding to J, di/dt is generated) becomes large, and if the drive power supply 14 is used in common, noise will be generated. is applied to the gate of the IGBT, causing malfunction.

この為、下側の素子に対しても、上側の素子と同様、駆
動電源を3個に分け、計6個の駆動電源を使用している
For this reason, similarly to the upper element, the driving power source is divided into three, and a total of six driving power sources are used for the lower element.

また、現在使用されているトランジスタの大半はモジ具
−ル形と呼ばれる素子で、主電極と冷却面は電気的に絶
縁され、トランジスタのチップからボンディングワイヤ
ーで電極に接続されている。上下に接続されているトラ
ンジスタがパンク(劣化)すると直流電源が短絡され、
トランジスタに過電流が流れ、ボンディングワイヤーが
溶断しアークを出してモジュール形トランジスタの外壁
が飛散して危険であるため、高速ヒユーズ3により故障
電流をしゃ断する工夫がなされている。
Furthermore, most of the transistors currently in use are so-called modular devices, in which the main electrode and the cooling surface are electrically insulated, and the transistor chip is connected to the electrode by a bonding wire. If the transistors connected above and below are punctured (deteriorated), the DC power supply will be short-circuited,
If an overcurrent flows through the transistor, the bonding wire will melt and an arc will be emitted, causing the outer wall of the module type transistor to scatter, which is dangerous, so a high-speed fuse 3 is devised to cut off the fault current.

インバータの容量が大きくなると、モジュール素子を多
数並列に使用する必要があり、この場合モジュール素子
の外壁の破裂を防ぐため第6図に示すように、工GHT
のコレクタ側にそれぞれ高速ヒユーズを接続している。
As the capacity of the inverter increases, it is necessary to use a large number of module elements in parallel.In this case, in order to prevent the outer wall of the module elements from bursting, the
A high-speed fuse is connected to the collector side of each.

この理由は第5図のような直流側の共通ヒユーズでは並
列接続したモジュール素子を保護するに適したヒユーズ
が無いためである。
The reason for this is that the common fuse on the DC side as shown in FIG. 5 does not have a fuse suitable for protecting module elements connected in parallel.

また第6図でIGBTのコレクタ側にヒユーズを挿入し
ている理由はIGBTのゲート駆動信号を、エミッタと
ゲートに共通に接続して加える必要性があるためである
Furthermore, the reason why the fuse is inserted on the collector side of the IGBT in FIG. 6 is that it is necessary to apply the gate drive signal of the IGBT to the emitter and gate by connecting them in common.

第6図ではトランジスタブリッジの1相分を示したもの
で、IGI:IT、41a、41b。
FIG. 6 shows one phase of the transistor bridge, IGI:IT, 41a, 41b.

41Cのエミッタとゲートをそれぞれ並列に接続し、そ
れぞれのIGBTに高速ヒユーズ31a。
The emitter and gate of 41C are connected in parallel, and a high-speed fuse 31a is connected to each IGBT.

31b、31Cを挿入する。IGBT44a。Insert 31b and 31C. IGBT44a.

44b、44Cのエミッタとゲートもそれぞれ並列に接
続し、それぞれのIGBTのコレクタ側に高速ヒユーズ
32a# 32bl 32Cを接続する。
The emitters and gates of 44b and 44C are also connected in parallel, and high-speed fuses 32a# 32bl 32C are connected to the collector side of each IGBT.

コンデンサ6は直流母線のサージを吸収するため、なる
べく素子の近くに配置する。
The capacitor 6 is placed as close to the element as possible in order to absorb DC bus surges.

(発明が解決しようとする課題) このように構成された従来の回路では、半導体素子の駆
動用電源が従来は4個又は6個必要であり、回路が複雑
で経済的に不利であった。
(Problems to be Solved by the Invention) In the conventional circuit configured as described above, four or six power supplies for driving the semiconductor element were conventionally required, making the circuit complicated and economically disadvantageous.

また、第6図のように、各IGBTのコレクタ側にヒユ
ーズを接続すると、ヒユーズ自体と、配線長が数倍長く
なることによるインダクタンス(L)分の増加によりタ
ーンオフ時のサージ電圧(L di/dt )が素子に
印加され、素子の信頼性を低下させる。
Furthermore, when a fuse is connected to the collector side of each IGBT as shown in Fig. 6, the surge voltage at turn-off (L di/ dt ) is applied to the device, reducing the reliability of the device.

特に、スイッチング速度の早い素子では従来のバイポー
ラトランジスタに比べdi/dtが数倍高くなり、その
分サージ電圧が上昇し従来の回路方式では使用に耐えな
くなってきた。
In particular, elements with high switching speeds have di/dt several times higher than conventional bipolar transistors, and the surge voltage increases accordingly, making conventional circuit systems unusable.

第7図は、このサージ電圧を吸収する方法である。配線
やヒユーズのインダクタンス分7,8および9,10が
それぞれのIGBT41 a。
FIG. 7 shows a method of absorbing this surge voltage. The wiring and fuse inductances 7, 8 and 9, 10 are connected to each IGBT 41a.

44aの主回路に存在する。コンデンサ15とダイオー
ド16により、IGBT41aのコレクタ・エミッタ間
のサージエネルギーをクランプし、抵抗20を介してコ
ンデンサ2に放電する。一方、IGBT44aに対して
も、ダイオード17.コンデンサ18によりサージエネ
ルギーをクランプし、抵抗19を介して放電する。
It exists in the main circuit of 44a. The surge energy between the collector and emitter of the IGBT 41a is clamped by the capacitor 15 and the diode 16, and is discharged to the capacitor 2 via the resistor 20. On the other hand, the diode 17. The surge energy is clamped by a capacitor 18 and discharged through a resistor 19.

この回路では、使用部品が多くなり複雑になること、各
並列接続のIGBTにサージクランプ回路を設ける必要
があること、抵抗19.20でエネルギーの損失が発生
し効率が低下することが問題となっていた。
The problems with this circuit are that it becomes complicated due to the large number of parts used, that it is necessary to provide a surge clamp circuit for each parallel-connected IGBT, and that energy loss occurs in the resistor 19.20, reducing efficiency. was.

以上の欠点を解決するためには、高速ヒユーズを挿入し
たことによるインダクタンスの増加分(数倍増加)をい
かに低減又は無関係にさせるかである。
In order to solve the above-mentioned drawbacks, it is necessary to reduce or make the increase in inductance (several times increase) due to the insertion of the high-speed fuse to be made irrelevant.

高速ヒユーズを挿入したことによるインダクタンスの増
加分によるサージエネルギーを、素子に加わる前に〜吸
収すると同時に、素子の駆動電源数を低減した半導体素
子のブリッジ接続回路を提供することを目的とする。
To provide a bridge connection circuit for semiconductor devices that absorbs surge energy due to an increase in inductance due to the insertion of a high-speed fuse before it is applied to the device, and at the same time reduces the number of power supplies for driving the device.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) エミッタとゲート間に駆動信号を加えてオンオフするI
GBTと、アノードとゲート間に駆動信号を加えてオン
オフするMC’lI’のそれぞれのエミッタとアノード
を接続して出力とし、IGB’1.’のコレクタ側にヒ
ーーズを介して直流母線の正極に接続し、MCTのカソ
ード側にヒユーズを介し直流母線の負極に接続し、IG
B’l’のコレクタとM CTのカソード間にスナバを
設ける。上記により、I G B ’I’とMCTの駆
!1llJ電源を共通に使用する。
(Means for solving the problem) Applying a drive signal between the emitter and the gate to turn it on and off
The emitters and anodes of GBT and MC'lI', which are turned on and off by applying a drive signal between the anode and gate, are connected as outputs, and IGB'1. Connect the collector side of the MCT to the positive pole of the DC bus through a fuse, connect the cathode side of the MCT to the negative pole of the DC bus through a fuse,
A snubber is provided between the collector of B'l' and the cathode of MCT. Due to the above, IGB 'I' and MCT's Kaku! A 1llJ power supply is used in common.

(作用) IGBTのコレクタとM CTのカソード間は直流電源
からヒユーズを介して接続されているので、この間にコ
ンデンサを接続することによりヒ)−ズ回路のインダク
タンス分によるサージエネルギーは、このコンデンサに
吸収され素子には無関係となる。
(Function) The collector of the IGBT and the cathode of the MCT are connected from the DC power supply via a fuse, so by connecting a capacitor between them, the surge energy due to the inductance of the fuse circuit is transferred to this capacitor. It is absorbed and becomes irrelevant to the element.

また、IGBTのエミッタとMCTのアノードが共通に
接続されているので、駆動電源を共通に使用できる。
Furthermore, since the emitters of the IGBTs and the anodes of the MCTs are commonly connected, a common driving power source can be used.

(実施例) 本発明の実施例を第1図に示しその構成について説明す
る。第5図、第6図と同一部分は、同一番号を記し説明
は省略する。第1図はインバータブリッジの1相分につ
いて記しである。
(Example) An example of the present invention is shown in FIG. 1 and its configuration will be described. The same parts as in FIGS. 5 and 6 are denoted by the same numbers, and explanations thereof will be omitted. FIG. 1 shows one phase of the inverter bridge.

直流母線の正極側から、ヒユーズ31a。Fuse 31a from the positive side of the DC bus.

31b、31Cを介してそれぞれIGBT41a。IGBT 41a via 31b and 31C, respectively.

41b、4ICのコレクタへ接続する。I G B ’
I’111n141b141cのエミッタ側は並列接続
して、MC’l’54 a、  54 b、  54 
Cノア/−)’側を並列にした部分に接続しブリッジの
出力端子とする。
41b, connect to the collector of 4IC. IGB'
The emitter side of I'111n141b141c is connected in parallel, and MC'l'54 a, 54 b, 54
Connect the CNOOR/-)' side to the parallel part and use it as the output terminal of the bridge.

MCT54a、54b、54Cのカニ/−)”(itU
は、それぞれヒユーズ32a、 32b、32Cを介し
て直流母線の負極側に接続する。IGBT41al 4
1bl 41Cのゲート回路も並列にしてG41とし、
MCT54a、54b、54CI7)ゲート回路も並列
にしてG44とする。
MCT54a, 54b, 54C crab/-)” (itU
are connected to the negative pole side of the DC bus bar through fuses 32a, 32b, and 32C, respectively. IGBT41al 4
The gate circuit of 1bl 41C is also connected in parallel to G41,
MCT54a, 54b, 54CI7) The gate circuits are also connected in parallel to form G44.

IGBT41aのコレクタとMCT54aのカソード間
にスナバコンデンサ6aを接続する。
A snubber capacitor 6a is connected between the collector of the IGBT 41a and the cathode of the MCT 54a.

IGBT41bのコレクタとMCT54bのカソード間
にスナバコンデンサ6bを接続する。
A snubber capacitor 6b is connected between the collector of the IGBT 41b and the cathode of the MCT 54b.

IGBT41CのコレクタとMCT54cのカソード間
にスナバコンデンサ6Cを接続する。
A snubber capacitor 6C is connected between the collector of the IGBT 41C and the cathode of the MCT 54c.

ゲート駆動回路は、同図(b)に示すように、駆!@電
源11aとllbの中点と、IGBT駆動回路21aを
介してIGBTのゲートG41へ接続し、MCT駆動回
路24aを介してMCTのゲートG44へ接続する。ゲ
ート信号の共通点GOはIGHTとMCTと同一である
As shown in FIG. @The midpoint between power supplies 11a and llb is connected to the IGBT gate G41 via the IGBT drive circuit 21a, and connected to the MCT gate G44 via the MCT drive circuit 24a. The common point GO of the gate signals is the same for IGHT and MCT.

第2図(a)にMCTの動作原理を示す図、(b)にシ
ンボルを示す。
FIG. 2(a) shows the operating principle of the MCT, and FIG. 2(b) shows the symbols.

MCT54a17)ゲート(G)とアノード(A)間に
負のゲート信号を加えるとonFETがオンし、N)’
NUランジスタがオンしPNPトランジスタニヘース電
流を流しPNPトランジスタがオンして、この2つのト
ランジスタはサイリスタとして動作する。次に、MCT
をオフする場合、ゲー)Gに正のゲート電圧を加えると
offFBTがオンしPNPトランジスタの、ベースと
エミッタ間を短絡するので、PNPトランジスタがオフ
し、NPNトランジスタもオフする動作となる。
MCT54a17) When a negative gate signal is applied between the gate (G) and anode (A), onFET turns on, and N)'
The NU transistor is turned on, causing current to flow through the PNP transistor, and the PNP transistor is turned on, and these two transistors operate as a thyristor. Next, M.C.T.
When turning off the transistor, when a positive gate voltage is applied to G, the offFBT turns on and the base and emitter of the PNP transistor are short-circuited, so that the PNP transistor is turned off and the NPN transistor is also turned off.

第3図に示すように、ヒユーズ31aを取付けたことに
よる浮遊インダクタンス7.8とヒユーズ32aを取付
けたことによる浮遊インダクタンス9,10のエネルキ
ーハコンデンサ6aに吸収され、ヒユーズ取付けに併う
インダクタンス分の増加は何ら悪影響を与えずIGBT
と、MCTをオンオフすることができる。また、コンデ
ンサ6aの容量は小さいので素子が短絡故障になっても
、その放電エネルギーは小さく素子の外壁を破裂させる
ような事にはならない。
As shown in FIG. 3, the energy of the stray inductance 7.8 due to the installation of the fuse 31a and the stray inductance 9, 10 due to the installation of the fuse 32a is absorbed by the capacitor 6a, and the energy is absorbed by the capacitor 6a. The increase has no negative effect on IGBT.
, MCT can be turned on and off. Further, since the capacitance of the capacitor 6a is small, even if the element is short-circuited, the discharge energy is small and the outer wall of the element will not be ruptured.

第4図にモジー−ルトランジスタの構造図を示す。冷却
フィンに放熱させる銅ベース80の上に熱伝導性の良い
絶縁セラミック81を接着し、その上に銅の電極82、
コレクタ電極83、エミッタ電極84が接着されている
。トランジスタのベレット85はコレクタを銅電極82
側に、エミッタ端子を上側に接着し、ボンディングワイ
ヤー87によりエミッタ電極84に接続されている。
FIG. 4 shows a structural diagram of a module transistor. An insulating ceramic 81 with good thermal conductivity is bonded on a copper base 80 that dissipates heat to the cooling fins, and a copper electrode 82 is placed on top of the insulating ceramic 81.
A collector electrode 83 and an emitter electrode 84 are bonded. The transistor bellet 85 connects the collector to the copper electrode 82.
An emitter terminal is bonded to the upper side and connected to the emitter electrode 84 by a bonding wire 87.

ボンディングワイヤー86はコレクタ電極83に接続し
てコレクタとして取り出す。
The bonding wire 86 is connected to the collector electrode 83 and taken out as a collector.

このため、ボンディングワイヤー86の冷却効果は良く
、ボンディングワイヤー87の冷却効果が悪いので、必
ずボンディングワイヤー87が先に溶断する。
Therefore, since the bonding wire 86 has a good cooling effect and the bonding wire 87 has a poor cooling effect, the bonding wire 87 is always fused first.

この溶断以前に高速ヒユーズで事故電流をしゃ断する必
要がある。
It is necessary to cut off the fault current using a high-speed fuse before this blowout occurs.

また第1図に示すようにIGHT418゜41b、41
Cへのゲート信号とM CT 54 a 。
Also, as shown in Figure 1, IGHT418°41b, 41
Gating signal to C and M CT 54 a.

54b、54Cへのゲート信号は信号線Goを共用する
ことが出来るので、駆動電源11a。
Since the gate signals to 54b and 54C can share the signal line Go, the drive power supply 11a.

11bをIGBTとMCTに共通に使用出来る。11b can be used commonly for IGBT and MCT.

以上説明したように、一実施例によれば、ゲート駆動電
源を、ブリッジの上側の素子と下側の素子に対して共通
化できるので小形、経済的でちる。
As described above, according to one embodiment, the gate drive power source can be shared between the upper and lower elements of the bridge, making it compact and economical.

更に、ヒーーズを取付けた事による浮遊インダクタンス
分によるサージエネルギーが素子側の直流部に設けたス
ナバ回路により吸収されるので、サージ電圧を低く抑え
ることが出来、安全性の高い高効率な半導体素子のブリ
ッジ接続回路を提供することが可能となる。
Furthermore, the surge energy caused by the stray inductance caused by installing the heater is absorbed by the snubber circuit installed in the DC section on the element side, so the surge voltage can be suppressed to a low level, resulting in a highly safe and highly efficient semiconductor element. It becomes possible to provide a bridge connection circuit.

なお、第1図ではl G B ’f’とMCTとの組合
せについて説明したが、1GBTにコンプリメンタリ−
なPチャネルが完成すれば(現在ではPチャネルは安全
動作領域が狭く実用化されていない。)IG)3Tのみ
でも使用可能であり、また今後開発される別の素子の組
合せでも作用は同じである。
In addition, in FIG. 1, the combination of lGB 'f' and MCT was explained, but complementary to 1GBT
Once a P-channel is completed (Currently, the P-channel has a narrow safe operating area and is not in practical use.) IG) 3T can be used alone, and the effect will be the same with other combinations of elements that will be developed in the future. be.

またスナバ回路はダイオードとコンデンサ。Also, the snubber circuit consists of a diode and a capacitor.

抵抗等による組合せの種々の方式を採用出来ることは説
明するまでもない。
It goes without saying that various combinations of resistors etc. can be employed.

さらにまた、ヒユーズは複数の素子にまとめて挿入する
ことも考えられる。
Furthermore, it is also conceivable that the fuses be inserted into a plurality of elements at once.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、素子に直列にヒユ
ーズを接続し、素子外壁の破裂を防ぐと共に、ヒユーズ
を接続したことによるインダクタンス分の増加によるス
イッチングエネルギーをブリッジの素子側直流端子に設
けたスナバ回路で吸収することによりスイッチング素子
の安全動作領域に余裕を持たせ高信頼性で、スイッチン
グ損失も減少するので高効率となる。
As explained above, according to the present invention, a fuse is connected in series with the element to prevent the outer wall of the element from bursting, and the switching energy due to the increase in inductance due to the connection of the fuse is transferred to the element-side DC terminal of the bridge. By absorbing this with a snubber circuit, the safe operating range of the switching element is increased, resulting in high reliability, and switching loss is also reduced, resulting in high efficiency.

リッジ鳶扮回路を提供することが可能となる。It becomes possible to provide a Ridge Tobigaku circuit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を説明する為の回路構成図1
第2図、第3図及び第4図はそれぞれ本発明の詳細な説
明する為のもので、第2図はMCTの結線図、第3図は
回路図及びM (、” Tの素子構成図、第5図、第6
図及び第7図はそれぞれ従来例の半導体素子のブリッジ
接続回路を説明する為の回路構成図である。 1・・・直流1!源 2・・・コンデンサ 31a、 31b、 31C,32a! 32bl 3
2C・・・高速ヒユーズ 4・・・トランジスタブリッジ 5・・・負 荷 7、8.9.10・・・インダクタンス54a、 54
b、 54c −M CT5a、 6b、5c・・・ス
ナバコンデンサ11a、llb・・・駆動電源 21a・・・I(13T駆動回路 24a・・・MCT駆動回路 (b) 第 図 第 図 第 図
Figure 1 is a circuit configuration diagram 1 for explaining one embodiment of the present invention.
Figures 2, 3, and 4 are for explaining the present invention in detail, respectively. Figure 2 is a wiring diagram of the MCT, and Figure 3 is a circuit diagram and an element configuration diagram of the MCT. , Figure 5, Figure 6
7 and 7 are circuit configuration diagrams for explaining a conventional bridge connection circuit for semiconductor devices, respectively. 1...DC 1! Source 2... Capacitors 31a, 31b, 31C, 32a! 32bl 3
2C...High speed fuse 4...Transistor bridge 5...Load 7, 8.9.10...Inductance 54a, 54
b, 54c -M CT5a, 6b, 5c...Snubber capacitor 11a, llb...Drive power supply 21a...I (13T drive circuit 24a...MCT drive circuit (b) Figure Figure Figure

Claims (1)

【特許請求の範囲】[Claims] 半導体素子を並列接続して構成されるブリッジ接続回路
において、制御端子側及び電流が流出する端子側をそれ
ぞれ共通接続され、両端子間に制御信号が供給される第
1の半導体素子群と、制御端子側及び電流が流入する端
子側をそれぞれ共通接続され、両端子間に制御信号が供
給される第2の半導体素子群とを有し、第1の半導体素
子群の電流が流出する端子及び第2の半導体素子群の電
流が流入する端子をそれぞれ共通接続して出力端子とし
たことを特徴とする半導体スイッチ素子のブリッジ回路
In a bridge connection circuit configured by connecting semiconductor elements in parallel, a first semiconductor element group whose control terminal side and a terminal side from which current flows are commonly connected, and a control signal is supplied between both terminals; A second semiconductor element group has a terminal side and a terminal side through which a current flows are commonly connected, and a control signal is supplied between both terminals, and a terminal side through which a current of the first semiconductor element group flows out and a second semiconductor element group. 1. A bridge circuit for a semiconductor switch element, characterized in that terminals into which current flows in two groups of semiconductor elements are commonly connected to each other to serve as an output terminal.
JP1313290A 1989-12-04 1989-12-04 Bridge circuit of semiconductor switch element Expired - Lifetime JP2807297B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP1313290A JP2807297B2 (en) 1989-12-04 1989-12-04 Bridge circuit of semiconductor switch element
DE69025045T DE69025045T2 (en) 1989-12-04 1990-11-30 Bridge type power converter with improved efficiency
EP90122961A EP0431492B1 (en) 1989-12-04 1990-11-30 Bridge type power converter with improved efficiency
US07/619,917 US5123746A (en) 1989-12-04 1990-11-30 Bridge type power converter with improved efficiency
CN90109782A CN1018499B (en) 1989-12-04 1990-12-04 Bridge type power converter with improved efficiency
KR1019900019824A KR930008464B1 (en) 1989-12-04 1990-12-04 Power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1313290A JP2807297B2 (en) 1989-12-04 1989-12-04 Bridge circuit of semiconductor switch element

Publications (2)

Publication Number Publication Date
JPH03178520A true JPH03178520A (en) 1991-08-02
JP2807297B2 JP2807297B2 (en) 1998-10-08

Family

ID=18039439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1313290A Expired - Lifetime JP2807297B2 (en) 1989-12-04 1989-12-04 Bridge circuit of semiconductor switch element

Country Status (1)

Country Link
JP (1) JP2807297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019571A1 (en) * 2005-04-27 2006-11-09 Siemens Ag Inverter arrangement, has bond wire sections with units for generation of damping resistances for reduction of rear oscillation in case of short-circuit of arrangement, where resistances act only in case of short circuit
WO2014147755A1 (en) * 2013-03-19 2014-09-25 三菱電機株式会社 Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005019571A1 (en) * 2005-04-27 2006-11-09 Siemens Ag Inverter arrangement, has bond wire sections with units for generation of damping resistances for reduction of rear oscillation in case of short-circuit of arrangement, where resistances act only in case of short circuit
WO2014147755A1 (en) * 2013-03-19 2014-09-25 三菱電機株式会社 Power converter

Also Published As

Publication number Publication date
JP2807297B2 (en) 1998-10-08

Similar Documents

Publication Publication Date Title
KR930008464B1 (en) Power converter
JP3193827B2 (en) Semiconductor power module and power converter
US5949273A (en) Short circuit protection for parallel connected devices
US5512782A (en) Semiconductor device for DC/AC converter
US6268990B1 (en) Semiconductor protection device and power converting system
JP4277169B2 (en) Power semiconductor module
JPH1127931A (en) Resistor in series with bootstrap diode for monolithic gate driver device
US5635757A (en) Power semiconductor module and circuit arrangement comprising at least two power semiconductor switch modules
JPH0531323B2 (en)
US5663858A (en) Method for fault correction in a power converter circuit arrangement
US11539361B2 (en) Semiconductor device signal transmission circuit for drive-control, method of controlling semiconductor device signal transmission circuit for drive-control, semiconductor device, power conversion device, and electric system for railway vehicle
US4634891A (en) Gate turn-off thyristor module
JPH03178520A (en) Bridge circuit for semiconductor switching element
KR100280226B1 (en) Device for driving high voltage igbt
JP2001238460A (en) Power converter
JPH1042548A (en) Semiconductor power converter
JPH10145206A (en) Protective circuit for semiconductor device
JP2800780B2 (en) Parallel circuit with diode and IGBT, module thereof, and power converter using the same
JPH08162631A (en) Igbt modular structure
JPH09107673A (en) Drive circuit for power conversion apparatus
JPH09130217A (en) Semiconductor device
JPH0378432A (en) Protective circuit for transistor bridge
JP3284809B2 (en) Large capacity semiconductor device
JPH084122B2 (en) Semiconductor device
JP3688519B2 (en) Semiconductor device