JPH03178160A - Field-effect transistor - Google Patents

Field-effect transistor

Info

Publication number
JPH03178160A
JPH03178160A JP1316901A JP31690189A JPH03178160A JP H03178160 A JPH03178160 A JP H03178160A JP 1316901 A JP1316901 A JP 1316901A JP 31690189 A JP31690189 A JP 31690189A JP H03178160 A JPH03178160 A JP H03178160A
Authority
JP
Japan
Prior art keywords
well
gate
effect transistor
semiconductor region
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1316901A
Other languages
Japanese (ja)
Inventor
Yasuo Sato
康夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP1316901A priority Critical patent/JPH03178160A/en
Publication of JPH03178160A publication Critical patent/JPH03178160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To eliminate the possibility of troubles like junction breakdown and improve reliability, by diffusing impurities for a well, from the surface of a semiconductor region composed of a substrate and the like, impurities of which have the same conductivity type as the semiconductor region and concentration higher than it, and making the diffusion patterns intersect at least one side offset diffusion layer, under a gate. CONSTITUTION:The diffusion pattern of a well 3a is made to intersect at least one side offset diffusion layer 6, under a gate 7. As the result, the peripheral part of the offset diffusion layer forms a junction with the well of opposite conductivity type, under the gate 7. However said peripheral part forms a junction with the semiconductor region of the same conductivity type as the well, in the other part on the periphery where the junction breakdown has likely occurred in the conventional devices. Although the offset diffusion layer 6 intersecting the diffusion pattern of the well 3a forms junctions with the well 3a and the semiconductor region, the impurity concentration of the well 3a is higher than that of the semiconductor region, so that the breakdown voltage of the junction between the layer 6 and the well is surely lower than the breakdown voltage between the layer 6 and the semiconductor region. Thereby the possibility of junction breakdown can be eliminated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高耐圧を要するMOSないしMIS形電界効果
トランジスタであって、通常の低耐圧の電界効果トラン
ジスタとともに集積回路装置内に組み込むに適するもの
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is a MOS or MIS type field effect transistor that requires a high breakdown voltage and is suitable for being incorporated into an integrated circuit device together with a normal low voltage field effect transistor. Regarding.

〔従来の技術〕[Conventional technology]

集積回路装置の適用範囲が著しく拡大するにつれて、回
路を単に高集積化するだけでなく、所定の電源電圧下で
動作する外部負荷を直接駆動できる能力が要求される場
合が多くなっている。かかる集積回路装置では、5■程
度の低電圧下で高速動作する高集積化された論理回路部
と、数十Vの電圧下で動作可能な高耐圧トランジスタを
含む出力回路部を同一チップ内に組み込む必要があり、
これら両回踏部をできるだけ共通化されたウェハプロセ
スで組み込むのが製作上有利である0周知のように論理
回路部の高集積化にはCM OS IJt威をとるのが
有利であり、このCMOSプロセスの利用が容易な高耐
圧トランジスタとしていわゆるオフセットゲート構造の
電界効果トランジスタが採用されることが多い。
As the scope of application of integrated circuit devices has expanded significantly, not only is the circuit highly integrated, but also the ability to directly drive an external load operating under a predetermined power supply voltage is often required. In such an integrated circuit device, a highly integrated logic circuit section that operates at high speed under a voltage as low as about 5 volts and an output circuit section that includes a high-voltage transistor that can operate under a voltage of several tens of volts are housed on the same chip. It is necessary to incorporate
It is advantageous in terms of manufacturing to incorporate these two circuit parts using a wafer process that is as common as possible.As is well known, it is advantageous to use CMOS IJt for high integration of logic circuit parts. A field effect transistor with a so-called offset gate structure is often employed as a high voltage transistor that can be easily used in a process.

ところで、出力回路用の高耐圧電界効果トランジスタの
組み込みにはそのチャネル形成領域の不純物濃度を適正
に選択する必要があるが、ふつうサブくクロン−2ミク
ロン程度のデザインルールで高集積化される低圧論理回
路部側では、そのnおよびpチャネル電界効果トランジ
スタのいずれにも専用のウェルを設けるいわゆるツイン
ウェル構造が取られることが多いので、出力回路側では
高耐圧電界効果トランジスタのチャネル形成領域として
基板のほかにもかかるツインウェルないしそれと同時拡
散できるウェルが利用される。
By the way, in order to incorporate a high voltage field effect transistor for an output circuit, it is necessary to appropriately select the impurity concentration of the channel forming region, but it is usually necessary to select the impurity concentration of the channel formation region appropriately, but it is usually necessary to select a low voltage field effect transistor that is highly integrated with a design rule of about 2 microns. On the logic circuit side, a so-called twin well structure is often adopted in which a dedicated well is provided for both the n-channel and p-channel field effect transistors, so on the output circuit side, the substrate is used as the channel formation region of the high voltage field effect transistor. In addition to this, such twin wells or wells capable of simultaneous diffusion are also used.

第3図はかかるツインウェルと同時拡散されるウェルを
利用して高耐圧電界効果トランジスタを組み込む従来例
を示すものである。同図(a)に論理回路側の低圧用n
およびpチャネル電界効果トランジスタtnおよびtp
と出力回路側の高耐圧nチャネル電界効果トランジスタ
Tnが断面図で、同図(b)に高耐圧nチャネル電界効
果トランジスタTn用の主な半導体層等の拡散パターン
が上面図でそれぞれ示されている。
FIG. 3 shows a conventional example in which a high breakdown voltage field effect transistor is incorporated using such a twin well and a well diffused simultaneously. Figure (a) shows the low voltage n on the logic circuit side.
and p-channel field effect transistors tn and tp
and (b) are cross-sectional views of the high-voltage n-channel field-effect transistor Tn on the output circuit side, and a top view of the diffusion patterns of the main semiconductor layers for the high-voltage n-channel field-effect transistor Tn. There is.

第3図の例では集積回路を作り込む基体としての半導体
領域lにp形の基板ないしその上に成長されたエピタキ
シャル層が用いられ、低圧側ではこの半導体領域lの表
面からpチャネル電界効果トランジスタtp用のn形の
ウェル2とnチャネル電界効果トランジスタtn用のP
形のウェル3とが上述のツインウェルとして拡散され、
高耐圧側のnチャネル電界効果トランジスタTn用には
p形のウェル3dが5xlO”原子/d程度の不純物濃
度で低圧側のウェル3と同時に拡散される。なお、これ
らのP形のウェル3および3dとn形のウェル2の周縁
部には、通例のようにそれぞれp形とn形でチャネルス
トッパ層4と5が設けられる。
In the example shown in FIG. 3, a p-type substrate or an epitaxial layer grown on it is used as a semiconductor region l as a base for fabricating an integrated circuit, and on the low voltage side, a p-channel field effect transistor is formed from the surface of this semiconductor region l. N-type well 2 for tp and P well 2 for n-channel field effect transistor tn.
shaped well 3 is diffused as the above-mentioned twin well,
For the n-channel field effect transistor Tn on the high voltage side, the p-type well 3d is diffused at the same time as the low-voltage well 3 with an impurity concentration of about 5xlO'' atoms/d. 3d and n-type wells 2 are provided with channel stopper layers 4 and 5 for p-type and n-type, respectively, as usual.

高耐圧用のnチャネル電界効果トランジスタTnに対し
ては、そのソース・ドレイン間耐圧を向上させるために
1対のn形のオフセット拡散層6がそれ用のp形のウェ
ル3d内に同図中)に示すようなパターンで設けられる
。このオフセット拡散層6の不純物濃度はふつう比較的
低く選定され、例えば5xlO”原子/c11程度とさ
れる。
For the high-voltage n-channel field effect transistor Tn, a pair of n-type offset diffusion layers 6 are provided in the p-type well 3d for the purpose of improving the source-drain breakdown voltage. ) are provided in the pattern shown in the figure. The impurity concentration of this offset diffusion layer 6 is usually selected to be relatively low, for example on the order of 5xlO'' atoms/c11.

なお、この1対のオフセット拡散層6と上述のチャネル
ストッパ層4および5はいずれもそれら用に不純物をそ
れぞれイオン注入した後に同時に熱拡散され、この熱拡
散と同時にフィールド酸化MlOが形成される。
Note that this pair of offset diffusion layers 6 and the above-mentioned channel stopper layers 4 and 5 are simultaneously thermally diffused after ion implantation of impurities for them, and field oxidation MlO is formed at the same time as this thermal diffusion.

すべての電界効果トランジスタのゲート7は、ゲート酸
化膜7aをこの例ではフィールド酸化1110どオーバ
ラップさせて付けた上で、ウェルの表面と対向させて設
けられ、高耐圧電界効果トランジスタTnではゲート7
の周縁がフィールド酸化l110に重なるよう形成され
る。低圧側電界効果トランジスタ用のp形とn形のそれ
ぞれ1対のソース・ドレイン層7と8はゲート7をマス
クとして、高耐圧電界効果トランジスタ用のn形のソー
ス層83とドレイン層8dは対応するオフセット拡散層
6内に、それぞれ高不純物濃度で拡散される。以降は全
面を眉間絶縁膜11で覆い、その要所に明けた窓部に接
続11120を設ける。同図(ロ)には電界効果トラン
ジスタ1口のソースSとドレインDとゲートGの端子が
示されている。
The gate 7 of all the field effect transistors is formed by overlapping the gate oxide film 7a with the field oxide 1110 in this example, and is provided facing the surface of the well.
The periphery of the field oxide 110 is formed so as to overlap the field oxide l110. A pair of p-type and n-type source/drain layers 7 and 8 for the low-voltage field-effect transistor are formed using the gate 7 as a mask, and an n-type source layer 83 and drain layer 8d for the high-voltage field-effect transistor correspond to each other. The impurities are diffused into the offset diffusion layer 6 at a high impurity concentration. Thereafter, the entire surface is covered with the glabellar insulating film 11, and connections 11120 are provided in the windows opened at key points. In the figure (b), the source S, drain D, and gate G terminals of one field effect transistor are shown.

以上の構造の集積回路装置では、ソース・ドレイン間耐
圧が低圧側電界効果トランジスタtnやtpでは10〜
20V程度であるが、高耐圧電界効果トランジスタTn
ではオフセット拡散層6内に空乏層が延びるので例えば
40〜60Vに向上される。なお、オフセット拡散層6
内の空乏層はソース層8Sまたはドレイン層8dと接続
された中央部とウェル3dとの接合の例えばゲート酸化
WA7aの下側部との間に横方向に延びる。この電界効
果トランジスタTnに所望の高耐圧値をもたせるには、
まずウェル3dとオフセット拡散層6の不純物濃度をそ
れぞれ最適値に選定し、次にそれに応じてソース層8S
またはドレイン層8dからオフセット拡散層6の周縁ま
での横方向寸法を選定するのが望ましい。
In the integrated circuit device having the above structure, the breakdown voltage between the source and drain is 10 to 10 for the low voltage side field effect transistors tn and tp.
Although it is about 20V, high voltage field effect transistor Tn
Since the depletion layer extends within the offset diffusion layer 6, the voltage is increased to, for example, 40 to 60V. Note that the offset diffusion layer 6
The depletion layer inside extends laterally between the central portion connected to the source layer 8S or drain layer 8d and the lower side of the junction with the well 3d, for example, the gate oxide WA7a. In order to give this field effect transistor Tn a desired high breakdown voltage value,
First, the impurity concentrations of the well 3d and the offset diffusion layer 6 are selected to the optimum values, and then the source layer 8S is selected accordingly.
Alternatively, it is desirable to select the lateral dimension from the drain layer 8d to the periphery of the offset diffusion layer 6.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、上述の高耐圧電界効果トランジスタでは、そ
のソース・ドレイン間耐圧を向上するためにオフセット
拡散層6の不純物濃度を下げて行くと、そのウェル3d
との間の接合が永久破壊されやすくなって来る問題があ
る。
However, in the above-mentioned high-voltage field effect transistor, when the impurity concentration of the offset diffusion layer 6 is lowered in order to improve the source-drain breakdown voltage, the well 3d
There is a problem that the bond between the two is becoming more likely to be permanently destroyed.

例えば、P形のウェル3dの不純物濃度が前述の5 x
 10”原子/ cd程度である場合につき第3図(b
)のソース端子Sを接地しドレイン端子りに過電圧を印
加する条件で本件発明者の実験した結果によれば、n形
のオフセット拡散層6の不純物濃度が前述の5 x 1
0”原子/cd以上であると、両者間の接合の降伏は図
で縦方向に並んだX印で示すオフセット拡散層6のゲー
ト酸化膜7aの下側の周縁に沿ってほぼ均一に起こるが
、過電圧がなくなると接合は元の状態に回復するのに対
し、不純物濃度を上記値以下にするとソース・ドレイン
間耐圧値そのものは上がるものの、例えば図のオフセッ
ト拡散層6の右上と右下の隅部のX印を付けた電界集中
部で降伏が起こりやすくなり、この場合には接合が局部
的に永久破壊してしまう。
For example, the impurity concentration of the P-type well 3d is 5 x
Figure 3 (b
According to the results of an experiment conducted by the present inventor under the condition that the source terminal S of the transistor is grounded and an overvoltage is applied to the drain terminal, the impurity concentration of the n-type offset diffusion layer 6 is 5 x 1.
0'' atoms/cd or more, breakdown of the junction between the two occurs almost uniformly along the lower periphery of the gate oxide film 7a of the offset diffusion layer 6, which is indicated by X marks arranged vertically in the figure. , when the overvoltage disappears, the junction recovers to its original state, whereas if the impurity concentration is lower than the above value, the source-drain breakdown voltage itself increases; Breakdown is likely to occur at the electric field concentration area marked with an X, and in this case, the bond will be locally permanently destroyed.

換言すれば、オフセット拡散116の不純物濃度が比較
的高いと降伏はチャネルのいわゆるパンチスルーの形を
とるが、その不純物濃度が低すぎるとそのウェル3dと
の接合の最弱点部が過電圧降伏の際に永久破壊してしま
うのである。
In other words, if the impurity concentration of the offset diffusion 116 is relatively high, the breakdown will take the form of a so-called punch-through of the channel, but if the impurity concentration is too low, the weakest point of the junction with the well 3d will be damaged during overvoltage breakdown. It will be permanently destroyed.

従来の高耐圧電界効果トランジスタのもう一つの問題点
は、オフセット拡散層6の不純物濃度を下げると、ゲー
ト7に電圧が掛かっている条件で寄生トランジスタ効果
によりソース・ドレイン間に異常電流が流れやすくなる
ことである。
Another problem with conventional high voltage field effect transistors is that when the impurity concentration of the offset diffusion layer 6 is lowered, abnormal current tends to flow between the source and drain due to the parasitic transistor effect when voltage is applied to the gate 7. It is what happens.

これに関連する寄生トランジスタは、第3図(a)でい
うとn形のドレイン層8dと右側のオフセット拡散層6
.P形のウェル3dと半導体領域1.およびn形のソー
ス層8sと左側のオフセット拡散N6の間に形成される
npn形バイポーラトランジスタであり、そのベースで
あるウェル3dがゲート7の電位に影響されるものと考
えられる。第3図(C)はオフセット拡散層6の不純物
濃度を低めた場合の電界効果トランジスタTnの電圧・
電流特性であって、横軸はソースの接地状態でドレイン
に掛かる電圧Vd、縦紬はトランジスタを流れる電流■
で、特性上のパラメータはゲート電圧Vgである0図の
ように、降伏電圧はゲート電圧Vgが0のとき高いが、
ゲート電圧を増加すると減少し、あるゲート電圧で最小
値をとる。
The parasitic transistors related to this are the n-type drain layer 8d and the offset diffusion layer 6 on the right side in FIG. 3(a).
.. P-type well 3d and semiconductor region 1. It is an npn type bipolar transistor formed between the n type source layer 8s and the left offset diffusion N6, and the well 3d, which is the base thereof, is considered to be influenced by the potential of the gate 7. FIG. 3(C) shows the voltage of the field effect transistor Tn when the impurity concentration of the offset diffusion layer 6 is lowered.
Current characteristics. The horizontal axis is the voltage Vd applied to the drain when the source is grounded, and the vertical axis is the current flowing through the transistor.
As shown in the figure, the breakdown voltage is high when the gate voltage Vg is 0, but the characteristic parameter is the gate voltage Vg.
It decreases as the gate voltage is increased and reaches a minimum value at a certain gate voltage.

このように寄生トランジスタが導通状態になって大電流
が流れるとドレイン層8dとウェル3d間の接合等が破
壊するおそれがあるほか、オフセット拡散層6の不純物
濃度を折角下げてもそれによる耐圧値の向上効果が減殺
されることになる。
If the parasitic transistor becomes conductive in this way and a large current flows, there is a risk that the junction between the drain layer 8d and the well 3d will be destroyed, and even if the impurity concentration of the offset diffusion layer 6 is lowered, the breakdown voltage value The improvement effect of this will be diminished.

本発明ばかか、る問題点を解決して、オフセット拡散層
を備える電界効果トランジスタにおける接合破壊等のト
ラブル発生のおそれをなくし、その信頼性を向上するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to solve these problems, eliminate the possibility of troubles such as junction breakdown in a field effect transistor provided with an offset diffusion layer, and improve its reliability.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上述のようにウェル、ゲートおよび1対のソ
ース・ドレイン層のほかに、各ソース・ドレイン層を囲
みそれより低い不純物濃度をもつl対のオフセット拡散
層を備える電界効果トランジスタに対して、ウェルを基
板等からなる半導体領域の表面からそれと同し導電形で
かつそれよりも高い不純物濃度で拡散するとともに、そ
の拡散パターンを少なくとも一方のオフセット拡散層と
ゲート下で交叉させることによって上述の目的を達成す
るものである。
The present invention provides a field effect transistor that includes, in addition to a well, a gate, and a pair of source/drain layers as described above, a pair of offset diffusion layers surrounding each source/drain layer and having a lower impurity concentration. Then, by diffusing the well from the surface of a semiconductor region made of a substrate or the like with an impurity of the same conductivity type and higher concentration than that of the well, and intersecting the diffusion pattern with at least one of the offset diffusion layers under the gate, the above-described method is achieved. The goal is to achieve the following objectives.

ただし、通例のようにゲートはウェル内の一部の表面上
に薄いゲート酸化膜を介して対向するよう配設され、ソ
ース・ドレイン層はゲートを間に挟んでウェルとは逆導
電形で拡散されるほか、各オフセット拡散層は周縁の一
部をゲート酸化膜の周縁部の下側に入り込ませるように
ウェルとは逆導電形で拡散され、ウェルのゲート酸化膜
下部の1対のオフセット層の周縁の相互間の表面にチャ
ネルが形成されるものとする。
However, as usual, the gate is placed on a part of the surface of the well so as to face each other with a thin gate oxide film interposed therebetween, and the source/drain layer is diffused with the opposite conductivity type from the well, with the gate in between. In addition, each offset diffusion layer is diffused with a conductivity type opposite to that of the well so that a part of its periphery goes under the periphery of the gate oxide film, and a pair of offset diffusion layers under the gate oxide film of the well are diffused. A channel shall be formed on the surface between the peripheral edges of.

〔作用〕[Effect]

前述の従来技術の説明かられかるように、従来はウェル
の内部にそれと逆導電形のオフセット拡散層を1対作り
込んでいたのであるが、本発明では上記flI威にいう
ようにウェルの拡散パターンを少なくとも一方のオフセ
ット拡散層とゲートの下側で交叉させることによって、
ゲートの下側ではオフセット拡散層の周縁は逆導電形の
ウェルと接合するが、その周縁中の接合破壊が従来起こ
りやすかったその他の個所ではウェルと同し導電形の半
導体領域と接合させる。
As can be seen from the explanation of the prior art described above, in the past, a pair of offset diffusion layers of the opposite conductivity type were built inside the well, but in the present invention, as mentioned above, the diffusion layer of the well is By intersecting the pattern with at least one of the offset diffusion layers below the gate,
Below the gate, the periphery of the offset diffusion layer is bonded to a well of the opposite conductivity type, but at other locations in the periphery where junction breakdown has hitherto been apt to occur, it is bonded to a semiconductor region of the same conductivity type as the well.

従って、ウェルの拡散パターンと交叉するオフセット拡
散層はウェルおよび半導体領域と接合することになるが
、本発明では上記構成にいうようにウェルの方の不純物
濃度が半導体領域より高いので、オフセット拡散層のウ
ェルとの接合の降伏電圧の方が半導体領域との接合の降
伏電圧よりも必ず低くなる。
Therefore, the offset diffusion layer that intersects with the diffusion pattern of the well will be in contact with the well and the semiconductor region, but in the present invention, as in the above structure, the impurity concentration in the well is higher than that in the semiconductor region, so the offset diffusion layer The breakdown voltage of the junction with the well is always lower than the breakdown voltage of the junction with the semiconductor region.

このため、本発明による電界効果トランジスタでは、過
電圧が掛かったときのオフセット拡散層の周縁における
降伏は常にウェルとの接合部分で起こり、半導体領域と
の接合部分つまり接合破壊が従来発生していた個所では
起こらなくなって、接合破壊のおそれをなくすことがで
きる。なお、オフセット拡散層とウェルとの接合の降伏
は必ずゲートの下側で起こるから、通常のチャネル部の
パンチスルーと同様にこの接合全体に亘って均一に起こ
り、過電圧が極端に大きくない限り最悪の接合破壊にま
で発展するおそれはない。
Therefore, in the field effect transistor according to the present invention, breakdown at the periphery of the offset diffusion layer when an overvoltage is applied always occurs at the junction with the well, and at the junction with the semiconductor region, that is, where junction breakdown has conventionally occurred. This will no longer occur, eliminating the risk of bond failure. Note that the breakdown of the junction between the offset diffusion layer and the well always occurs below the gate, so it occurs uniformly over the entire junction, just like punch-through in the normal channel region, and unless the overvoltage is extremely large, the breakdown will occur at the bottom of the gate. There is no risk of this developing to the point of bond failure.

また、本発明により寄生トランジスタの影響を減殺でき
るのは次項に述べるとおりである。
Further, the influence of parasitic transistors can be reduced by the present invention as described in the next section.

〔実施例〕〔Example〕

以下、第1図と第2図を参照しながら本発明の実施例を
具体的に説明する。これらの図の前に説明した第3図と
対応する部分には同し符号が付されている。
Embodiments of the present invention will be specifically described below with reference to FIGS. 1 and 2. Portions in these figures that correspond to those in FIG. 3 described above are given the same reference numerals.

第1図の第1実施例において、同図(a)の断面には低
圧論理回路用のnチャネルおよびpチャネル電界効果ト
ランジスタtnおよびtpと、本発明による高耐圧用の
nチャネル電界効果トランジスタT。
In the first embodiment shown in FIG. 1, the cross section shown in FIG. .

が示されている。半導体領域1はこれらトランジスタが
組み込まれる集積回路装置用のp形基板であり、その不
純物濃度は例えば101s原子/ Cd程度とされる。
It is shown. The semiconductor region 1 is a p-type substrate for an integrated circuit device in which these transistors are incorporated, and its impurity concentration is, for example, about 101s atoms/Cd.

第3図と同様に低圧側の電界効果トランジスタ用に前述
のツインウェルとしてのn形のウェル2とP形のウェル
3が設けられ、例えば前者は10′6原子/cjの不純
物濃度で4μの深さに。
Similarly to FIG. 3, the aforementioned twin wells, an n-type well 2 and a p-type well 3, are provided for the field effect transistor on the low voltage side; for example, the former has an impurity concentration of 10'6 atoms/cj and a Into the depth.

後者は5xlO”原子/ cjの不純物濃度で3−の深
さに拡散される。これらウェル2と3の周縁部にそれぞ
れn形とp形でチャネルストッパ層5と4が設けられる
のも従来と同じである。
The latter is diffused to a depth of 3-cm with an impurity concentration of 5xlO'' atoms/cj. It is also conventional that channel stopper layers 5 and 4 of n-type and p-type are provided at the periphery of these wells 2 and 3, respectively. It's the same.

この実施例でも、電界効果トランジスタTn用のP形の
ウェル3aは、上述のツインウェル中のp形のウェル3
と同し不純物濃度と深さで同時拡散され、これによって
半導体領域と同導電形であるがそれより高い不純物濃度
とされる。さらに、このウェル3aの拡散パターンは、
第3図と比べればわかるように、本発明では従来よりか
なり狭い範囲とくにこの実施例では第1図(ロ)のよう
にゲート7とほぼ同し範囲内に限定される。
In this embodiment as well, the P-type well 3a for the field effect transistor Tn is the p-type well 3a in the above-mentioned twin well.
It is simultaneously diffused to the same impurity concentration and depth as the semiconductor region, thereby making it have the same conductivity type as the semiconductor region but a higher impurity concentration. Furthermore, the diffusion pattern of this well 3a is
As can be seen from a comparison with FIG. 3, the present invention is limited to a much narrower range than the conventional one, particularly in this embodiment, it is limited to approximately the same range as the gate 7 as shown in FIG. 1(b).

高耐圧電界効果トランジスタTn用の1対のn形のオフ
セット拡散層6は、例えば5xlO”原子/cdCd程
度るいは高耐圧を要する場合により低い不純物濃度で、
第1図0))に示すように本発明でも従来と同しパター
ンで設けられるが、上述のように拡散範囲が限定された
ウェル3dとの交叉範囲はゲート7の下側に限定される
。なお、かかるオフセット拡ftkJi6やチャネルス
トッパN4と5は、例えば0.5−の深さに従来と同じ
く同時に熱拡散でき、この熱拡散の際にフィールド酸化
膜lOが例えば1μの厚みで形威される。
The pair of n-type offset diffusion layers 6 for the high breakdown voltage field effect transistor Tn have an impurity concentration of, for example, about 5xlO'' atoms/cdCd, or lower when a high breakdown voltage is required.
As shown in FIG. 1 (0)), the present invention is provided in the same pattern as the conventional one, but the crossing range with the well 3d whose diffusion range is limited as described above is limited to the lower side of the gate 7. Note that the offset expansion ftkJi6 and the channel stoppers N4 and 5 can be thermally diffused to a depth of, for example, 0.5 - at the same time as in the conventional method, and during this thermal diffusion, the field oxide film lO is formed to a thickness of, for example, 1μ. Ru.

以降は第3図と同し要領で第1図(a)に示す完成状態
とする。なお、本発明を実施する際の一例として、ゲー
ト酸化膜7aを750人程度の厚みとし、ゲート7を0
.54程度の厚みの多結晶シリコン膜で形威し、n形の
ソース層83およびドレイン層8dを10”・原子/c
j程度の不純物濃度で0.5μ程度の深さに拡散し、眉
間絶縁1111を1−程度の厚みの燐シリケートガラス
膜等とし、接続膜20を0.5−程度の厚みのアルミ膜
で形成するのがよい。
From then on, the process is the same as that shown in FIG. 3, resulting in the completed state shown in FIG. 1(a). As an example of implementing the present invention, the gate oxide film 7a is made to have a thickness of approximately 750 mm, and the gate 7 is
.. The n-type source layer 83 and the drain layer 8d are formed by a polycrystalline silicon film with a thickness of about 54 mm/c.
The impurity concentration is diffused to a depth of about 0.5μ with an impurity concentration of about It is better to do so.

以上のように本発明による高耐圧電界効果トランジスタ
Tnは、従来と同じく低圧用電界効果I・ランジスタt
nやtp用の工程をそのまま利用しながら同じチップ内
に組み込める。しかし、従来とは異なり、そのオフセッ
ト拡散層6はウェル3aだけでなく半導体領域lとも接
合し、ウェル3aの不純物濃度が半導体領域1よりも高
く設定されているので、ウェル3aとの接合の降伏電圧
が半導体領域1との接合の降伏電圧よりも必ず低くなり
、これは高耐圧化のためオフセット拡散層6の不純物濃
度を低めても変わることはない。
As described above, the high voltage field effect transistor Tn according to the present invention is similar to the conventional low voltage field effect transistor Tn.
It can be incorporated into the same chip while using the process for n and tp as is. However, unlike in the past, the offset diffusion layer 6 is in contact not only with the well 3a but also with the semiconductor region 1, and since the impurity concentration of the well 3a is set higher than that of the semiconductor region 1, breakdown of the junction with the well 3a occurs. The voltage is always lower than the breakdown voltage of the junction with the semiconductor region 1, and this does not change even if the impurity concentration of the offset diffusion layer 6 is lowered to increase the breakdown voltage.

従って、本発明による電界効果トランジスタTnでは、
過電圧が掛かったときの降伏はゲート7の下側でウェル
3aと接合するオフセット拡散層6の周縁のとくにゲー
ト酸化M7a下部分全体に亘って均一に起こり、従来接
合破壊が発生していたオフセット拡散層6の半導体領域
1と接合する周縁部では起こらなくなる。このため、本
発明の実施によって接合破壊の危険をなくすことができ
、かつオフセット拡散層6の不純物濃度を適宜に下げる
ことによって、電界効果トランジスタの耐圧値を従来の
60V程度から100Vないしそれ以上に向上すること
ができる。
Therefore, in the field effect transistor Tn according to the present invention,
Breakdown when an overvoltage is applied occurs uniformly across the periphery of the offset diffusion layer 6 that joins the well 3a below the gate 7, especially over the entire lower part of the gate oxidation M7a, and the offset diffusion that previously caused junction breakdown occurs. This does not occur at the periphery of layer 6 where it joins semiconductor region 1. Therefore, by implementing the present invention, it is possible to eliminate the risk of junction breakdown, and by appropriately lowering the impurity concentration of the offset diffusion layer 6, the withstand voltage value of the field effect transistor can be increased from the conventional approximately 60V to 100V or more. can be improved.

第2図の本発明の第2実施例では、かかる効果のほかに
寄生トランジスタの影響を減殺できる。
In the second embodiment of the present invention shown in FIG. 2, in addition to this effect, the influence of parasitic transistors can be reduced.

この第2実施例では、電界効果トランジスタTnのウェ
ル3bの拡散パターンが第1実施例のウェル3aよりも
広げられ、同図(a)、(b)に示すように1対のオフ
セット拡散層6の内の一方、この例ではドレイン層8d
と接続された方のオフセット拡散層6とのみゲート7の
下側で交叉される。
In this second embodiment, the diffusion pattern of the well 3b of the field effect transistor Tn is wider than that of the well 3a of the first embodiment, and a pair of offset diffusion layers 6 are formed as shown in FIGS. In this example, one of the drain layers 8d
It intersects only with the offset diffusion layer 6 connected to the gate 7 below the gate 7 .

また、この電界効果トランジスタTnのウェル3b内に
それと同じp形のウェル接続層3cが高不純物濃度で例
えば低圧側の電界効果トランジスタtpのソース・ドレ
イン層8と同時拡散され、これを介してウェル3b従っ
て半導体領域1が接地される。
Further, in the well 3b of the field effect transistor Tn, a p-type well connection layer 3c is simultaneously diffused with a high impurity concentration, for example, with the source/drain layer 8 of the field effect transistor tp on the low voltage side, and is passed through the well connection layer 3c to the well 3b of the field effect transistor Tn. 3b, the semiconductor region 1 is therefore grounded.

この状態で、ドレイン端子りから侵入する過電圧により
ドレイン層8dと半導体領域lとの間の接合が降伏した
とき、寄生トランジスタのベースである半導体領域1に
注入される正孔電流が接地されたウェル接続層3cの方
に側路されて、寄生トランジスタに対するベース電流で
ある正孔電流の注入効率が低下する。このため、寄生ト
ランジスタの導通条件に関してゲート7の電位がウェル
3bに与える影響が減少する。
In this state, when the junction between the drain layer 8d and the semiconductor region 1 breaks down due to an overvoltage entering from the drain terminal, the hole current injected into the semiconductor region 1, which is the base of the parasitic transistor, flows through the grounded well. The hole current is bypassed toward the connection layer 3c, and the injection efficiency of the hole current, which is the base current for the parasitic transistor, decreases. Therefore, the influence of the potential of the gate 7 on the well 3b regarding the conduction conditions of the parasitic transistor is reduced.

第2図(C)はこの第2実施例による電界効果トランジ
スタTnの第3図(C)に対応する電圧・電流特性を示
す0図示のように、電界効果トランジスタTnの降伏電
圧はゲート電圧Vgに関せずほぼ一定で、寄生トランジ
スタ効果が従来よりも大幅に減殺されていることがわか
る。
FIG. 2(C) shows the voltage/current characteristics corresponding to FIG. 3(C) of the field effect transistor Tn according to the second embodiment.As shown in the figure, the breakdown voltage of the field effect transistor Tn is the gate voltage Vg. It can be seen that the parasitic transistor effect is almost constant regardless of the parasitic transistor effect compared to the conventional one.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり本発明では、通例のウェルとゲート
と1対のソース・ドレイン層のほかに、耐圧値を向上さ
せるため各ソース・ドレイン層を囲むそれより低い不純
物濃度の1対のオフセット拡散層を備える電界効果トラ
ンジスタに対して、集積回路装置の基板等の半導体領域
に同導電形のウェルをそれより高い不純物濃度で拡散し
、その拡散パターンを少なくとも一方のオフセット拡散
層とゲートの下側で交叉させることにより、電界効果ト
ランジスタに過電圧が掛かった時に降伏が起こる個所を
オフセット拡散層の周縁中のゲート下のチャネル形成面
に相当するウェルとの接合部に限定させ、オフセット拡
散層の周縁の接合破壊が従来発生しやすかった個所では
降伏が起こり得ないようにして、電界効果トランジスタ
内に接合破壊が発生するおそれをなくすことができ、さ
らにこの利点を利用してオフセット拡散層の不純物濃度
を低めることにより、電界効果トランジスタの耐圧値を
向上させることができる。
As explained above, in the present invention, in addition to the usual well, gate, and pair of source/drain layers, a pair of offset diffusion layers with a lower impurity concentration surrounding each source/drain layer to improve the breakdown voltage value are provided. For a field effect transistor comprising a field effect transistor, a well of the same conductivity type is diffused at a higher impurity concentration in a semiconductor region such as a substrate of an integrated circuit device, and the diffusion pattern is formed under at least one of the offset diffusion layers and the gate. By crossing, the location where breakdown occurs when an overvoltage is applied to the field effect transistor is limited to the junction with the well corresponding to the channel formation surface under the gate in the periphery of the offset diffusion layer, and It is possible to eliminate the risk of junction breakdown occurring in a field effect transistor by preventing breakdown from occurring in locations where junction breakdown has conventionally been prone to occur.Furthermore, this advantage can be used to reduce the impurity concentration of the offset diffusion layer. By lowering it, the withstand voltage value of the field effect transistor can be improved.

本発明による電界効果トランジスタは、低圧用電界効果
トランジスタを高集積化した論理回路部とともにその出
力回路部用の高耐圧トランジスタとして集積回路装置内
に組み込む際、そのウェルをいわゆるツインウェルと同
時に拡散しながら、低圧用電界効果トランジスタと共通
の工程で作り込むことができる。
In the field effect transistor according to the present invention, when a low voltage field effect transistor is incorporated into an integrated circuit device as a high breakdown voltage transistor for an output circuit section together with a highly integrated logic circuit section, its well is diffused at the same time as a so-called twin well. However, it can be fabricated in the same process as low-voltage field effect transistors.

さらには、ウェルの拡散パターンを一方のオフセット拡
散層とのみゲート下で交叉させる本発明の有利な実施態
様によれば、寄生トランジスタの悪影響をほぼ完全にな
くして、過電圧が侵入した時に電界効果トランジスタ内
に大きな短絡電流が流れる危険を減少させるとともに、
その耐圧値を一層向上させることができる。
Moreover, according to an advantageous embodiment of the invention in which the diffusion pattern of the well intersects only one offset diffusion layer under the gate, the negative effects of parasitic transistors are almost completely eliminated, and when an overvoltage intrudes, the field effect transistor This reduces the risk of large short-circuit currents flowing inside the
The withstand voltage value can be further improved.

本発明による電界効果トランジスタは、外部の負荷を直
接駆動する集積回路装置への組み込み用にとくに通し、
上述の特長を生かしながらこの種の集積回路装置の動作
信頼性を高め、出力回路の耐圧値を一層向上し、かつ経
済的な製作を可能にする著効を奏し得るものである。
The field effect transistor according to the invention is particularly suitable for integration into integrated circuit devices that directly drive external loads.
While taking advantage of the above-mentioned features, this type of integrated circuit device can be highly effective in increasing its operational reliability, further improving the withstand voltage value of the output circuit, and enabling economical manufacturing.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図が本発明に関し、第1図は本発明に
よる電界効果トランジスタの第1実施例の断面図および
拡散パターン等の上面図、第2図は本発明の第2実施例
の断面図、拡散パターン等の上面図およびその電圧・電
流特性線図である。 第3図は従来技術による電界効果トランジスタを第2図
と同し要領で示す断面図、拡散パターン等の上面図およ
びその電圧・電流特性線図である。 これらの図において、
1 and 2 relate to the present invention; FIG. 1 is a sectional view and a top view of a first embodiment of a field effect transistor according to the present invention, and a top view of a diffusion pattern, etc., and FIG. 2 is a top view of a second embodiment of a field effect transistor according to the present invention. FIG. 2 is a cross-sectional view, a top view of a diffusion pattern, etc., and a voltage/current characteristic line diagram thereof. FIG. 3 is a sectional view showing a conventional field effect transistor in the same manner as FIG. 2, a top view of a diffusion pattern, etc., and a voltage/current characteristic diagram thereof. In these figures,

Claims (1)

【特許請求の範囲】[Claims] 一方の導電形の半導体領域の表面にそれより高い不純物
濃度で拡散された一方の導電形のウェルと、ウェル内の
一部の表面上に設けられた薄いゲート酸化膜と、ゲート
酸化膜を介してウェルと対向するように配設されたゲー
トと、ゲートを間に挟んで拡散された他方の導電形の1
対のソース・ドレイン層と、各ソース・ドレイン層をそ
れぞれ囲み周縁の一部をゲート酸化膜の周縁部の下側に
入り込ませてソース・ドレイン層より低い不純物濃度で
拡散された他方の導電形の1対のオフセット拡散層とを
備え、ウェルの拡散パターンを少なくとも一方のオフセ
ット拡散層とゲートの下側で交叉させ、ウェルのゲート
酸化膜下部の1対のオフセット拡散層の周縁相互間をチ
ャネル形成面としてなる電界効果トランジスタ。
A well of one conductivity type in which impurity concentration is diffused into the surface of a semiconductor region of one conductivity type, a thin gate oxide film provided on a part of the surface of the well, and a thin gate oxide film provided on a part of the surface of the well, and a gate disposed so as to face the well, and one of the other conductivity type diffused with the gate in between.
A pair of source/drain layers and the other conductivity type that surrounds each source/drain layer and penetrates a portion of the periphery under the periphery of the gate oxide film and is diffused with an impurity concentration lower than that of the source/drain layer. a pair of offset diffusion layers, the diffusion pattern of the well intersects at least one of the offset diffusion layers below the gate, and a channel is formed between the edges of the pair of offset diffusion layers under the gate oxide film of the well. A field effect transistor that serves as a formation surface.
JP1316901A 1989-12-06 1989-12-06 Field-effect transistor Pending JPH03178160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1316901A JPH03178160A (en) 1989-12-06 1989-12-06 Field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1316901A JPH03178160A (en) 1989-12-06 1989-12-06 Field-effect transistor

Publications (1)

Publication Number Publication Date
JPH03178160A true JPH03178160A (en) 1991-08-02

Family

ID=18082175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1316901A Pending JPH03178160A (en) 1989-12-06 1989-12-06 Field-effect transistor

Country Status (1)

Country Link
JP (1) JPH03178160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303142A (en) * 2005-04-20 2006-11-02 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194584A (en) * 1981-05-12 1982-11-30 Puuru Rechiyuudo E Ra Fuaburik Method of producing mos integrated circuit
JPS6442862A (en) * 1987-08-11 1989-02-15 Seiko Epson Corp Manufacture of high-withstand voltage mos semiconductor device
JPH01149449A (en) * 1987-12-04 1989-06-12 Fujitsu Ltd Cmos semiconductor device and manufacture thereof
JPH01162372A (en) * 1987-12-18 1989-06-26 Matsushita Electron Corp Mis transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57194584A (en) * 1981-05-12 1982-11-30 Puuru Rechiyuudo E Ra Fuaburik Method of producing mos integrated circuit
JPS6442862A (en) * 1987-08-11 1989-02-15 Seiko Epson Corp Manufacture of high-withstand voltage mos semiconductor device
JPH01149449A (en) * 1987-12-04 1989-06-12 Fujitsu Ltd Cmos semiconductor device and manufacture thereof
JPH01162372A (en) * 1987-12-18 1989-06-26 Matsushita Electron Corp Mis transistor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303142A (en) * 2005-04-20 2006-11-02 Renesas Technology Corp Semiconductor integrated circuit device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US6521952B1 (en) Method of forming a silicon controlled rectifier devices in SOI CMOS process for on-chip ESD protection
JP5172654B2 (en) Semiconductor device
JP3608456B2 (en) Manufacturing method of SOI structure MIS field effect transistor
JP2954854B2 (en) Integrated circuit chip
JPH04241452A (en) Semiconductor integrated circuit device
US4868621A (en) Input protection circuit
JP2002170952A (en) Field mos transistor and semiconductor integrated circuit comprising it
JPH09139633A (en) Isolation gate type semiconductor device incorporating control circuit
JP3033548B2 (en) Semiconductor device, electrostatic protection element, and dielectric breakdown prevention method
JP2825038B2 (en) Semiconductor device
JPH03178160A (en) Field-effect transistor
JPS63137478A (en) Manufacture of semiconductor device having protective circuit
JPH02238668A (en) Semiconductor device
EP0109692A1 (en) Semiconductor device for a MOSFET
JPH02214164A (en) Mosfet with input protection circuit
JPS61174672A (en) Vmos transistor
JPH11214531A (en) High breakdown voltage semiconductor device and manufacture thereof
JP3389486B2 (en) Semiconductor device
JPS6237822B2 (en)
JPH062275Y2 (en) Semiconductor device
JP2001156181A (en) Semiconductor device
JPH02283070A (en) Semiconductor integrated circuit device using input protecting circuit
JPS61208863A (en) Cmos semiconductor device
JPH11111971A (en) Mos transistor
JPH04239178A (en) Integrated circuit