JPH03178136A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH03178136A
JPH03178136A JP1318425A JP31842589A JPH03178136A JP H03178136 A JPH03178136 A JP H03178136A JP 1318425 A JP1318425 A JP 1318425A JP 31842589 A JP31842589 A JP 31842589A JP H03178136 A JPH03178136 A JP H03178136A
Authority
JP
Japan
Prior art keywords
film
region
gate electrode
machined
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1318425A
Other languages
Japanese (ja)
Inventor
Toru Koyama
徹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1318425A priority Critical patent/JPH03178136A/en
Publication of JPH03178136A publication Critical patent/JPH03178136A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the electrostatic breakdown of a gate dielectric film to the charging phenomenon of a film to be machined by forming an electrical contact between the conductive film to be machined having an electric contact with a gate electrode and a region having the same conductivity type as a substrate section oppositely faced to the gate electrode. CONSTITUTION:Electric contacts 15a, 15b are shaped between a conductive film to be machined 7 having an electric contact with a gate electrode 5a and a region having the same conductivity type as a substrate section 10 opposite to a gate electrode 5b. Consequently, the charged particles of the film to be machined 7 can be flowed out to the outside of a substrate. Accordingly, the addition of a manufacturing treatment process, the prolongation of a treating time, etc., are unnecessitated completely only by adding a number of mask patterns, and the electrostatic breakdown of gate dielectric films 6a, 6b to the charging of the film to be machined 7 by the shock of charged particles at the time of dry etching treatment, etc., without having any effect on the performance of a semiconductor device.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体装置の製造方法に関し、特にMO3構造
の半導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having an MO3 structure.

〔従来の技術〕[Conventional technology]

第2図(alおよび(C)は、従来のCMOSトランジ
スタの構造を示す平面図および断面図である。第2図(
a)は2層目の配線のパターン形成が完了した状態を示
す平面図である。第2図(b)は第2図(a)のII 
−II線断面図であり、2層目の配線のパターン形成の
ためのエツチング処理開始時点の断面を示す。
FIG. 2(al) and (C) are a plan view and a cross-sectional view showing the structure of a conventional CMOS transistor.
FIG. 7A is a plan view showing a state in which the pattern formation of the second layer wiring is completed. Figure 2(b) is II of Figure 2(a).
-II line sectional view, showing the cross section at the time of starting the etching process for forming the pattern of the second layer wiring.

第2図において、1は分離シリコン酸化膜、2はn型低
濃度拡散領域(以下「n−領域」と記載する)、3はp
型窩濃度拡散領域(以下「p″領域と記載する)、4は
n型高濃度拡散領域(以下rn”領域」と記載する〉、
5aはpチャネルトランジスタのゲート電極となる1層
目の配線、5bはnチャネルトランジスタのゲート電極
となる1層目の配線、6aはpチャネルトランジスタの
ゲートシリコン酸化膜、6bはnチャネルトランジスタ
のゲートシリコン酸化膜、7は被エツチング膜(被加工
膜)である2層目の配線、8は1層目と2層目の配線の
コンタクト、9は眉間絶縁膜であるシリコン酸化膜、1
0はp型シリコン基板、11は2層目の配線7とp+領
域3とのコンタクト、12は2層目の配線7とn+hl
域4とのコンタクト、13はレジストパターン、14は
ドライエツチング時のイオン入射を示す。
In FIG. 2, 1 is an isolated silicon oxide film, 2 is an n-type low concentration diffusion region (hereinafter referred to as "n- region"), and 3 is a p-type
4 is a type fovea concentration diffusion region (hereinafter referred to as "p" region), 4 is an n-type high concentration diffusion region (hereinafter referred to as "rn"region)>,
5a is the first layer wiring that becomes the gate electrode of the p-channel transistor, 5b is the first layer wiring that becomes the gate electrode of the n-channel transistor, 6a is the gate silicon oxide film of the p-channel transistor, and 6b is the gate of the n-channel transistor. 1 is a silicon oxide film, 7 is a second layer wiring which is a film to be etched (film to be processed), 8 is a contact between first and second layer wiring, 9 is a silicon oxide film which is an insulating film between the eyebrows, 1
0 is a p-type silicon substrate, 11 is a contact between the second layer wiring 7 and the p+ region 3, and 12 is a contact between the second layer wiring 7 and n+hl
Contact with region 4, 13 indicates a resist pattern, and 14 indicates ion incidence during dry etching.

一般に、ドライエツチング時には、イオン衝撃により被
エツチング膜である導電膜7は正または負に帯電する。
Generally, during dry etching, the conductive film 7 to be etched is charged positively or negatively by ion bombardment.

第2図(b)は負に帯電する場合を示しているが、この
場合、2層目の配線となる被エツチング膜7とpおよび
nチャネルトランジスタのゲート電極5a、5bはコン
タクト8にて電気的に導通しているため、ゲート電極5
a、5bも被エツチング膜7と同様に負に帯電する。こ
の際、基板lOは接地されているため、nチャネルトラ
ンジスタ部ではn″領域4と基板部であるp−eI域1
0との接合に対し順方向の電界が掛り、電子が2層目の
配線7からコンタクト12.n″領域4を介してp−領
域IOに流れる。そのため、p−eJI域10とゲート
電極5bとはほぼ同電位となり、両者の間には高電界は
掛からない。
FIG. 2(b) shows a case where the film is negatively charged. In this case, the film to be etched 7, which becomes the second layer wiring, and the gate electrodes 5a and 5b of the p- and n-channel transistors are electrically connected at the contact 8. Since the gate electrode 5 is electrically conductive, the gate electrode 5
A and 5b are also negatively charged like the film to be etched 7. At this time, since the substrate lO is grounded, in the n-channel transistor part, the n'' region 4 and the p-eI region 1 which is the substrate part
A forward electric field is applied to the junction with 0, and electrons are transferred from the second layer wiring 7 to the contact 12. It flows to the p- region IO via the n'' region 4. Therefore, the p-eJI region 10 and the gate electrode 5b have almost the same potential, and no high electric field is applied between them.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしpチャネルトランジスタ部ではpJI域3と基板
部であるn−領域2との接合に対し逆方向の電界が掛か
るため、被エツチング膜7の電子はp″領域3とn−6
1域2の接合を介してn−6,1域2に流れることが出
来ない。そのため、n−領域2とゲート電極5aとの間
には電位差が生じ、高電界が掛かる。この電界が両者の
間にあるゲートシリコン酸化膜6aの耐圧限界を越える
と、ゲートシリコン酸化膜6aが静電破壊するに至る。
However, in the p-channel transistor section, since an electric field is applied in the opposite direction to the junction between the pJI region 3 and the n-region 2, which is the substrate section, the electrons in the film to be etched 7 are transferred between the p'' region 3 and the n-6 region.
It cannot flow to n-6, 1 area 2 via the junction of 1 area 2. Therefore, a potential difference is generated between n- region 2 and gate electrode 5a, and a high electric field is applied. If this electric field exceeds the breakdown voltage limit of the gate silicon oxide film 6a between the two, the gate silicon oxide film 6a will be damaged by electrostatic discharge.

被エツチング膜7が正に帯電する場合には、同様にして
、nチャネルトランジスタ部のゲート電極5bとp−9
1域10の間に高電界が掛り、ゲートシリコン酸化膜6
bが静電破壊するに至る。
When the film to be etched 7 is positively charged, the gate electrode 5b and p-9 of the n-channel transistor section are similarly charged.
A high electric field is applied between regions 10 and 10, and the gate silicon oxide film 6
b leads to electrostatic damage.

微細加工において、ドライエツチングの精度を向上させ
るには、エツチングの異方性およびイオン密度を向上さ
せる必要があり、それに伴い被エツチング膜に対するイ
オン衝撃は増大する傾向にある。また、ゲートシリコン
酸化膜はIC,LSI等の半導体装置の微細化に伴い、
益々薄膜化し耐圧限界は低下していくことが予想される
。従って、このドライエツチング時に生じるゲートシリ
コン酸化膜の静電破壊現象は今後益々大きな問題になる
と思われる。
In order to improve the accuracy of dry etching in microfabrication, it is necessary to improve the etching anisotropy and ion density, and as a result, ion bombardment on the film to be etched tends to increase. In addition, as semiconductor devices such as ICs and LSIs become finer, gate silicon oxide films are becoming smaller and smaller.
It is expected that as the film becomes thinner and thinner, the withstand voltage limit will decrease. Therefore, it is believed that the electrostatic breakdown phenomenon of the gate silicon oxide film that occurs during dry etching will become an increasingly serious problem in the future.

本発明はこのような点に鑑みてなされたものであり、そ
の目的とするところは、ドライエツチング処理時等にお
けるイオン、を子等による荷電粒子の衝撃に伴う被加工
膜の帯電現象に対してゲート誘電体膜が静電破壊を生じ
ないような半導体装置の製造方法を提供することにある
The present invention has been made in view of the above points, and its purpose is to prevent the charging phenomenon of the processed film due to the impact of charged particles caused by ions, etc. during dry etching processing, etc. An object of the present invention is to provide a method for manufacturing a semiconductor device in which a gate dielectric film does not suffer from electrostatic breakdown.

〔課題を解決するための手段〕[Means to solve the problem]

このような目的を遠戚するために本発明は、製造過程に
おいて、ゲート電極と電気的コンタクトを有する導電性
の被加工膜と、ゲート電極に対面する基板部と同−導電
形の領域との間に、電気的コンタクトを形成するように
したものである。
In order to distantly achieve such an object, the present invention aims at forming a conductive processed film having electrical contact with a gate electrode and a region having the same conductivity type as the substrate portion facing the gate electrode during the manufacturing process. An electrical contact is formed between them.

〔作用〕[Effect]

本発明による半導体装置の製造方法においては、ドライ
エツチング処理等において、イオン、電子等の荷電粒子
により被加工膜が帯電した際、ゲート電極とゲート電極
に対面する基板部とはほぼ同電位となり、両者間に高電
界は生ぜず、ゲート誘電体膜の静電破壊は回避される。
In the method for manufacturing a semiconductor device according to the present invention, when a film to be processed is charged by charged particles such as ions and electrons during dry etching treatment, the gate electrode and the substrate portion facing the gate electrode have approximately the same potential, A high electric field is not generated between the two, and electrostatic damage to the gate dielectric film is avoided.

〔実施例〕〔Example〕

以下、本発明による半導体装置の製造方法の一実施例を
図を用いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a method for manufacturing a semiconductor device according to the present invention will be described below with reference to the drawings.

第1図(a)および(b)は、製造過程にある0MO5
のトランジスタ構造を示す平面図および断面図である。
Figures 1(a) and (b) show 0MO5 in the manufacturing process.
FIG. 2 is a plan view and a cross-sectional view showing a transistor structure of FIG.

第1図(a)は2層目の配線のパターン形成が完了した
状態を示す平面図である。第1図(′b)は第1図(a
)のI−11断面図であり、2層目の配線パターン形成
のためのエツチング処理開始時点の断面を示す。
FIG. 1(a) is a plan view showing a state in which the pattern formation of the second layer wiring is completed. Figure 1('b) is similar to Figure 1(a).
) is a cross-sectional view taken along line I-11 of FIG.

第1図において、符号1〜14は第2図と同様であり、
15aは被エツチング膜7と、n−領域2すなわちゲー
ト電極5aと対面する基板部と同−導電形の領域とのコ
ンタクトを示し、15bも同様に導電性の被エツチング
膜7と、p−領域10すなわちゲート電極5bに対面す
る基板部と同一の導電形の領域とのコンタクトを示す。
In FIG. 1, numerals 1 to 14 are the same as in FIG. 2,
Reference numeral 15a indicates a contact between the film to be etched 7 and the n-region 2, that is, a region of the same conductivity type as the substrate portion facing the gate electrode 5a. 10, that is, contact with a region of the same conductivity type as the substrate portion facing the gate electrode 5b.

第1図は、導電性の被エツチング膜7が負に帯電する場
合を示しているが、この場合、第2図同様、2層目の配
線となる被エツチング膜7とpおよびnチャネルトラン
ジスタのゲート電極5a。
FIG. 1 shows a case where the conductive film to be etched 7 is negatively charged. In this case, as in FIG. Gate electrode 5a.

5bはコンタクト8にて電気的に導通しているため、ゲ
ート電極5a、5bも被エツチング膜7同様に負に帯電
する。この際、pチャネルトランジスタ部では、従来例
同様に、p″領域3とn−?iJ(域2の接合に対し逆
方向の電界が掛り、被加工膜7の電子はこの接合を越え
ることは出来ない。しかし、n −SR域2とp−領域
10の接合に対しては順方向の電界が掛かることになる
ため、被加工膜7の電子は、被加工膜7とn−95域2
とのコンタクト15aからn−領域2に入り、n−領域
2とp領域10の接合を介してp−eI域lOに流れて
いく。そのため1,91域2とゲート電極5aとはほぼ
同電位となり、両者の間には高電界は掛からない。従っ
て、両者の間にあるゲートシリコン酸化膜6aの静電破
壊は回避できる。このときnチャネルトランジスタ部で
は、従来例同様、被加工膜7中の電子は、コンタクト1
2からn″領域4に入り、n″領域4とp−91域IO
の接合を介してp−81域10へ流れるため、p−eM
域10とゲート電極5bとはほぼ同電位となり、ゲート
シリコン酸化膜6bの静電破壊は起こらない。
Since the electrode 5b is electrically conductive through the contact 8, the gate electrodes 5a and 5b are also negatively charged like the film to be etched 7. At this time, in the p-channel transistor section, as in the conventional example, an electric field is applied in the opposite direction to the junction between the p'' region 3 and the n-? However, since a forward electric field will be applied to the junction between the n-SR region 2 and the p-region 10, the electrons in the film to be processed 7 will be transferred between the film to be processed 7 and the n-95 region 2.
It enters the n- region 2 from the contact 15a with the p-eI region 10 through the junction between the n- region 2 and the p region 10. Therefore, the 1,91 region 2 and the gate electrode 5a have almost the same potential, and no high electric field is applied between them. Therefore, electrostatic damage to the gate silicon oxide film 6a between the two can be avoided. At this time, in the n-channel transistor section, as in the conventional example, electrons in the film to be processed 7 are transferred to the contact 1.
2 to n″ area 4, n″ area 4 and p-91 area IO
flows to the p-81 region 10 through the junction of p-eM
The region 10 and the gate electrode 5b are at approximately the same potential, and no electrostatic damage occurs to the gate silicon oxide film 6b.

また、被エツチング膜7が正に帯電する場合には、同様
にして、nチャネルトランジスタ部のn9領域4とp−
領域10の接合に対しては逆方向の電界が掛かるため、
被エツチング膜7とn″頭域4とのコンタクト12から
は被エツチング膜7中の電子は流れ出ていかないが、被
エツチング膜7とp−eM域10とのコンタクト15b
から電子ははpi域10に流れ出ていき、p−ViI域
10とゲート電極5bはほぼ同電位となり、両者の間に
あるゲートシリコン酸化膜6bは静電破壊を免れる。
Further, when the film to be etched 7 is positively charged, the n9 region 4 of the n-channel transistor portion and the p-
Since an electric field in the opposite direction is applied to the junction in region 10,
Electrons in the film to be etched 7 do not flow out from the contact 12 between the film to be etched 7 and the n'' head region 4, but the electrons in the film to be etched 7 do not flow out from the contact 15b between the film to be etched 7 and the p-eM region 10.
The electrons flow out into the pi region 10, and the p-ViI region 10 and the gate electrode 5b have almost the same potential, and the gate silicon oxide film 6b between them is spared from electrostatic damage.

以上述べたように、pチャネルトランジスタ部、nチャ
ネルトランジス5部各々に、導電性の被エツチングlI
!7と、ゲート電極に対面する基板部と同一の導電影領
域との間にコンタクトを形成することにより、被エツチ
ング膜7の正または負の帯電に対して、pチャネルおよ
びnチャネルトランジスタにおけるゲート誘電体膜の静
1破壊を防止することができる。なお、このコンタクト
15aおよび15bでは、被エツチング膜7のエツチン
グ完了時には被エツチング膜7が消失しているため、コ
ンタクトとして機能せず、それ以降の工程では単なる層
間絶縁膜1の孔として形を残すのみとなり、半導体装置
としての性能には何ら影響を与えることはない。
As described above, the conductive etched lI is provided in each of the p-channel transistor section and the n-channel transistor section 5.
! 7 and the same conductive shadow region as the substrate portion facing the gate electrode, the gate dielectric in the p-channel and n-channel transistors is It is possible to prevent static destruction of body membranes. Note that in the contacts 15a and 15b, since the film 7 to be etched has disappeared when the etching of the film 7 to be etched is completed, the contact does not function as a contact, and in the subsequent steps, the shape remains as a mere hole in the interlayer insulating film 1. This does not affect the performance of the semiconductor device in any way.

また、上記実施例では、nチャネルトランジスタとpチ
ャネルトランジスタが組み合わされたCMO3I−ラン
ジスタ構造の場合を示したが、nチャネルまたはPチャ
ネルのみのnMO3)ランジスタやpMOsトランジス
タの構造の場合にも、もちろん同様の効果が得られる。
Furthermore, in the above embodiment, the case of a CMO3I-transistor structure in which an n-channel transistor and a p-channel transistor are combined is shown, but of course, it can also be applied to a structure of an nMO3) transistor or a pMOS transistor with only an n-channel or a P-channel. A similar effect can be obtained.

さらに、上記実施例では、導電性の被加工膜と、ゲート
電極に対面する基板部と同一の導電形の領域とを直接に
コンタクトしている場合を示したが、n−領域に対して
はn″領域、1)−TlI域に対してはp″領域をあら
かじめコンタクト部に形成した上で被加工膜を底膜し、
コンタクトを形成してもよい。このことにより、コンタ
クト部における両者の接触抵抗が低減し、効果が増大す
る。
Furthermore, in the above embodiment, the conductive film to be processed is in direct contact with a region of the same conductivity type as the substrate portion facing the gate electrode. For the n'' region, 1)-TlI region, a p'' region is formed in the contact portion in advance, and then the film to be processed is formed as a bottom layer.
Contacts may also be formed. This reduces the contact resistance between the two in the contact portion, increasing the effect.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、製造過程において、ゲー
ト電極と電気的コンタクトを有する導電性の被加工膜と
、ゲート電極に対面する基板部と同一導電形の領域との
間に、電気的コンタクトを形成するようにしたことによ
り、被加工膜の帯電粒子が基板外に流れ出るようにでき
るので、若干のマスクパターンの追加のみで、製造処理
工程の追加や処理時間の延長等は全く必要とせず、さら
に半導体装置の性能には何ら影響を与えることなく、ド
ライエツチング処理時等における荷電粒子の衝撃による
被加工膜の帯電に対して、ゲート誘電体膜の静電破壊を
防止できる効果がある。
As explained above, in the present invention, during the manufacturing process, an electrical contact is made between a conductive processed film having an electrical contact with a gate electrode and a region of the same conductivity type as the substrate portion facing the gate electrode. By forming , the charged particles in the film to be processed can flow out of the substrate, so there is no need to add any additional manufacturing process or extend the processing time, just by adding a small mask pattern. Moreover, it has the effect of preventing electrostatic breakdown of the gate dielectric film against charging of the processed film due to the impact of charged particles during dry etching processing, etc., without affecting the performance of the semiconductor device in any way.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(alおよび(b)は本発明による半導体装置の
製造方法の一実施例を説明するために製造過程のCMO
3型O3ンジスタ構造を示す平面図および断面図、第2
図(a)および(b)は従来の製造過程のCMO3型O
3ンジスタ構造を示す平面図および断面図である。 l・・・分離シリコン酸化膜、2・・・n −91域、
3・・・p″領域、4・・・n″領域5a、5b・・・
1層目の配線、5a、5b・・・ゲートシリコン酸化膜
、7・・・被エツチング膜、8・・・コンタクト、9・
・・シリコン酸化膜、10・・・p型シリコン基板、1
1,12゜15a、15b・・・コンタクト、13・・
・レジストパターン、14・・・イオン入射。
FIGS. 1(al) and (b) show a CMO in the manufacturing process for explaining an embodiment of the method for manufacturing a semiconductor device according to the present invention.
A plan view and a cross-sectional view showing a type 3 O3 transistor structure, 2nd
Figures (a) and (b) show CMO3 type O in the conventional manufacturing process.
FIG. 3 is a plan view and a cross-sectional view showing a three-register structure. l...isolated silicon oxide film, 2...n-91 region,
3... p'' area, 4... n'' area 5a, 5b...
1st layer wiring, 5a, 5b... Gate silicon oxide film, 7... Film to be etched, 8... Contact, 9...
...Silicon oxide film, 10...p-type silicon substrate, 1
1,12゜15a, 15b...Contact, 13...
-Resist pattern, 14...Ion injection.

Claims (1)

【特許請求の範囲】[Claims] 製造過程において、ゲート電極と電気的コンタクトを有
する導電性の被加工膜と、前記ゲート電極に対面する基
板部と同一導電形の領域との間に、電気的コンタクトを
形成することを特徴とする半導体装置の製造方法。
In the manufacturing process, an electrical contact is formed between a conductive processed film having electrical contact with the gate electrode and a region having the same conductivity type as the substrate portion facing the gate electrode. A method for manufacturing a semiconductor device.
JP1318425A 1989-12-06 1989-12-06 Manufacture of semiconductor device Pending JPH03178136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318425A JPH03178136A (en) 1989-12-06 1989-12-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318425A JPH03178136A (en) 1989-12-06 1989-12-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH03178136A true JPH03178136A (en) 1991-08-02

Family

ID=18099010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318425A Pending JPH03178136A (en) 1989-12-06 1989-12-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH03178136A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117468A (en) * 1986-11-05 1988-05-21 Nec Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117468A (en) * 1986-11-05 1988-05-21 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
US6117714A (en) Method for protecting a transistor gate from charge damage
US5691234A (en) Buried contact method to release plasma-induced charging damage on device
JP3337130B2 (en) Semiconductor device
US5907182A (en) Semiconductor device having element with high breakdown voltage
KR19980024045A (en) Semiconductor device and manufacturing method thereof
US5079609A (en) Semiconductor device having dielectric breakdown protection element and method of fabricating same
US11605627B2 (en) Systems and methods for protecting a semiconductor device
US4397076A (en) Method for making low leakage polycrystalline silicon-to-substrate contacts
JP2643904B2 (en) Electrostatic protection element
JPH03178136A (en) Manufacture of semiconductor device
JP3311759B2 (en) Integrated circuit having screen structure and method of manufacturing the same
KR100482363B1 (en) Semiconductor device with protective diode and manufacturing method
US6469360B1 (en) Integrated circuit devices providing reduced electric fields during fabrication thereof
US5888894A (en) Method for reducing stray conductive material near vertical surfaces in semiconductor manufacturing processes
US20030205759A1 (en) Reduction of parasitic bipolar leakage current in silicon on insulator devices
KR100424172B1 (en) A method for manufacturing of semiconductor device with elector static discharge protector
JPH0491422A (en) Manufacture of semiconductor device
JPH07321118A (en) Method of forming semiconductor device interconnection
JP3845238B2 (en) Manufacturing method of semiconductor device
JPH0371625A (en) Manufacture of semiconductor device
JPH09260590A (en) Semiconductor device and manufacture thereof
JP2817226B2 (en) Method for manufacturing semiconductor device
KR100204425B1 (en) Electrostatic discharge semiconductor device and manufacturing thereof
JPS60148118A (en) Semiconductor device
KR970006251B1 (en) Semiconductor device