JPH0371625A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0371625A
JPH0371625A JP1207267A JP20726789A JPH0371625A JP H0371625 A JPH0371625 A JP H0371625A JP 1207267 A JP1207267 A JP 1207267A JP 20726789 A JP20726789 A JP 20726789A JP H0371625 A JPH0371625 A JP H0371625A
Authority
JP
Japan
Prior art keywords
ion
gate
implantation
transistor
polysi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1207267A
Other languages
Japanese (ja)
Other versions
JP2805875B2 (en
Inventor
Toshihiko Akiba
秋葉 利彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1207267A priority Critical patent/JP2805875B2/en
Publication of JPH0371625A publication Critical patent/JPH0371625A/en
Application granted granted Critical
Publication of JP2805875B2 publication Critical patent/JP2805875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To avoid the breakdown of a gate insulating film for restraining the increase in the connection resistance to a polySi gate by a method wherein, in the two time ion-implantation processes to form S/D regions of two kind MOSFETs, resist masks are provided over a gate connecting electrode formation part of a polySi layer for ther implantation. CONSTITUTION:At least in one process out of an ion-implantation process of the first conductivity type impurity masking a part of transistor formation region and another ion-implantation process of the second conductivity type impurity masking a part of the transistor formation region, the part connecting to a wiring metallic layer of a polySi gate electrode 3 of a transistor is processed not to be ion-implanted. In order to avoid the ion-implantation in a gate, contact formation part 4 of a polySi layer, the part 4 is covered with e.g. resist 7a, 7b. Through these procedures, if the ion-implantation process is not performed at least in one process, the resistance will not be increased by compensation; whereas even if the resistance is increased in such a fine region as the contact formation part 4, the breakdown strength of a gate oxide film will not be increased to the significant extent.

Description

【発明の詳細な説明】 〔概 要〕 本発明はCMO3型ICO形成に於けるイオン注入工程
に関し、 イオン注入処理中のゲート絶縁膜の破壊を避けると共に
ポリStゲートへの接続抵抗の増加を抑止することを目
的とし、 2種のMOSFETのS/D領域を形成する2回のイオ
ン注入に於いて、最小限必要なレジスト・マスクの他に
ポリSi層のゲート接続電極形成部にもレジスト・マス
クを設けて注入を行う構成とする。
[Detailed Description of the Invention] [Summary] The present invention relates to an ion implantation process in the formation of a CMO3 type ICO, which avoids destruction of the gate insulating film during the ion implantation process and suppresses an increase in connection resistance to the polySt gate. In order to achieve this, in the two ion implantations to form the S/D regions of the two types of MOSFETs, in addition to the minimum required resist mask, a resist mask was also applied to the gate connection electrode forming part of the poly-Si layer. The configuration is such that implantation is performed with a mask provided.

〔産業上の利用分野〕[Industrial application field]

本発明はMO3型集積回路の形成に関わり、特にゲート
絶縁膜の絶縁破壊を伴うことのないイオン注入処理に関
わる。
The present invention relates to the formation of MO3 type integrated circuits, and in particular to an ion implantation process that does not involve dielectric breakdown of the gate insulating film.

半導体集積回路の高集積化に伴い、それを構成する素子
の微細化が進められている。トランジスタのような能動
素子の微細化の基本的な手法は、素子の全ての寸法を一
定比率で縮小する方法であって、スケール則と呼ばれて
いるものである。
2. Description of the Related Art As semiconductor integrated circuits become more highly integrated, the elements that make up the circuits become smaller. The basic method for miniaturizing active elements such as transistors is to reduce all dimensions of the element at a fixed ratio, which is called the scaling law.

絶縁ゲート型電界効果トランジスタ(以下、MOS F
 ET)にスケール則を適用する場合、平面的に示され
る寸法を変更するだけでなく、垂直断面で示される寸法
も同様に変更されるので、ゲート絶縁膜の厚さも200
人程程度薄いものとなり、絶縁耐圧の余裕が乏しい状況
が生じている。
Insulated gate field effect transistor (hereinafter referred to as MOS F)
When applying the scale law to ET), not only the dimensions shown in a plane are changed, but also the dimensions shown in a vertical section are changed as well, so the thickness of the gate insulating film is also 200 mm.
It has become as thin as a human being, creating a situation where there is little margin for dielectric strength.

今日では、プロセス技術の進歩によってゲート絶縁膜の
特性が向上し、通常の動作時に絶縁破壊の生じることは
殆ど無くなったが、集積回路(以下、IC)の製造工程
中、イオン注入処理に於いてゲート絶縁膜が破壊される
問題が、該皮膜の薄化に伴って生じている。この種の故
障は、当初の動作試験で正常であっても、使用中に経時
的に発生することが多く、良品/不良品の判別が困難で
ある。
Nowadays, advances in process technology have improved the characteristics of gate insulating films, and dielectric breakdown almost no longer occurs during normal operation. The problem of destruction of the gate insulating film has arisen as the film becomes thinner. This type of failure often occurs over time during use even if the product is normal in the initial operation test, making it difficult to distinguish between good and defective products.

〔従来の技術〕[Conventional technology]

MO3型ICの中、nチャネルとpチャネルの両種のM
OSFETを備えるCMO3型O3の製造では、ポリ5
iFJのゲート電極が形成された後、2回のイオン注入
によってトランジスタのS/D領域が形成される。この
イオン注入工程が第3図(a) 、 (b)に示されて
おり、同図面を参照しながら該工程を説明する。
Among MO3 type ICs, both n-channel and p-channel M
In the manufacture of CMO3 type O3 with OSFET, poly5
After the gate electrode of the iFJ is formed, the S/D region of the transistor is formed by two ion implantations. This ion implantation step is shown in FIGS. 3(a) and 3(b), and will be described with reference to the same drawings.

該図面はSi基板lの垂直断面を示す模式図であるが、
基板はp型で、n型ウェル2とポリSiのゲート電極3
が形成済であり、これに図示の如くイオン注入が行われ
てMOS F ETが形成される。5はフィールド酸化
膜である。
The drawing is a schematic diagram showing a vertical cross section of the Si substrate l,
The substrate is p-type, with an n-type well 2 and a poly-Si gate electrode 3.
has already been formed, and ion implantation is performed thereon as shown in the figure to form a MOSFET. 5 is a field oxide film.

最初、n型ウェル領域がフォトレジスト7(以下、レジ
スト)でマスクされ、例えば加速電圧60KeVでドー
ズ量I XIO”cm−”程度にAs”がイオン注入さ
れる。ゲート電極とフィールド酸化膜がマスクとなり、
n″のS / D SI域6aが形成される。この状態
が第3図(a)に示されている。なお、注入されたイオ
ンの押し込みと活性化のための熱処理も当然行われるが
、煩瑣にわたるのを避けるため、以下、この種の熱処理
工程の説明は省略する。
First, the n-type well region is masked with a photoresist 7 (hereinafter referred to as resist), and As is ion-implanted at an acceleration voltage of 60 KeV and a dose of about IXIO cm-.The gate electrode and field oxide film are masked. Then,
An S/D SI region 6a of "n" is formed. This state is shown in FIG. In order to avoid redundancy, a description of this type of heat treatment process will be omitted below.

次に同図(1))のように、形成済のnチャネル・トラ
ンジスタ領域をレジスト7でマスクして例えばB4をイ
オン注入すると、n型ウェルにp゛のS/ D Sff
域6bが形成されてpチャネル・トランジスタが出来上
がる。この注入条件は、例えば加速電圧12KeV程度
、ドーズ量I XIOlscm−”程度である。なお、
B゛注入代えてBF+或いはBF、”を注入することも
行われるが、その場合の注入条件もBoに換算して上記
の程度になるよう設定される。
Next, as shown in (1) of the same figure, the formed n-channel transistor region is masked with a resist 7 and ions of, for example, B4 are implanted.
Region 6b is formed to create a p-channel transistor. The conditions for this implantation are, for example, an acceleration voltage of about 12 KeV and a dose of about IXIOlscm-''.
In place of B' injection, BF+ or BF,'' may be injected, but the injection conditions in that case are also set to the above level in terms of Bo.

これ等のイオン注入工程では高濃度イオン注入が行われ
るが、その際の静電気による悪影響が問題となっている
。即ち、レジストのような高誘電率皮膜にイオン線照射
されると、電荷の蓄積(チャージアップ)が生じ、蓄積
された電荷が近くの導電体に向けて放電されることが起
こるのである。
In these ion implantation processes, high-concentration ion implantation is performed, but the negative effects of static electricity during this process pose a problem. That is, when a high dielectric constant film such as a resist is irradiated with an ion beam, charge accumulation (charge-up) occurs, and the accumulated charge is discharged toward a nearby conductor.

放電を受ける導電体がポリStゲート電極或いはその延
長部であると、ゲート絶縁膜に高電界が印加されて絶縁
破壊が生じる。
If the conductor receiving the discharge is the polySt gate electrode or its extension, a high electric field will be applied to the gate insulating film, causing dielectric breakdown.

かかる事態の発生を抑制するため、レジストに被覆され
る面積を可能な限り減少させ、レジスト膜上の蓄積電荷
量を減らすことが行われている。
In order to suppress the occurrence of such a situation, efforts are being made to reduce the area covered by the resist as much as possible to reduce the amount of charge accumulated on the resist film.

第3図の例では、反対導電型の素子が形成される領域だ
けをレジスト膜で覆ってイオン注入を行っている。
In the example shown in FIG. 3, ion implantation is performed while covering only the region where an element of the opposite conductivity type is to be formed with a resist film.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第3図の工程の如く、反対導電型素子領域のみをマスク
してイオン注入を行うと、ポリStゲート電極を金属配
線に接続するためのゲート・コンタクト形成部4には、
n型及びp型の両種のイオンが注入されることになる。
When ion implantation is performed while masking only the element region of the opposite conductivity type as in the process shown in FIG.
Both n-type and p-type ions will be implanted.

第2図はCMO3の素子形状を例示する平面図であるが
、該図に示されるようにポリSiのゲート電極3は素子
領域外に延長され、該延長部に設けられたコンタクト形
成部4で金属配線に接続される。
FIG. 2 is a plan view illustrating the element shape of CMO3, and as shown in the figure, the poly-Si gate electrode 3 is extended outside the element area, and the contact forming portion 4 provided in the extended portion is Connected to metal wiring.

上記工程に於ける2回のイオン注入のドーズ量が近似し
ているため、両種の不純物がポリSt内で補償し合って
その比抵抗を高くし、金属配線への接続抵抗を増加させ
る。そのためICの特性が不安定になり、不良品の発生
をもたらす。
Since the doses of the two ion implantations in the above process are similar, both types of impurities compensate each other within the polySt, increasing its specific resistance and increasing the connection resistance to the metal wiring. As a result, the characteristics of the IC become unstable, resulting in the production of defective products.

本発明の目的は、同一基板に2種のMOSFETを形成
するためのイオン注入よってポリSiのコンタクト抵抗
を高めることのないCMO3型O3の製造方法を提供す
ることである。
An object of the present invention is to provide a method for manufacturing a CMO3 type O3 without increasing the contact resistance of poly-Si due to ion implantation for forming two types of MOSFETs on the same substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するため、本発明の半導体装置の製造
方法では 半導体基板に絶縁ゲート型電界効果トランジスタを形成
する工程の中、 前記トランジスタ形成領域の一部をマスクして第1の導
電型の不純物をイオン注入する工程または前記トランジ
スタ形成領域の他の一部をマスクして第2の導電型の不
純物をイオン注入する工程の少なくも一方に於いて、 前記トランジスタのポリSiゲート電極の配線金属層に
接続する部分には前記イオン注入が行われないように処
理される。
In order to achieve the above object, in the method for manufacturing a semiconductor device of the present invention, during the step of forming an insulated gate field effect transistor on a semiconductor substrate, a part of the transistor formation region is masked to form a first conductivity type field effect transistor. In at least one of the step of ion-implanting an impurity or the step of ion-implanting a second conductivity type impurity while masking another part of the transistor formation region, the wiring metal of the poly-Si gate electrode of the transistor is The portions connected to the layers are treated so that the ion implantation is not performed.

〔作 用〕[For production]

ポリSi層のゲート・コンタクト形成部にイオンを注入
しないためには、例えば該部分をレジストで被覆するこ
とが行われる。少なくも一方のイオン注入が行われなけ
れば、補償による高抵抗化は生じない。また、コンタク
ト形成部のような微小領域だけレジスト面積が増加して
も、ゲート酸化膜の絶縁破壊が有意な程度に増えること
はない。
In order to prevent ion implantation into the gate contact forming portion of the poly-Si layer, for example, this portion is coated with a resist. Unless at least one of the ion implantations is performed, the resistance will not increase due to compensation. Further, even if the resist area increases only in a minute region such as a contact forming portion, the dielectric breakdown of the gate oxide film does not significantly increase.

〔実施例〕〔Example〕

第1図は本発明実施例の工程を模式的に示す図であって
、同図(a)及びい)は該工程の第1段階を示す平面図
及び断面図、同図(C)は同工程の第2段階を示す断面
図である。以下、これ等の図面を参照しながら実施例の
工程を説明する。なお、第1図に付された各部分の符号
が意味するところは、断りの無い限り第3図と同じであ
る。
FIG. 1 is a diagram schematically showing the process of an embodiment of the present invention, and FIGS. FIG. 3 is a cross-sectional view showing the second stage of the process. Hereinafter, the steps of the embodiment will be described with reference to these drawings. Note that the meanings of the reference numerals of each part in FIG. 1 are the same as in FIG. 3 unless otherwise specified.

同図(a)及び(b)の工程は、従来技術を示す第3図
(a)の工程に対応する。p型St基板1にはn型ウェ
ル2とフィールド酸化膜5が準備されており、ポリSi
層がパターニングされてゲート電極3と該電極のコンタ
クト形成部4が作られている。
The steps shown in FIGS. 3(a) and 3(b) correspond to the steps shown in FIG. 3(a) showing the prior art. An n-type well 2 and a field oxide film 5 are prepared on a p-type St substrate 1, and a poly-Si
The layer is patterned to create a gate electrode 3 and contact formations 4 for the electrode.

該工程でもn型ウェル領域をレジスト7aでマスクして
As”のイオン注入が行われているが、従来技術との相
違点は、実施例ではウェル領域の他にコンタクト形成部
もレジスト7aでマスクされていることである。
In this process as well, As'' ion implantation is performed with the n-type well region masked with the resist 7a, but the difference from the conventional technique is that in the embodiment, in addition to the well region, the contact formation portion is also masked with the resist 7a. This is what is being done.

続く同図(b)の工程でも同様に、コンタクト形成部4
がレジスト7bでマスクされて、B“のイオン注入が行
われる。以上2度のイオン注入に於けるドーズ量は従来
技術と同じである。
Similarly, in the subsequent step shown in FIG.
is masked with a resist 7b, and ion implantation of B'' is performed.The doses in the above two ion implantations are the same as in the prior art.

ポリSiゲート電極の不純物ドープは、CVD法によっ
てポリSi層を形成する時に、原料ガスに不純物原料を
添加して行うのが通常であり、上記実施例ではコンタク
ト形成部は何れのイオン注入でもマスクされているが、
本来含有されている不純物とは反対導電型のイオンの注
入だけを防止すればよいのであるから、該当するイオン
注入工程だけコンタクト形成部のマスクを設けてもよい
Impurity doping for the poly-Si gate electrode is usually done by adding impurity raw materials to the raw material gas when forming the poly-Si layer by the CVD method. Although it has been
Since it is only necessary to prevent the implantation of ions of a conductivity type opposite to that of the originally contained impurities, a mask may be provided for the contact forming portion only in the corresponding ion implantation step.

〔発明の効果〕〔Effect of the invention〕

従来技術の如く、ポリSi層に多種のイオンが注入され
る場合、例えば2μmφの接続電極の平均的なコンタク
ト抵抗の値が約200Ωであるのに比べ、本発明ではそ
れが約50Ωに抑えられる。
When various types of ions are implanted into the poly-Si layer as in the conventional technology, for example, the average contact resistance value of a 2 μm diameter connection electrode is about 200Ω, but in the present invention, it is suppressed to about 50Ω. .

このように本発明によれば、ポリSi層と金属配線の接
続抵抗の増加を抑制することができるので、CMO3型
O3の不良発生率が低減することになる。
As described above, according to the present invention, it is possible to suppress an increase in the connection resistance between the poly-Si layer and the metal wiring, thereby reducing the failure rate of CMO3 type O3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例の工程を示す模式図、 第2図はCMO3の素子を例示する平面図、第3図は従
来技術の工程を示す模式図 であって、図に於いて 1はSi基板、 2はn型ウェル、 3はゲート電極、 4はゲート電極のコンタクト形成部、 5はフィールド酸化膜、 6.6a、6bはS / D Off域、7、7a、 
7bはレジスト である。 実施例の工程を示す模式図 CMOSの素子形状を例示する図 第 図 従来技術の工程を示す模式図
Fig. 1 is a schematic diagram showing the process of the embodiment, Fig. 2 is a plan view illustrating a CMO3 element, and Fig. 3 is a schematic diagram showing the process of the conventional technology, in which 1 is a Si substrate. , 2 is an n-type well, 3 is a gate electrode, 4 is a contact formation part for the gate electrode, 5 is a field oxide film, 6.6a, 6b are S/D Off regions, 7, 7a,
7b is a resist. Schematic diagram illustrating the process of an example Diagram illustrating the shape of a CMOS element Schematic diagram illustrating the process of the prior art

Claims (1)

【特許請求の範囲】 半導体基板に絶縁ゲート型電界効果トランジスタを形成
する工程の中、 前記トランジスタ形成領域の一部をマスクして第1の導
電型の不純物をイオン注入する工程または前記トランジ
スタ形成領域の他の一部をマスクして第2の導電型の不
純物をイオン注入する工程の少なくも一方に於いて、 前記トランジスタのポリSiゲート電極の配線金属層に
接続する部分には前記イオン注入を行わないことを特徴
とする半導体装置の製造方法。
[Claims] In the step of forming an insulated gate field effect transistor on a semiconductor substrate, a step of ion-implanting impurities of a first conductivity type while masking a part of the transistor formation region or the transistor formation region In at least one of the steps of ion-implanting a second conductivity type impurity while masking the other part of the transistor, the ion implantation is performed on a portion of the poly-Si gate electrode of the transistor connected to the wiring metal layer. A method for manufacturing a semiconductor device, characterized in that:
JP1207267A 1989-08-10 1989-08-10 Method for manufacturing semiconductor device Expired - Fee Related JP2805875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1207267A JP2805875B2 (en) 1989-08-10 1989-08-10 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1207267A JP2805875B2 (en) 1989-08-10 1989-08-10 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0371625A true JPH0371625A (en) 1991-03-27
JP2805875B2 JP2805875B2 (en) 1998-09-30

Family

ID=16536966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1207267A Expired - Fee Related JP2805875B2 (en) 1989-08-10 1989-08-10 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2805875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589159A2 (en) * 1992-09-24 1994-03-30 Motorola, Inc. Method for contacting a semiconductor device
JP2005322730A (en) * 2004-05-07 2005-11-17 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2009524221A (en) * 2006-01-17 2009-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Structure and method for landing pad of MOSFET gate electrode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207073A (en) * 1985-03-12 1986-09-13 Seiko Epson Corp Manufacture of active matrix substrate
JPH01165114A (en) * 1987-12-21 1989-06-29 Nec Corp Semiconductor device
JPH02164061A (en) * 1988-12-19 1990-06-25 Mitsubishi Electric Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207073A (en) * 1985-03-12 1986-09-13 Seiko Epson Corp Manufacture of active matrix substrate
JPH01165114A (en) * 1987-12-21 1989-06-29 Nec Corp Semiconductor device
JPH02164061A (en) * 1988-12-19 1990-06-25 Mitsubishi Electric Corp Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0589159A2 (en) * 1992-09-24 1994-03-30 Motorola, Inc. Method for contacting a semiconductor device
EP0589159A3 (en) * 1992-09-24 1994-11-09 Motorola Inc Method for contacting a semiconductor device.
JP2005322730A (en) * 2004-05-07 2005-11-17 Renesas Technology Corp Semiconductor device and manufacturing method therefor
JP2009524221A (en) * 2006-01-17 2009-06-25 インターナショナル・ビジネス・マシーンズ・コーポレーション Structure and method for landing pad of MOSFET gate electrode

Also Published As

Publication number Publication date
JP2805875B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US5532178A (en) Gate process for NMOS ESD protection circuits
US5516717A (en) Method for manufacturing electrostatic discharge devices
US5783850A (en) Undoped polysilicon gate process for NMOS ESD protection circuits
JPH08222645A (en) Method for forming lightly doped drain region
US6803285B2 (en) Method of fabricating dual threshold voltage n-channel and p-channel mosfets with a single extra masked implant operation
JPS63314868A (en) Manufacture of mos semiconductor device
US5416038A (en) Method for producing semiconductor device with two different threshold voltages
JPH09102550A (en) Lddcmos formation
JPH0730107A (en) High voltage withstand transistor and its manufacture
JPH0371625A (en) Manufacture of semiconductor device
US6027965A (en) Method of manufacturing an integrated circuit with MOS transistors having high breakdown voltages, and with precision resistors
JPS62262462A (en) Semiconductor device
JPH05136405A (en) Semiconductor device
JP2001217321A (en) Semiconductor device and its manufacturing method
JPH0232562A (en) Manufacture of cmos semiconductor device
JPS60160168A (en) Manufacture of mos semiconductor device
JPS63114129A (en) Manufacture of semiconductor device
JPH09260590A (en) Semiconductor device and manufacture thereof
JPH0521368A (en) Manufacture of semiconductor device
JPH0621094A (en) Manufacture of semiconductor device
JPH02164061A (en) Semiconductor device
KR0131741B1 (en) Semiconductor memory device and manufacturing method thereof
JPH0364913A (en) Manufacture of semiconductor device
JPS634668A (en) Mos type semiconductor device
KR950021717A (en) Manufacturing method of high voltage semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees