JPH03170386A - High-speed plastic molding of ceramic - Google Patents

High-speed plastic molding of ceramic

Info

Publication number
JPH03170386A
JPH03170386A JP1307290A JP30729089A JPH03170386A JP H03170386 A JPH03170386 A JP H03170386A JP 1307290 A JP1307290 A JP 1307290A JP 30729089 A JP30729089 A JP 30729089A JP H03170386 A JPH03170386 A JP H03170386A
Authority
JP
Japan
Prior art keywords
zirconia
ceramic
processing
speed
transition metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1307290A
Other languages
Japanese (ja)
Other versions
JP2791403B2 (en
Inventor
Fumihiro Wakai
史博 若井
Taiji Kodama
児玉 泰治
Hiromichi Okamura
岡村 博道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Soda Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Nippon Soda Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Nippon Soda Co Ltd filed Critical Agency of Industrial Science and Technology
Priority to JP1307290A priority Critical patent/JP2791403B2/en
Publication of JPH03170386A publication Critical patent/JPH03170386A/en
Application granted granted Critical
Publication of JP2791403B2 publication Critical patent/JP2791403B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To carry out plastic processing at lower temperature than a conventional method and at high speed by sintering zirconia-based ceramic containing a transition metal at relatively low temperature and subjecting the zirconia- based ceramic to plastic molding. CONSTITUTION:Ceramic consisting essentially of zirconia of tetragonal system containing 0.1-5.0mol oxide of Mn, Fe, Co, Ni, Cu or Zn is subjected to plastic deformation at 1,000-1,450 deg.C in 1X10 deg./second to 5X10<-4>/second strain rate. The zirconia ceramic is obtained by adding a very small amount of a transition metal oxide to a zirconia solid solution containing Y2O3, etc., usually known as stress inducing strengthened type ceramic and sintering the solid solution at low temperature. The ratio of the zirconia component of tetragonal system is preferably >=60% in the ceramic in order to give sufficiently high-speed molding rate. Consequently, a composite ceramic material having >=60% content of zirconia component containing a transition metal can be subjected to high- speed processing.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジルコニアセラくツクスの高速塑性成形方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for high-speed plastic forming of zirconia ceramics.

〔従来の技術及び発明が解決しようとする課題〕高強度
セラξツクス、とくに部分安定化ジルコニアは他のセラ
コツクスにない高靭性を有するため、構造用セラ邑ツク
スとして機械部品等に使用され始めているが、用途上金
属性部材と同等以上の寸法精度を要求されている。しか
しながら、焼結過程での寸法変化が大きく、焼結後の後
加工を必要とする場合が多い。
[Prior art and problems to be solved by the invention] High-strength ceramics, especially partially stabilized zirconia, have high toughness that other ceramics do not have, so they are beginning to be used as structural ceramics in mechanical parts, etc. However, for purposes of use, dimensional accuracy equivalent to or higher than that of metallic members is required. However, dimensional changes during the sintering process are large, and post-processing after sintering is often required.

従って、焼結後にダイヤモンド工具や砥杭を用いる後加
工が施されるのであるがセラごツクスは通常難研削材料
であるため、この加工コストが製品全体のコストをさら
に高くするという問題点を抱えている。
Therefore, after sintering, post-processing using diamond tools and abrasive stakes is performed, but since Ceragox is usually a difficult-to-grind material, this processing cost further increases the overall cost of the product. ing.

こうした問題点を解決する手段の一つとして、正方晶系
ジルコニアを含む特定のセラzツクスを加熱下、応力を
加えて塑性変形させる威形方法が見いだされている。こ
の方法は、比較的簡便な操作で寸法精度の高い戒形体が
得られるという利点を有しているが、高速度での加工に
は高温加熱が必要であり、被加工物と加工材との反応や
、被加工セラミックスの粒成長がおこり易いという雛点
が存在している。
As one means to solve these problems, a method has been discovered in which a specific ceramic containing tetragonal zirconia is plastically deformed by applying stress under heating. This method has the advantage of being able to obtain a shaped body with high dimensional accuracy with a relatively simple operation, but high-temperature heating is required for high-speed processing, and the relationship between the workpiece and the workpiece is There is a point where reactions and grain growth of the ceramic to be processed are likely to occur.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、こうしたジルコニア系セラくツクス材料
の塑性加工方法の長所を維持しつつ加工速度を高める方
法を検討した結果、遷移金属を添加して比較的低濡で焼
結したジルコニアを用いることにより、従来より低温で
、しかも高速度で塑性加工が可能であることを見いだし
た。本発明は、このような知見に基づくものである。
The present inventors investigated a method to increase the processing speed while maintaining the advantages of the plastic processing method for zirconia-based ceramic materials, and as a result, the inventors used zirconia that was sintered with a relatively low wettability by adding transition metals. As a result, we have discovered that plastic working can be performed at lower temperatures and at higher speeds than conventional methods. The present invention is based on such knowledge.

即ち本発明は、正方晶系ジルコニアを主威分とし、遷移
金属(Mn.Cu,Fe,Co,Ni又はZn)の酸化
物を微量(0.1〜5.0モル%)含有する多結晶セラ
短ツクスを1000〜1450℃の加熱下で応力を加え
て高速度(歪速度1×10゜/see〜5 X 1 0
 −’/see )で翠性変形させることを特徴とする
セラミックスの塑性威形法に係わる。
That is, the present invention provides a polycrystalline material whose main component is tetragonal zirconia and which contains a trace amount (0.1 to 5.0 mol%) of an oxide of a transition metal (Mn, Cu, Fe, Co, Ni, or Zn). Stress is applied to the ceramic shorts under heating at 1000 to 1450°C, and the strain rate is 1 x 10°/see to 5 x 10
The present invention relates to a plastic shaping method for ceramics, which is characterized by green deformation at -'/see).

本威形法が適用出来るセラξツクスは、室温において正
方晶ジルコニアを含有し、かつ遷移金属(Mn,Cu,
Fe,Co,Ni又はZn)の酸化物を微量粒界に含有
する多結晶体からなるジルコニアセラごツクスである。
The ceramics to which this method can be applied contain tetragonal zirconia at room temperature and transition metals (Mn, Cu,
This is a zirconia ceramic made of polycrystalline material containing a small amount of oxides (Fe, Co, Ni, or Zn) at grain boundaries.

このようなジルコニアセラくツクスは通常応力誘起強化
型セラミックスとして知られているY203等を添加し
たジルコニア固溶体に、遷移金属酸化物を微量添加し低
温焼結することにより得られる。本正方晶系ジルコニア
或分は、充分高速な成形速度を得るためにはセラくツク
ス中に60体積%以上あることが望ましい。従って、遷
移金属を含むジルコニア戊分が60%以上の複合セラ珀
ックス材料でも高速加工が可能である。
Such zirconia ceramics are usually obtained by adding a small amount of a transition metal oxide to a zirconia solid solution to which Y203 or the like, which is known as a stress-induced strengthened ceramic, is added and sintering the mixture at a low temperature. In order to obtain a sufficiently high molding speed, it is desirable that the content of the present tetragonal zirconia be 60% by volume or more in the ceramics. Therefore, even a composite ceramic material containing 60% or more of zirconia containing a transition metal can be processed at high speed.

本発明方法では、まず、前記した遷移金属酸化物を含む
正方晶ジルコニア多結晶セラξツクスを1000〜14
50℃1好ましくは1100〜l400℃の温度で塑性
加工する。加工温度が1000℃を下回ると高速で充分
に塑性変形させることができず、一方1450℃を上回
るとジルコニアの粒或長が顕著となり、塑性加工による
戒形体の特性が大幅に低下するので好ましくない。
In the method of the present invention, first, tetragonal zirconia polycrystalline ceramics containing the above-mentioned transition metal oxide
Plastic working is carried out at a temperature of 50°C, preferably 1100 to 400°C. If the processing temperature is less than 1000°C, sufficient plastic deformation cannot be achieved at high speed, while if it exceeds 1450°C, the length of the zirconia grains will become noticeable and the properties of the shaped body produced by plastic working will be significantly reduced, which is not preferable. .

尚、本発明では、塑性変形とは、加工部分が均一に変形
する超堂性変形、及び加工部分が不均一に変形する型性
変形の両者を含むものとする。
In the present invention, the term "plastic deformation" includes both hypertransforming deformation in which the processed portion deforms uniformly and mold deformation in which the processed portion deforms non-uniformly.

塑性加工における加工速度は、通常のジルコニアセラご
ツクスに比較して速くすることが可能であり、加工温度
、セラミックスの結晶粒径、ジルコニア含量遷移金属酸
化物の添加量、加工方法等によって一様ではないが、通
常のジルコニアセラミックスの加工速度の5〜30倍の
速さでの加工が可能である。その場合加える応力は結晶
粒界で粒界すべりを起こすことが出来、かつ破壊をおこ
さない100.MPa以上の応力が必要である。例を挙
げると、結晶の平均粒径が0.2μmのMnO2添加(
0.3モル%)圧方晶ジルコニアを1300℃で引っ張
り加工する場合、5XIO−’〜5×10” / s 
e c程度の歪速度での塑性加工が可能である。
The processing speed in plastic processing can be faster than that of ordinary zirconia ceramics, and it is uniform depending on processing temperature, ceramic grain size, zirconia content, amount of transition metal oxide added, processing method, etc. However, it is possible to process at a speed 5 to 30 times faster than normal zirconia ceramics. In this case, the applied stress can cause grain boundary sliding at the grain boundaries and does not cause fracture. A stress of MPa or more is required. For example, the addition of MnO2 with an average crystal grain size of 0.2 μm (
0.3 mol%) When tensile processing of piezogonal zirconia at 1300°C, 5XIO-'~5x10''/s
Plastic working is possible at a strain rate of about ec.

遷移金属の添加量を増やしたり、加工温度を上げるとさ
らに加工速度を速くすることが出来る。上記した加工方
法により与えられる塑性変形量は、セラごツクスの種類
や加工条件、形状等により異なるが、引っ張り加工では
変形前の試料の2倍以上に伸ばすことも可能である。
The processing speed can be further increased by increasing the amount of transition metal added or raising the processing temperature. The amount of plastic deformation given by the above-described processing method varies depending on the type of ceramic, processing conditions, shape, etc., but by tensile processing, it is possible to elongate the sample to more than twice that of the sample before deformation.

上記した遷移金属酸化物を含む正方品系ジルコニアセラ
くツクスが梨性威形できるのは、その結晶粒径が微細で
あり、かつ対称性が良いこと、並びに遷移金属原子が粒
界に偏折し、その粒界構造が粒界すべりによる塑性流動
に敵しているため、上記した加工温度で粒界すべりによ
る塑性流動に適しているため、上記した加工温度で結晶
粒界に塑性流動が生じ易く、また加工により生じた残留
応力を正方晶ジルコニアの応力誘起変態強化機構によっ
て保持できるために成形体が破壊しにくいためと考えら
れる。
The reason why the tetragonal zirconia ceramics containing the above-mentioned transition metal oxides can have a pear shape is that the crystal grain size is fine and has good symmetry, and the transition metal atoms are polarized at the grain boundaries. Because its grain boundary structure is hostile to plastic flow due to grain boundary slip, it is suitable for plastic flow due to grain boundary slip at the above processing temperature, so plastic flow is likely to occur at grain boundaries at the above processing temperature. It is also thought that this is because the residual stress generated by processing can be retained by the stress-induced transformation strengthening mechanism of tetragonal zirconia, making the molded body less likely to break.

[発明の効果] 本発明方法により、ジルコニア系セラ珈ツクスを高速で
塑性成形することができ、プレス、鍛造、押しだし、引
き抜き等の各種方法の加工効率が大幅に改善でき、経済
性の良好な加工が可能となる。
[Effects of the Invention] According to the method of the present invention, zirconia-based ceramics can be plastically formed at high speed, and the processing efficiency of various methods such as pressing, forging, extrusion, and drawing can be greatly improved, and the process is economically efficient. Processing becomes possible.

また、低温での加工が主体であるので加熱コスト(加熱
炉、電力等のエネルギー)が低くできるだけでなく、加
工に必要な或形用材料も安価な材料が使用できるので、
ジルコニア系セラ案ツクスの塑性加工が格段に容易とな
る。
In addition, since processing is mainly done at low temperatures, not only can heating costs (energy such as heating furnaces and electric power) be lower, but also cheaper materials can be used for certain shapes required for processing.
Plastic working of zirconia-based ceramics becomes much easier.

上記したごとく、本発明方法は極めて有用なセラミック
スの加工方法であり、各種機械部品等へのセラ藁ツクス
の利用範囲を大幅に拡大することが出来る。
As described above, the method of the present invention is an extremely useful method for processing ceramics, and can greatly expand the scope of use of ceramic straw for various mechanical parts.

〔実施例〕〔Example〕

以下、実施例、比較例を示して本発明を詳細に説明する
Hereinafter, the present invention will be explained in detail by showing Examples and Comparative Examples.

実施例−1. 共沈法で合或したYzOs含有ジルコニア粉末(比表面
積:15nf/g)に酢酸マンガンを0.3モル%添加
して1200℃で焼結した焼結体を試験材料に用いた。
Example-1. A sintered body obtained by adding 0.3 mol % of manganese acetate to YzOs-containing zirconia powder (specific surface area: 15 nf/g) synthesized by a coprecipitation method and sintering at 1200° C. was used as a test material.

焼結体のYzO’a含量は2.6モル%、グレインサイ
ズは0.2μm1焼結密度は6.05 g /cnlで
あった。
The YzO'a content of the sintered body was 2.6 mol%, the grain size was 0.2 μm, and the sintered density was 6.05 g/cnl.

この焼結体から51IIII+の立方体(表面粗さ2μ
m)を切り出し、表面を研磨したSjCの押し型を用い
て1400℃(空気中)で、或形速度0.5am/mi
n  (歪速度2. 7 X I O −3/sec 
)でプレス加工(加工圧: 5MPa)を行い、8分後
に署さI mmの薄板を得た。成形後の表面粗さは0.
1μmであった。
A 51III+ cube (surface roughness 2μ) was made from this sintered body.
m) was cut out using a SjC mold with a polished surface at 1400°C (in air) at a certain speed of 0.5 am/mi.
n (strain rate 2.7 X I O -3/sec
) was performed (processing pressure: 5 MPa), and after 8 minutes, a thin plate with a thickness of I mm was obtained. The surface roughness after molding is 0.
It was 1 μm.

比較例−1. 共沈法で合成した通常のジルコニア粉末(比表面積:1
5+n/g)を1400℃で焼結した。Y203含量は
2.6モル%、グレインサイズは0.3μm、焼結密度
は6.03g/cnlであった。
Comparative example-1. Ordinary zirconia powder synthesized by coprecipitation method (specific surface area: 1
5+n/g) was sintered at 1400°C. The Y203 content was 2.6 mol%, the grain size was 0.3 μm, and the sintered density was 6.03 g/cnl.

この焼結体から実施例−1と同じ試験片を切り出し、同
一温度、同一圧で同一サイズまで加工したところ、戒形
速度は0.05mm/mfn  (歪速度2. 7 X
 1 0−4/sec )で、成形加工に40分かかっ
た。
When the same test piece as in Example 1 was cut out from this sintered body and processed to the same size at the same temperature and pressure, the forming speed was 0.05 mm/mfn (strain rate 2.7
10-4/sec), and the molding process took 40 minutes.

実施例−2. 実施例1と同じ材料を用いて直径3M、長さ30帥の丸
棒を作成してテトスピースとした。この試験片を、14
00℃で加工速度3nwn/min  (2.7 X 
l O−”/sec)で引っ張り加工を行った結果、直
径1. 2 mm、長さ66帥の丸棒が11分で得られ
た。
Example-2. Using the same material as in Example 1, a round bar with a diameter of 3M and a length of 30 meters was made to serve as a Tetos piece. This test piece was
Machining speed 3nwn/min (2.7X
As a result of tensile processing at 1 O-''/sec), a round bar with a diameter of 1.2 mm and a length of 66 cm was obtained in 11 minutes.

比較例−2. 比較例1の材料を用いて実施例2と同じテストビースを
作威し、同じ加工を試みたが、回一条件では威形が困難
であったので、以下の条件に変更して加工を行った。加
工温度1450℃、加工速度0. 2 mm/min 
 ( 2. 7 X 1 0 −4/sec )で、加
工時間は165分であった。
Comparative example-2. The same test beads as in Example 2 were made using the material of Comparative Example 1, and the same processing was attempted, but it was difficult to form them under the one-time conditions, so processing was performed under the following conditions. Ta. Processing temperature: 1450°C, processing speed: 0. 2mm/min
(2.7 x 10-4/sec), and the processing time was 165 minutes.

実施例−3, 実施例1の材料を用いてサイズ1 5XI 5XIO閣
の板を作った。これを表面を研磨処理したSiC型で、
1400℃、加工速度1+n+n/min  (歪速度
1. 6 X 1 0−4/sec)でプレス加工を施
し、加工時間1分で厚さを9帥に加工した。この時の加
工前の表面粗さは0.8μm、加工後の表面粗さは0.
01μmであった。
Example 3 Using the materials of Example 1, boards of size 1, 5XI, and 5XIO were made. This is a SiC type with a polished surface.
Pressing was performed at 1400° C. and a processing speed of 1+n+n/min (strain rate 1.6×10−4/sec) to obtain a thickness of 9 layers in 1 minute. At this time, the surface roughness before processing was 0.8 μm, and the surface roughness after processing was 0.8 μm.
It was 01 μm.

比較例−3. 比較例1と同じ材料を用いて実施例3と同じ試験板を作
成し、実施例3と同し加工をおこなった。加工には以下
の条件変更が必要であった。
Comparative example-3. The same test plate as in Example 3 was created using the same material as in Comparative Example 1, and the same processing as in Example 3 was performed. The following condition changes were required for processing.

加工温度1450”C、加工速度0.05+nm/mi
n  (歪速度8. 3 X 1 0 −s/see 
) 、加工時間20分。
Processing temperature 1450"C, processing speed 0.05+nm/mi
n (strain rate 8.3 x 10 -s/see
), processing time 20 minutes.

9 ?施例−4。9 ? Example-4.

実施例1と同じ原料ジルコニア粉末(YzC)+のみ含
有)にAn■0,粉末を20wt%と炭酸マンガン0.
3モル%添加してI400℃で焼結した材料を用いて5
m+++の立方体を作った。この試験片を圧力5MPa
、加工温度1400℃でプレス戒形した結果、変形速度
0. 5 mm/min  (歪速度1. 7 X 1
 0 −3/see )で60%変形した。
The same raw material zirconia powder (containing only YzC) + as in Example 1) was mixed with 0 An■, 20 wt% powder, and 0.2% manganese carbonate.
5 using a material added with 3 mol% and sintered at 400°C.
I made a cube of m+++. This test piece was applied to a pressure of 5 MPa.
As a result of pressing at a processing temperature of 1400°C, the deformation rate was 0. 5 mm/min (strain rate 1.7 x 1
0 −3/see) and deformed by 60%.

比較例−4. 比較例1と同じジルコニア粉末にAA2 0.20 w
t%混合し、HIP処理して得た焼結体を用いて実施例
4と同しサイズの試験片を作成し、同一の加工を試みた
結果、以下の条件変更が必要であった。
Comparative example-4. AA2 0.20 w to the same zirconia powder as Comparative Example 1
A test piece of the same size as in Example 4 was prepared using a sintered body obtained by HIP-processing the sintered body mixed with t%, and the same processing was attempted. As a result, the following conditions were required to be changed.

加工温度1550℃、加工速度0.05mm/min 
 (歪速度1. 7 X 1 0 −4/sec )。
Processing temperature 1550℃, processing speed 0.05mm/min
(Strain rate 1.7 x 10-4/sec).

実施例1〜4と比較例1〜4の加工条件の対比結果を表
1に示す。
Table 1 shows the comparison results of the processing conditions of Examples 1 to 4 and Comparative Examples 1 to 4.

10 実施例−5. 実施例lと同じジルコニア原料粉末(y.03のみ含有
)に酢酸銅0.3モル%添加して1200℃で焼結した
材料を用いて実施例1と同じ試験片を作成した。
10 Example-5. The same test piece as in Example 1 was prepared using a material obtained by adding 0.3 mol % of copper acetate to the same zirconia raw powder (containing only y.03) as in Example 1 and sintering it at 1200°C.

この試験片を実施例1と回しプレス圧で加工したところ
、加工速度0. 6 mm/minで実施例1と同様の
加工が可能であった。
When this test piece was processed using the rotating press pressure as in Example 1, the processing speed was 0. The same processing as in Example 1 was possible at 6 mm/min.

実施例−6. 実施例1と同じジルコニア原料粉末に酢酸マンガンをl
モルー添加して1200℃で焼結した材料を用いて実施
例Iと同じ加工を行った結果、加工速度0.8mm/m
in加工速度が得られた。
Example-6. Adding l manganese acetate to the same zirconia raw material powder as in Example 1
As a result of performing the same processing as in Example I using a material sintered at 1200°C with the addition of mole, the processing speed was 0.8 mm/m.
In processing speed was obtained.

実施例−7. 実施例lと同じジルコニア原料粉末に酢酸亜鉛を0.3
モル%添加して焼結した材料を用いて実施例1の加工を
行った結果、実施例1の結果と同様な成形結果が得られ
た。
Example-7. 0.3 of zinc acetate was added to the same zirconia raw material powder as in Example 1.
As a result of processing in Example 1 using the material sintered with addition of mol %, the same molding results as in Example 1 were obtained.

実施例−8. 実施例lと同しジルコニア原料粉末に酢酸コバルトを0
.3モル%添加して焼結した材料を用いて実施例1の加
工を行った結果実施例1の結果と同様な或形結果が得ら
れた。
Example-8. Same as Example 1, 0 cobalt acetate was added to the zirconia raw material powder.
.. When the material of Example 1 was processed using the material sintered with 3 mol % added, certain results similar to those of Example 1 were obtained.

Claims (1)

【特許請求の範囲】[Claims]  Mn、Fe、Co、Ni、Cu又はZnの酸化物を0
.1〜5.0モル%含有する正方晶ジルコニアを主成分
とするセラミックスを1000〜1450℃の温度下で
、歪速度1×10°/sec〜5×10^−^4/se
cの範囲で塑性変形させることを特徴とするジルコニア
セラミックスの高速塑性成形法。
0 Mn, Fe, Co, Ni, Cu or Zn oxides
.. Ceramics whose main component is tetragonal zirconia containing 1 to 5.0 mol% are strained at a strain rate of 1 x 10°/sec to 5 x 10^-^4/sec at a temperature of 1000 to 1450°C.
A high-speed plastic forming method for zirconia ceramics characterized by plastically deforming within a range of c.
JP1307290A 1989-11-27 1989-11-27 High-speed plastic forming of ceramics Expired - Lifetime JP2791403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307290A JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307290A JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Publications (2)

Publication Number Publication Date
JPH03170386A true JPH03170386A (en) 1991-07-23
JP2791403B2 JP2791403B2 (en) 1998-08-27

Family

ID=17967354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307290A Expired - Lifetime JP2791403B2 (en) 1989-11-27 1989-11-27 High-speed plastic forming of ceramics

Country Status (1)

Country Link
JP (1) JP2791403B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002086184A1 (en) * 2001-04-16 2002-10-31 Nikko Materials Company, Limited Manganese alloy sputtering target and method for producing the same
US7229510B2 (en) 2001-04-16 2007-06-12 Nippon Mining & Metals, Co., Ltd. Manganese alloy sputtering target and method for producing the same
US7713364B2 (en) 2001-04-16 2010-05-11 Nippon Mining & Metals Co., Ltd. Manganese alloy sputtering target and method for producing the same

Also Published As

Publication number Publication date
JP2791403B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
US5122317A (en) Method of superplastically deforming zirconia materials
JPS6291480A (en) Ceramic formation
JP3401553B2 (en) Manufacturing method of transparent yttrium aluminum garnet sintered body by dry mixing method
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JPH03170386A (en) High-speed plastic molding of ceramic
JPH0460080B2 (en)
CN110723974A (en) High-hardness Sialon ceramic material and preparation method and application thereof
JP2805969B2 (en) Aluminum oxide based ceramics with high toughness and high strength
JPS63100055A (en) Alumina base ceramic for cutting tool and manufacture
JPS63236757A (en) Polycrystal ceramic product and manufacture
JPH01246342A (en) Supermagnetostrictive material and its manufacture
JP3350710B2 (en) Alumina-based superplastic ceramics
JP3837516B2 (en) Zirconia-based superplastic ceramics
JPH0878220A (en) Manufacture of hexagonal crystal system ferrite
JPS63185856A (en) Zirconia sintered formed body
JPH0687650A (en) Alumina-based sintered compact and its production
JPS63170262A (en) Manufacture of zr02-tic-sic base sintered body
JPS61174169A (en) Manufacture of high strength partially stabilized zirconia sintered body
JPH05116944A (en) Powdery raw material for producing injection-molded and sintered product
JP2805957B2 (en) Aluminum oxide based ceramic cutting tool with high strength and high toughness
SU833846A1 (en) Ceramic material
CN116477937A (en) Method for preparing fine-grain terbium-aluminum garnet-based magneto-optical ceramic
CN111590071A (en) Molybdenum-niobium alloy target material and preparation method thereof
JPH0829982B2 (en) Process for producing silicon carbide whisker reinforced zirconia ceramic composite
JP4497573B2 (en) Zirconia sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090619

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100619

Year of fee payment: 12