JPS63185856A - Zirconia sintered formed body - Google Patents

Zirconia sintered formed body

Info

Publication number
JPS63185856A
JPS63185856A JP62016375A JP1637587A JPS63185856A JP S63185856 A JPS63185856 A JP S63185856A JP 62016375 A JP62016375 A JP 62016375A JP 1637587 A JP1637587 A JP 1637587A JP S63185856 A JPS63185856 A JP S63185856A
Authority
JP
Japan
Prior art keywords
oxide
zirconia sintered
sintered body
ceramic raw
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62016375A
Other languages
Japanese (ja)
Other versions
JPH0511063B2 (en
Inventor
山名 一男
静夫 中村
卓二 吉村
稔正 真野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP62016375A priority Critical patent/JPS63185856A/en
Publication of JPS63185856A publication Critical patent/JPS63185856A/en
Publication of JPH0511063B2 publication Critical patent/JPH0511063B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はジルコニア焼結成形体に係り、更に詳細にはガ
スセンサ、焼料電池、酸素ポンプ等の固体電解質、刃物
等の日用品、エンジン等の機械部品に好適なジルコニア
焼結成形体に関する。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to zirconia sintered bodies, and more particularly to solid electrolytes such as gas sensors, sintered batteries, oxygen pumps, daily necessities such as cutlery, and machines such as engines. The present invention relates to a zirconia sintered body suitable for parts.

(従来の技術) 粘土を含むセラミックスは、塑性変形により容易に賦形
できる。また、ジルコニア等を主成分とする非可塑性の
セラミックスの場合にも有機結合剤を添加配合すること
により成形できる。しかし、これらの方法により製造さ
れた成形体は焼成時に変形するため、寸法、精度が要求
される場合には、後加工を施こし、修整する必要がある
(Prior Art) Ceramics containing clay can be easily shaped by plastic deformation. Furthermore, non-plastic ceramics containing zirconia or the like as a main component can also be molded by adding and blending an organic binder. However, since the molded bodies manufactured by these methods deform during firing, it is necessary to carry out post-processing and modification if dimensions and precision are required.

更に電子部品や機械部品の製造に広く用いられている加
圧成形を利用する方法もあるが、該加圧成形法では大量
生産や高速成形が可能である反面、均一に原料を充填す
るのが建かしく、高精度が要求される場合には、前記既
存法と同様、後加工により修整する必要がある。
Furthermore, there is a method that uses pressure forming, which is widely used in the production of electronic and mechanical parts, but while this pressure forming method allows mass production and high-speed molding, it is difficult to uniformly fill the raw materials. If high precision is required for the construction, it is necessary to correct it by post-processing as in the existing method.

更にまた、簡単な操作で、歪のない複雑な成形体を容易
に得る方法として、泥漿鋳込み成形法がある。しかし、
この鋳込み成形法は作業速度が遅(、量産性が劣る。更
に高強度で高密度な焼結体を作りにくいという問題があ
る。
Furthermore, there is a slurry casting method as a method for easily obtaining a complicated molded body without distortion with a simple operation. but,
This cast molding method has the problem of slow working speed (poor mass productivity) and difficulty in producing high-strength, high-density sintered bodies.

一方、成形と焼成を同時に行うホットプレス法やホット
アイソスタティックプレス法は焼結体の微構造の調整や
緻密化の促進を促すことができ、他の方法に比較し、比
較的短時間で、より低温で焼結が完成できるめで極めて
有効な手段である・しかし、複雑形状や薄物は困難であ
り、量産性がなく製品コストが高(なるという傾向があ
る・上述のように既存方法によりジルコニアを原料とし
て用い高強度で緻密な焼結成形体を製造しようとすると
、複雑形状や薄物の作製が困難であった・一方、複雑形
状や薄物を大量に作ることを目的にすると、高強度で緻
密な焼結体を作製できなかった。このように機械的強度
や緻密化と、複雑形状や薄物の作製との間には、二律相
反的な関係があった。
On the other hand, the hot press method and hot isostatic press method, which perform molding and firing at the same time, can adjust the microstructure of the sintered body and promote densification, and in a relatively short time compared to other methods. This is an extremely effective method as it allows sintering to be completed at a lower temperature. However, it is difficult to produce complex shapes and thin products, and it is not suitable for mass production and tends to result in high product costs. As mentioned above, existing methods When trying to manufacture high-strength, dense sintered bodies using sintered bodies as raw materials, it was difficult to produce complex shapes and thin objects. Thus, there was an antinomic relationship between mechanical strength and densification and the production of complex shapes and thin objects.

(発明が解決しようとする問題点) 本発明者らは、既存の方法が有する上記問題点に鑑み、
鋭意研究を重ねた結果本発明を完成したものであって、
その目的とするところは、機械的強度及び緻密性に優れ
たジルコニア焼結成形体を提供するにある・他の目的は
上記特性に加えて、複雑な形状或いは薄物状のジルコニ
ア焼結成形体を提供するにある。更に他の目的並び効果
は以下の説明から明らかにされよう。
(Problems to be solved by the invention) In view of the above-mentioned problems of existing methods, the present inventors have
The present invention was completed as a result of extensive research, and
The purpose is to provide a zirconia sintered body with excellent mechanical strength and density.In addition to the above characteristics, the other purpose is to provide a zirconia sintered body with a complex shape or thin shape. It is in. Further objects and effects will become apparent from the description below.

(問題点を解決するための手段) 上述の目的は、酸化ジルコニウム(4)と、酸化イツト
ニウム、酸化セリウム、酸化カルシウム及び酸化マグネ
シウムの群から選ばれた少なく共1種の安定化剤の)と
、を主成分とするセラミック原料よりなる仮焼成形物又
は粉体乃至粉体成形物を、単斜晶を殆んど増加せしめろ
ことなく高温下で応力を負荷し、塑性加工してなるジル
コニア焼結成形体により達成される〇 本発明に係るセラミック原料は酸化ジルコニウム<zr
o。)に酸化イツトリウム(Y2O3) e酸化カルシ
ウム(Cab)、酸化マグネシウム(MgO)  又は
酸化セリウム(CeO2)の群から選ばれた安定化剤C
B)を添加配合したものを主成分とするものであるが通
常セラミック原料に添加される酸化アルミニウム、酸化
硅素、酸化ビスマスに代表されろ焼結助剤等の添加物、
或いは8C、La 、 PI”、Nd 、 Pffl。
(Means for Solving the Problems) The above-mentioned object is to provide a solution to the problem by combining zirconium oxide (4) and at least one stabilizer selected from the group of ythonium oxide, cerium oxide, calcium oxide and magnesium oxide. Zirconia is produced by plastically working a calcined molded product or powder or powder molded product made of a ceramic raw material mainly composed of The ceramic raw material according to the present invention achieved by the sintered compact is zirconium oxide <zr
o. ) with a stabilizer C selected from the group of yttrium oxide (Y2O3), calcium oxide (Cab), magnesium oxide (MgO) or cerium oxide (CeO2).
The main component is a mixture of B), but additives such as sintering aids such as aluminum oxide, silicon oxide, and bismuth oxide, which are usually added to ceramic raw materials,
Or 8C, La, PI”, Nd, Pffl.

8m、Eu、Gd、Tb、DY、Ho、Er、Tm、Y
b及びLu等の希土類の酸化物等を少量宛適宜添加配合
してもよいこというまでもない・酸化ジルコニウム(4
)に配合する安定化剤の)の量は、目的物であるジルコ
ニア焼結成形体に要求されろ性質、配合する安定化剤(
B)の種類等により異なり一概に規定できないが、高々
15モル%程度に止めるのが好ましい。酸化ジルコニウ
ムに配合する安定化剤の)の好ましい範囲を示すと、酸
化イツトリウムでは2.0〜10.0モル%、同様に酸
化カルシウム5.0〜15.0モル%、flマグネシウ
ム5.0〜15.0モル%、酸化セリウム7.0〜16
.0モル%程度である。これらセラミック原料の調製は
公知の方法から適宜選択して行えばよいが、その方法と
しては乾式法と湿式法に大別される。乾式法としては例
えば酸化ジルコニウムと酸化イツトリウム等の安定化剤
の粉末を所定量ボールミル等を用いて混合、粉砕した後
熱処理を施し、引き続いて機械的に粉砕する等の方法が
ある。また、湿式法としては、例えば次の様な方法が挙
げられる。
8m, Eu, Gd, Tb, DY, Ho, Er, Tm, Y
It goes without saying that rare earth oxides such as b and Lu may be added and blended in small amounts as appropriate.・Zirconium oxide (4
The amount of stabilizer () to be added to () depends on the properties required of the target zirconia sintered body, and the amount of stabilizer () to be added to ().
It varies depending on the type of B) and cannot be absolutely specified, but it is preferable to limit it to about 15 mol% at most. Preferred ranges of stabilizers () to be added to zirconium oxide are 2.0 to 10.0 mol% for yttrium oxide, 5.0 to 15.0 mol% for calcium oxide, and 5.0 to 5.0 mol% for fl magnesium. 15.0 mol%, cerium oxide 7.0-16
.. It is about 0 mol%. These ceramic raw materials may be prepared by appropriately selecting from known methods, and these methods are broadly classified into dry methods and wet methods. As a dry method, there is a method in which, for example, a predetermined amount of powder of a stabilizer such as zirconium oxide and yttrium oxide is mixed using a ball mill, pulverized, heat treated, and then mechanically pulverized. Furthermore, examples of the wet method include the following methods.

(1)  :t+シ塩化ジルコニウム等の水溶性ジルコ
ニウム塩と、塩化イツトリウム等の安定化剤となる金属
の水溶性塩との混合水溶液にアンモニア等の沈殿剤を添
加し、ジルコニウムとイツトリウム等の安定化剤との水
酸化物のゾルを生成させた後が過、洗浄、乾燥し、引き
続いて加熱処理する方法。
(1): A precipitant such as ammonia is added to a mixed aqueous solution of a water-soluble zirconium salt such as zirconium chloride and a water-soluble salt of a metal as a stabilizer such as yttrium chloride to stabilize the zirconium and yttrium. A method in which a sol of hydroxide is produced with a chemical agent, which is then filtered, washed, dried, and then heat-treated.

(共沈法) (2)  上記共沈法と同様の混合水溶液を加熱し、水
酸化物等のゾルを生成せしめた後、濾過、洗浄、乾燥し
、引き続いて加熱処理する方法。(加水分解法) (3)  ジルコニウムイソプロポキシド等のジルコニ
ウムのアルコキシドと、イツトリウムイソプロポキシド
等の安定化剤を構成する金属元素のアルコキシドとを、
有機溶媒中に混合溶解し、該溶液に水を添加してアルコ
キシドを加水分解してゾルを生成せしめた後、濾過、洗
浄、乾燥し、引き続いて加熱処理する方法。(アルコキ
シド法)本発明に適用するセラミック原料は好ましくは
、柔 粒径1μ以下、できるだけ微粒子であるのが好ましい。
(Co-precipitation method) (2) A method in which a mixed aqueous solution similar to the above-mentioned coprecipitation method is heated to generate a sol of hydroxide, etc., followed by filtration, washing, drying, and subsequent heat treatment. (Hydrolysis method) (3) A zirconium alkoxide such as zirconium isopropoxide and a metal element alkoxide constituting a stabilizer such as yttrium isopropoxide,
A method of mixing and dissolving in an organic solvent, adding water to the solution to hydrolyze the alkoxide to produce a sol, followed by filtration, washing, drying, and subsequent heat treatment. (Alkoxide method) The ceramic raw material used in the present invention preferably has a soft particle size of 1 μm or less, and is preferably as fine as possible.

そしてこの様な観点からすれば、上記セラミック原料の
調製方法としては、粒子が微細で且つ粒径分布が狭く、
均一な組成のものが得られる湿式法が好適である・ 次にこの様にして調製したセラミック原料は、塑性加工
を施すための前駆体の製造に供せられる。
From this point of view, the method for preparing the above ceramic raw material is one in which the particles are fine and the particle size distribution is narrow.
A wet method is preferred since it provides a product with a uniform composition. Next, the ceramic raw material prepared in this way is used to produce a precursor for plastic working.

粉末を前駆体とする場合、セラミック原料をそのまま用
いてもよいが、流動性に優れた100〜仝 200μ径の顆粒状として用いるのが好ましい。
When a powder is used as a precursor, the ceramic raw material may be used as it is, but it is preferably used in the form of granules with a diameter of 100 to 200 μm, which have excellent fluidity.

顆粒はポリビニルアルコール、ヒドロキシエチルセルロ
ース等の水溶性樹脂を含有するセラミック原料のスラリ
ーをスプレードライヤー等を用いて調製することが出来
る。
The granules can be prepared by using a spray dryer or the like from a slurry of ceramic raw materials containing a water-soluble resin such as polyvinyl alcohol and hydroxyethyl cellulose.

粉末成形体を前駆体として使用する場合、前記の顆粒を
プレスする加圧成型法、セラミック原料のスラリーを石
膏等の鋳型に注入する鋳込成型法、有機バインダー、老
ラミック原料及び水より成る可塑性混合物を口金より押
し出す押出成型法、セラミック原料をそのまま又は顆粒
をゴム型に充填し、圧力を等方的に加圧する静水圧プレ
ス成型法、熱可塑性樹脂とセラミック原料との混合物を
加熱状態で金型に押し出す射出成型法、樹脂バインダー
とセラミック原料との混合物をドクターブレード等によ
り薄膜化するシート成型法等、公知の方法から適宜の方
法を選定し粉末成形体を調製する・仮焼成形物を前駆体
として使用する場合、前記粉末成形体を常圧にて600
〜1200°Cの温度で熱処理することにより仮焼成形
物を調製する。
When a powder compact is used as a precursor, a pressure molding method in which the above-mentioned granules are pressed, a casting molding method in which a slurry of ceramic raw material is poured into a mold made of gypsum, etc., and a plastic molding method consisting of an organic binder, aged ramic raw material, and water. An extrusion molding method in which the mixture is extruded through a die; a hydrostatic press molding method in which the ceramic raw material is filled as it is or granules are filled into a rubber mold and pressure is applied isotropically; Prepare a powder compact by selecting an appropriate method from known methods, such as injection molding by extruding into a mold, or sheet molding by forming a mixture of a resin binder and ceramic raw material into a thin film using a doctor blade, etc. ・Prepare a calcined compact When used as a precursor, the powder compact is heated to 600 ml at normal pressure.
A calcined molded product is prepared by heat treatment at a temperature of ~1200°C.

通常熱処理は大気雰囲気等の酸化性雰囲気、窒素雰囲気
等の不活性雰囲気や真空雰囲気にて実施するが、含有さ
れる有機物が焼却除去される酸化性雰囲気が有利である
。熱処理は電気炉、ガス炉、重油炉等の通常使用される
高温炉を適宜選択使用して実施する。通常の焼結体は、
パラフィン等の有機バインダーを使用して成形した後、
1500℃程度の高温で焼成するため塑性抵抗が大きく
、旋盤による切削加工が極めて困難であった。しかし、
上記仮焼成物の場合には、旋盤による切削加工が容易で
あるため、仮焼成形物を切削して、おおよその形状に賦
形し後続する塑性加工で必要な部分を延展することによ
り簡単な操作で能率よく複雑な形状の製品を製造できる
利点がある。更に前駆体として焼結成形体を使用すると
、後続する塑性加工工程において、粒子が成長し、正方
晶から単斜晶への転移が生じやすくなり、単斜晶の含有
率が増加するが、本発明の様に前駆体として、前記セラ
ミック原料よりなる仮焼成形物又は粉体乃至粉体成形物
を使用すると、粒子成長も小さく正方晶から単斜晶への
転移に伴なう単斜晶の増加は僅少である。かかる現象に
より、塑性加工による高強度化が進行するものと考える
Heat treatment is usually carried out in an oxidizing atmosphere such as the air, an inert atmosphere such as a nitrogen atmosphere, or a vacuum atmosphere, but an oxidizing atmosphere in which the organic substances contained are removed by incineration is advantageous. The heat treatment is carried out using a commonly used high-temperature furnace such as an electric furnace, gas furnace, or heavy oil furnace. A normal sintered body is
After molding using an organic binder such as paraffin,
Because it is fired at a high temperature of about 1,500°C, it has a large plastic resistance, making cutting with a lathe extremely difficult. but,
In the case of the above-mentioned calcined product, it is easy to cut it with a lathe, so it is easy to cut the calcined product, shape it into an approximate shape, and then expand the necessary parts in the subsequent plastic processing. It has the advantage of being able to efficiently manufacture products with complex shapes. Furthermore, if a sintered compact is used as a precursor, the particles will grow in the subsequent plastic working step, making it easier to transition from tetragonal to monoclinic crystals and increasing the content of monoclinic crystals. If a calcined molded product or powder or powder molded product made of the ceramic raw material is used as a precursor, the grain growth will be small and the monoclinic crystal will increase due to the transition from tetragonal crystal to monoclinic crystal. is very small. It is thought that this phenomenon promotes the increase in strength due to plastic working.

塑性加工に際しては、下記式で示される温度t(℃)と
圧力P (kg f /w”)の条件下で実施するのが
好ましい。
The plastic working is preferably carried out under the conditions of temperature t (° C.) and pressure P (kg f /w”) expressed by the following formula.

P≧3X10−苫’X(1600−t)I’+0.1P
≦5.t≦1600 そして、かかる式にて示される範囲を図示すると、第1
図の様になる。
P≧3X10-Tom'X(1600-t)I'+0.1P
≦5. t≦1600 Then, illustrating the range represented by this formula, the first
It will look like the figure.

上記範囲を太き(逸脱すると、塑性加工抵抗が著しく高
くなり工業的に緻密な焼結体を得るのが困難になったり
、煩雑な操作や、高価且つ複雑な設備機器が必要となる
。塑性加工はアルミナ、炭化珪素、炭素等より成る治具
を用いて、圧延、押出、引抜、鍛造等の塑性変形を利用
した加工を行うものである0例えば通電加熱、ガス燃焼
加熱、誘電加熱等を用いた高温炉中で、大気雰囲気等の
酸化性雰囲気、窒素雰囲気等の不活性雰囲気、真空雰囲
気等の各種雰囲気にて、油圧機構等にて引張力若しくは
圧縮力を加える事により実施される。
If the thickness exceeds the above range (deviating from the range), the plastic working resistance will be extremely high, making it difficult to industrially obtain a dense sintered body, and requiring complicated operations and expensive and complicated equipment.Plasticity Processing is performed using jigs made of alumina, silicon carbide, carbon, etc. that utilize plastic deformation such as rolling, extrusion, drawing, and forging. For example, electrical heating, gas combustion heating, dielectric heating, etc. The test is carried out in the high temperature furnace used in various atmospheres such as an oxidizing atmosphere such as atmospheric air, an inert atmosphere such as nitrogen atmosphere, and a vacuum atmosphere by applying tensile force or compressive force using a hydraulic mechanism or the like.

加熱方式、雰囲気等は、公知の方法から適宜選択すれば
よい。
The heating method, atmosphere, etc. may be appropriately selected from known methods.

(発明の効果) 本発明のジルコニア焼結成形体は、気孔率が小さく緻密
且つ高強度のものであり、後加工を施さずとも、緻密で
且つ複雑形状又は極薄形状の寸法精度に優れたジルコニ
ア焼結体を容易に得る事が出来る・その為、複雑形状を
必要とする自動車エンジン等の機械部品、薄膜化により
その電気抵抗値を低下する必要のあるガスセンサ、燃料
電池、酸素ポンプ等に用いられる固体電解質、極薄で且
つその寸法精度が要求されるハサミ、ナイフ等の刃物類
等の用途に好適なものである。
(Effects of the Invention) The zirconia sintered compact of the present invention has a small porosity, is dense, and has high strength, and can be made of zirconia that is dense and has excellent dimensional accuracy in complex shapes or ultra-thin shapes without any post-processing. Sintered bodies can be easily obtained. Therefore, it is used for mechanical parts such as automobile engines that require complex shapes, gas sensors, fuel cells, oxygen pumps, etc. that require a reduction in electrical resistance by thinning the film. This solid electrolyte is suitable for use in cutlery such as scissors and knives, which are extremely thin and require dimensional accuracy.

以下に実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

なお、実施例中、平均粒子径、曲げ強さ及び単斜晶含有
率の測定は次の方法により実施した。
In addition, in the examples, the average particle diameter, bending strength, and monoclinic crystal content were measured by the following methods.

(1)平均粒子径 試料を破断し、破断面を電子顕微鏡により観察し、10
個の粒子径を測定し、それらの平均値により算出した値
である。
(1) Break the average particle size sample, observe the broken surface with an electron microscope,
This is a value calculated from the average value of the measured particle diameters.

(2)  曲げ強さ JI8R1601に準拠し、試料を8×4×40mmの
試料片に切断した後、試料表面を研磨し、4点曲げ試験
法により求めた値である。
(2) Bending strength This is a value obtained by cutting the sample into 8 x 4 x 40 mm sample pieces, polishing the sample surface, and using a 4-point bending test method in accordance with JI8R1601.

(3)単斜晶含有率 所定試料をX!1回折法による分析を行ない、回折パタ
ーンのピーク面積より得た積分強度から、次式に基づい
て単斜晶系の酸化ジルコニウムの含有率を計算により求
めた。
(3) Specify the monoclinic content of the sample as X! Analysis was performed by a single diffraction method, and the content of monoclinic zirconium oxide was calculated based on the following formula from the integrated intensity obtained from the peak area of the diffraction pattern.

ここでMは単斜晶系酸化ジルコニウム(7)(111)
面及び(I IT)面の積分強度の和 Tは正方晶系酸化ジルコニウムの(111)面の積分強
度 Cは立方晶系酸化ジルコニウムの(111)面の積分強
度 コニウムと酸化イツトリウムよりなるセラミック原料を
型に約40f入れ、20°Cで2.5(kgf/mm2
)の圧力で加圧成形した後電気炉中で仮焼成形した。仮
焼成形は1100°Cまで15℃/nl 1 nの昇温
速度で昇温し、1100℃で80分間保持した後、15
°C/m 1 Hの冷却速度で冷却した。仮焼成形物の
曲げ強さ、粒径、単斜晶含有率及び気孔率はそれぞれ4
 (kgf/mm”) 、 0.15 ”;;7 t 
9モル%及び4196であった・ 次いで、該仮焼成形物を炭化硅素型に入れ、電気炉中で
1200°Cまで20℃/min、1200°Cから第
1表記載の所定温度迄15°C/rn t nの昇温速
度で昇温した後、同表記載の応力を負加し両面から加圧
した。加圧の初期に急激に収縮が起こり、緻密化が進行
した後、徐々に塑性変形が起こった060分間加圧後、
除圧し15°C/minの冷却速度で冷却した。結果を
第1表に示す。
Here, M is monoclinic zirconium oxide (7) (111)
The sum of the integrated intensities of the (I IT) plane T is the integrated intensity of the (111) plane of tetragonal zirconium oxide C is the integrated intensity of the (111) plane of cubic zirconium oxide Put about 40f into a mold and heat it to 2.5 (kgf/mm2) at 20°C.
) and then calcined in an electric furnace. For calcining, the temperature was raised to 1100°C at a rate of 15°C/nl 1 n, held at 1100°C for 80 minutes, and then heated to 15°C.
Cooling was performed at a cooling rate of °C/m 1 H. The bending strength, grain size, monoclinic content, and porosity of the calcined molded product were each 4.
(kgf/mm”), 0.15”;;7t
9 mol% and 4196. Next, the calcined product was placed in a silicon carbide mold and heated at 20°C/min in an electric furnace up to 1200°C, and at 15° from 1200°C to the specified temperature listed in Table 1. After increasing the temperature at a rate of C/rn t n, the stress described in the same table was applied and pressure was applied from both sides. After 060 minutes of pressurization, rapid contraction occurred at the beginning of pressurization, densification progressed, and then plastic deformation gradually occurred.
The pressure was removed and the mixture was cooled at a cooling rate of 15°C/min. The results are shown in Table 1.

下記第1表から明らかな通り、塑性加工すると、すべて
のものについて、強度が向上したが、就中Bun No
、18において強度の向上が認められた。
As is clear from Table 1 below, plastic working improved the strength of all materials, especially Bun No.
, 18, an improvement in strength was observed.

Bun No、18では約80倍の高強度変化が認めら
れた・塑性変形は1800℃以上で顕著に認められ、加
圧面の横の広がりを生じ、所望の形状と実施例2 実施例1において、酸化イツトリウムに代替して下記第
2表に記載の酸化マグネシウム、酸化カルシウム及び酸
化セリウムを所定量使用し、第2表に記載の塑性加工温
度圧力条件下で塑性加工する以外は実施例1と同様にし
てジルコニア焼結成形体を製造した。結果を第2表に示
す。
In Bun No. 18, a high strength change of about 80 times was observed. - Plastic deformation was noticeable at temperatures above 1800°C, causing lateral spread of the pressurized surface, resulting in the desired shape and Example 2 In Example 1, Same as Example 1 except that prescribed amounts of magnesium oxide, calcium oxide and cerium oxide listed in Table 2 below were used instead of yttrium oxide, and plastic working was performed under the plastic working temperature and pressure conditions listed in Table 2. A zirconia sintered body was produced. The results are shown in Table 2.

第  2  表 上表から、酸化イツトリウムに代替して、安定化剤とし
て酸化マグネシウム、酸化カルシウム及び酸化セリウム
を使用しても酸化イツトリウムと同様の傾向を示すこと
が認められた。
From Table 2, it was found that even when magnesium oxide, calcium oxide, and cerium oxide were used as stabilizers in place of yttrium oxide, they showed the same tendency as yttrium oxide.

比較例1 実施例I Run No、 18において、仮焼成の条
件下ではなく下記第8表に示す条件で常圧焼成し、所謂
焼結物とした前駆体を用いその他の条件は実施例1と同
様にして、ジルコニア焼結成形体を製造した。結果を第
8表に示す。     −5第  8  表 上表から、前駆体として焼結成形物を使用すると、後続
する塑性加工工程において粒子が成長し、正方品から単
斜晶への転移が生じやすくなり、単斜晶の含有率が増加
するが、本発明の様に前駆体として仮焼成形物を使用す
ると、粒子成長が小さく、単斜晶の含有率は前記比較例
とは逆に減少することがわかる。
Comparative Example 1 In Example I Run No. 18, the precursor was fired under normal pressure under the conditions shown in Table 8 below instead of under the pre-calcination conditions to form a so-called sintered product, and the other conditions were as in Example 1. A zirconia sintered body was produced in the same manner. The results are shown in Table 8. -5 Table 8 From the above table, when a sintered shaped product is used as a precursor, the particles grow in the subsequent plastic working process, and the transition from a tetragonal product to a monoclinic product is likely to occur, and the monoclinic content increases. However, when a calcined product is used as a precursor as in the present invention, grain growth is small and the monoclinic content decreases, contrary to the comparative example.

実施例8 実施例1において、平均粒径1.8μmのセラミック原
料を使用する以外は、実施例I Run No。
Example 8 Run No. of Example I except that a ceramic raw material having an average particle size of 1.8 μm was used in Example 1.

18と同様にして、ジルコニア焼結成形体を製造した・
また、上記比較例において、平均粒径1.8μmのセラ
ミック原料を使用する以外は上記比較例と同様にしてジ
ルコニア焼結成形体の製造を試みた。結果を下記第4表
に併せて示す。
A zirconia sintered body was manufactured in the same manner as in 18.
In addition, in the above comparative example, an attempt was made to produce a zirconia sintered body in the same manner as in the above comparative example except that a ceramic raw material having an average particle size of 1.8 μm was used. The results are also shown in Table 4 below.

第4表 上表から前駆体として常圧焼結物を使用した比較例にお
いては、塑性加工抵抗が著しく大きく、塑性加工が不可
能であったが、仮焼結物を前駆体で塑性加工出来、その
結果強度の大幅な向上がみられろことが明らかである。
As shown in the upper table of Table 4, in the comparative example in which pressureless sintered material was used as a precursor, the plastic working resistance was extremely large and plastic working was impossible, but it was not possible to plastically work the pre-sintered material with the precursor. It is clear that the result is a significant improvement in strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明における塑性加工時の好ましい条件の
範囲を示す線図であり、横軸は温度t(°C)を縦軸は
負荷応力P (kg f/mm” )を表わす・ゾ t(’C)
FIG. 1 is a diagram showing the range of preferable conditions during plastic working in the present invention, where the horizontal axis represents temperature t (°C) and the vertical axis represents applied stress P (kg f/mm"). t('C)

Claims (4)

【特許請求の範囲】[Claims] (1)酸化ジルコニウム(A)と、酸化イットリウム、
酸化セリウム、酸化カルシウム及び酸化マグネシウムの
群から選ばれた少なく共1種の安定化剤(B)とを主成
分とするセラミック原料よりなる仮焼成形物又は粉体乃
至粉体成形物を単斜晶を殆ど増加せしめることなく高温
下で応力を負荷し、塑性加工してなるジルコニア焼結成
形体。
(1) Zirconium oxide (A) and yttrium oxide,
A monoclinic calcined molded product, powder, or powder molded product made of a ceramic raw material containing at least one stabilizer (B) selected from the group of cerium oxide, calcium oxide, and magnesium oxide as a main component. A zirconia sintered body that is plastically processed by applying stress at high temperatures without increasing crystallization.
(2)塑性加工が下記式にて示される温度t(℃)及び
負荷応力P(kgf/mm^2)の条件下で行われるも
のである特許請求の範囲第(1)項に記載のジルコニア
焼結成形体。 P≧3×10^−^3^7×(1600−t)^1^4
+0.1P≦5、t≦1600
(2) Zirconia according to claim (1), wherein the plastic working is performed under the conditions of temperature t (°C) and applied stress P (kgf/mm^2) shown by the following formula: Sintered shaped body. P≧3×10^-^3^7×(1600-t)^1^4
+0.1P≦5, t≦1600
(3)安定化剤(B)が高々15モル%配合されたもの
である特許請求の範囲第(1)項又は第(2)項に記載
のジルコニア焼結成形体。
(3) The zirconia sintered body according to claim (1) or (2), which contains at most 15 mol% of the stabilizer (B).
(4)セラミック原料が平均粒子径1μm以下のもので
ある特許請求の範囲第(1)項〜第(3)項の何れかに
記載のジルコニア焼結成形体。
(4) The zirconia sintered body according to any one of claims (1) to (3), wherein the ceramic raw material has an average particle diameter of 1 μm or less.
JP62016375A 1987-01-27 1987-01-27 Zirconia sintered formed body Granted JPS63185856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62016375A JPS63185856A (en) 1987-01-27 1987-01-27 Zirconia sintered formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62016375A JPS63185856A (en) 1987-01-27 1987-01-27 Zirconia sintered formed body

Publications (2)

Publication Number Publication Date
JPS63185856A true JPS63185856A (en) 1988-08-01
JPH0511063B2 JPH0511063B2 (en) 1993-02-12

Family

ID=11914545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62016375A Granted JPS63185856A (en) 1987-01-27 1987-01-27 Zirconia sintered formed body

Country Status (1)

Country Link
JP (1) JPS63185856A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051321A (en) * 2001-08-06 2003-02-21 Toho Gas Co Ltd Low-temperature sintering solid electrolyte material and solid oxide type fuel cell using the same
JP2018087747A (en) * 2016-11-29 2018-06-07 京セラ株式会社 Biochemical sample collection nozzle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174169A (en) * 1985-01-25 1986-08-05 株式会社神戸製鋼所 Manufacture of high strength partially stabilized zirconia sintered body

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174169A (en) * 1985-01-25 1986-08-05 株式会社神戸製鋼所 Manufacture of high strength partially stabilized zirconia sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051321A (en) * 2001-08-06 2003-02-21 Toho Gas Co Ltd Low-temperature sintering solid electrolyte material and solid oxide type fuel cell using the same
JP2018087747A (en) * 2016-11-29 2018-06-07 京セラ株式会社 Biochemical sample collection nozzle

Also Published As

Publication number Publication date
JPH0511063B2 (en) 1993-02-12

Similar Documents

Publication Publication Date Title
Otitoju et al. Advanced ceramic components: Materials, fabrication, and applications
Lóh et al. A review of two-step sintering for ceramics
Chen et al. Rapid rate sintering of nanocrystalline ZrO2− 3 mol% Y2O3
US20070179041A1 (en) Zirconia Ceramic
US5122317A (en) Method of superplastically deforming zirconia materials
JP5444387B2 (en) Semiconductor device heat sink
US4834928A (en) Doped silicon nitride article
US3929498A (en) Sintered zirconia bodies
US3776744A (en) Alumina-transition metal oxide ceramic products of enhanced ductility
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JPS63185856A (en) Zirconia sintered formed body
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
Jayaratna et al. Hot pressing 0f Y 2 O 3-stabilized ZrO 2 with Cr 2 O 3 additions
JPH02267160A (en) High strength alumina
CN113698202A (en) Water gap and preparation method and application thereof
JPH0535693B2 (en)
KR101140352B1 (en) Manufacturing method of pre-sintered porous Si granules for porous reaction-bonded silicon nitride, pre-sintered porous granules therefrom
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
US4940843A (en) Method of producing non-oxide ceramic sintered bodies
JPH06107454A (en) Alumina sintered body and production thereof
JPH052622B2 (en)
JPH0380153A (en) Manufacture of ziroconia-based ceramic
Caruso et al. High pressure compaction and densification at 1200 ºC of nano-sized ZrO2-3 mol% Y2O3 powders obtained by sol-gel process
JPH0687650A (en) Alumina-based sintered compact and its production
JPH09183648A (en) Aluminous sintered compact