JP2018087747A - Biochemical sample collection nozzle - Google Patents

Biochemical sample collection nozzle Download PDF

Info

Publication number
JP2018087747A
JP2018087747A JP2016231165A JP2016231165A JP2018087747A JP 2018087747 A JP2018087747 A JP 2018087747A JP 2016231165 A JP2016231165 A JP 2016231165A JP 2016231165 A JP2016231165 A JP 2016231165A JP 2018087747 A JP2018087747 A JP 2018087747A
Authority
JP
Japan
Prior art keywords
hole
nozzle
oxide
sample collection
biochemical sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016231165A
Other languages
Japanese (ja)
Other versions
JP6825889B2 (en
Inventor
飯田 茂
Shigeru Iida
茂 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2016231165A priority Critical patent/JP6825889B2/en
Publication of JP2018087747A publication Critical patent/JP2018087747A/en
Application granted granted Critical
Publication of JP6825889B2 publication Critical patent/JP6825889B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To prevent a biochemical sample to be collected from adhering to a nozzle surface.SOLUTION: A biochemical sample collection nozzle is provided, including a first member 1 provided with a first through-hole 1A extending from a first end 1a to a second end 1b and shaped to have an outer diameter that gradually decreases toward the first end 1a. The first member 1 is made of a ceramics principally containing zirconium oxide.SELECTED DRAWING: Figure 1

Description

本開示は、生化学試料採取用ノズルに関する。   The present disclosure relates to biochemical sampling nozzles.

液体試料を分析対象とする液体クロマトグラフ等の分析装置では、液体試料を採取して運ぶための試料採取用ノズルが設けられている。このような試料採取用ノズルとしては、鉄を主成分とする合金であるステンレス鋼が主に用いられている。鉄は水酸基を吸着する性質を有しているので、液体試料に水酸基を含んでいる場合、液体試料がノズルの表面に比較的強固に付着する。タンパク質を含む例えば血液等の生化学試料は、タンパク質が水酸基を含むので、ノズル表面に比較的強固に付着し易いため、採取した生化学試料をノズルから吐出しようとしても、吸着した生化学試料がノズル内に残留してしまい、ノズルからの吐出量が不足したり、吐出量にばらつきが生じるおそれがあった。このようなノズル表面の試料吸着を抑制するノズルとして、例えば特許文献1において、先端部付近のノズル表面に貴金属めっき層が設けられたノズルが知られている。   In an analyzer such as a liquid chromatograph for analyzing a liquid sample, a sample collecting nozzle for collecting and carrying the liquid sample is provided. As such a sampling nozzle, stainless steel, which is an alloy mainly composed of iron, is mainly used. Since iron has a property of adsorbing hydroxyl groups, when the liquid sample contains hydroxyl groups, the liquid sample adheres relatively firmly to the surface of the nozzle. Since biochemical samples such as blood containing proteins contain hydroxyl groups and proteins tend to adhere to the nozzle surface relatively firmly, even if an attempt is made to eject the collected biochemical sample from the nozzle, the adsorbed biochemical sample is not There is a risk that the amount of discharge from the nozzle may be insufficient or the amount of discharge may vary. As a nozzle that suppresses such sample adsorption on the nozzle surface, for example, in Patent Document 1, a nozzle in which a noble metal plating layer is provided on the nozzle surface in the vicinity of the tip is known.

特開2013−137227号公報JP 2013-137227 A

特許文献1記載のノズルは、ノズル表面に設けた貴金属めっき層が剥離した場合、剥離によってステンレス鋼が露出し、ステンレス鋼の露出部分に分析対象の試料が強固に付着してしまうおそれがあった。また、ノズルを用いて複数種類の試料を連続して採取および吐出した場合、ノズル表面に残留した試料が、次に採取する他種類の試料と混入してしまう。さらに、ノズル表面に設けた貴金属めっき層が剥離した場合、剥離しためっき層がコンタミネーションとして試料へ混入するおそれがあった。   In the nozzle described in Patent Document 1, when the noble metal plating layer provided on the nozzle surface is peeled off, the stainless steel is exposed by peeling, and the sample to be analyzed may be firmly attached to the exposed portion of the stainless steel. . Further, when a plurality of types of samples are continuously collected and discharged using the nozzle, the sample remaining on the nozzle surface is mixed with other types of samples to be collected next. Furthermore, when the noble metal plating layer provided on the nozzle surface peels, the peeled plating layer may be mixed into the sample as contamination.

このように、ノズル表面への試料の付着やノズル表面に設けた貴金属めっき層が剥離は、分析精度の低下につながっていた。   As described above, the adhesion of the sample to the nozzle surface and the peeling of the noble metal plating layer provided on the nozzle surface led to a decrease in analysis accuracy.

上記課題を解決するために、第1端から第2端にわたる第1貫通孔を備えるとともに、前記第1端に向かって外径が細くなる形状の第1部材を有し、該第1部材は、酸化ジルコニウムを主成分とするセラミックスからなることを特徴とする生化学試料採取用ノズルを提供する。   In order to solve the above-mentioned problem, the first member has a first through hole extending from the first end to the second end, and has a first member whose outer diameter decreases toward the first end, and the first member is And a nozzle for collecting biochemical samples, characterized by comprising a ceramic mainly composed of zirconium oxide.

本開示の生化学試料採取用ノズルによれば、採取する生化学試料のノズル表面への付着を抑制することができる。本開示の生化学試料採取用ノズルを用いることで、生化学試料を必要な量だけ高精度に採取することができ、また複数種類の試料採取においても、混入のおそれを抑制できるため、分析装置における分析精度を比較的高くすることができる。   According to the biochemical sample collection nozzle of the present disclosure, adhesion of the biochemical sample to be collected to the nozzle surface can be suppressed. By using the biochemical sample collection nozzle of the present disclosure, it is possible to collect a necessary amount of biochemical sample with high accuracy, and even in collecting a plurality of types of samples, the possibility of contamination can be suppressed. The analysis accuracy in can be made relatively high.

本実施形態の生化学試料採取用ノズルの一例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図であり、(c)は拡径部の拡大図である。An example of the biochemical sample collection nozzle of this embodiment is shown, (a) is a perspective view, (b) is a cross-sectional view along the central axis, and (c) is an enlarged view of the enlarged diameter portion. . 本実施形態の生化学試料採取用ノズルの他の例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図である。The other example of the biochemical sample collection nozzle of this embodiment is shown, (a) is a perspective view, (b) is sectional drawing along a central axis.

以下、図面を参照して、本開示の実施形態について詳細に説明する。図1は、本実施形態の生化学試料採取用ノズルの一例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図であり、(c)は(b)の拡大図である。また、図2は、本実施形態の液体試料採取用ノズルの他の例を示す、(a)は斜視図であり、(b)は中心軸に沿った断面図である。なお、図2では、図1と同様の構成に関して図1と同じ符号で示している。   Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. 1A and 1B show an example of a biochemical sample collection nozzle according to the present embodiment. FIG. 1A is a perspective view, FIG. 1B is a cross-sectional view taken along a central axis, and FIG. It is an enlarged view. FIG. 2 shows another example of the liquid sampling nozzle according to the present embodiment, in which (a) is a perspective view and (b) is a cross-sectional view along the central axis. In FIG. 2, the same components as those in FIG. 1 are denoted by the same reference numerals as those in FIG.

図1および図2に示す生化学試料採取用ノズル10(以降、単にノズル10ともいう)は、生化学試料を分析対象とする例えば液体クロマトグラフ等の分析装置に用いられる。ノズル10は、この分析装置において、分析対象試料を採取および搬送に用いられる。ノズル10は、タンパク質を含む例えば血液等の生化学試料を分析対象試料(以降、分析試料ともいう)としている。具体的には、ノズル10は、第1端1a側の一部が、分析試料に浸漬されることで、第1貫通孔1Aの分析試料を吸い上げて、第1貫通孔1A内においてこの分析試料を保持する。第1貫通孔1A内への分析試料の吸い上げは、いわゆる毛細管現象による吸い上げの効果だけでもよく、あるいは、第1貫通孔1A内を負圧にしたことによる圧力差の効果を利用することもできる。   A biochemical sample collection nozzle 10 (hereinafter, also simply referred to as nozzle 10) shown in FIGS. 1 and 2 is used in an analyzer such as a liquid chromatograph for analyzing a biochemical sample. The nozzle 10 is used for collecting and transporting a sample to be analyzed in this analyzer. The nozzle 10 uses a biochemical sample such as blood containing protein as an analysis target sample (hereinafter also referred to as an analysis sample). Specifically, the nozzle 10 sucks up the analysis sample in the first through hole 1A by immersing a part of the first end 1a side in the analysis sample, and the analysis sample in the first through hole 1A. Hold. The suction of the analysis sample into the first through-hole 1A may be effected only by the so-called capillary phenomenon, or the effect of the pressure difference due to the negative pressure inside the first through-hole 1A can be used. .

本開示のノズル10は、生化学試料採取用ノズルであって、第1端1aから第2端1bにわたる第1貫通孔1Aを備えるとともに、第1端1aに向かって外径が細くなる形状の第1部材1を有し、第1部材1は、酸化ジルコニウムを主成分とするセラミックス(以降、酸化ジルコニム質セラミックスともいう)からなる。   The nozzle 10 of the present disclosure is a biochemical sample collection nozzle having a first through hole 1A extending from the first end 1a to the second end 1b, and having a shape in which the outer diameter becomes narrower toward the first end 1a. The first member 1 includes a ceramic mainly composed of zirconium oxide (hereinafter also referred to as zirconium oxide ceramics).

ここでセラミックスの主成分とは、セラミックスを構成する成分の合計100質量%のうち、70質量%以上を占める成分のことを言う。セラミックスを構成する成分の合計100質量%のうち、酸化ジルコニウムの含有量が、75質量%以上であることが好適である。セラミックスを構成する各成分は、X線回折装置で同定することができ、その含有量については蛍光X線分析装置またはICP発光分光分析装置により求めることができる。   Here, the main component of the ceramic means a component occupying 70% by mass or more out of a total of 100% by mass of the components constituting the ceramic. It is preferable that the content of zirconium oxide is 75% by mass or more in a total of 100% by mass of the components constituting the ceramic. Each component constituting the ceramic can be identified by an X-ray diffractometer, and the content thereof can be determined by a fluorescent X-ray analyzer or an ICP emission spectroscopic analyzer.

本実施形態のノズル10は、第1部材1が酸化ジルコニウム質セラミックスからなることにより、第1貫通孔1Aの内周面も酸化ジルコニウムからなる。このように、第1貫通孔1Aの内周面が酸化ジルコニウムからなることにより、ノズル10は、ステンレス鋼等を内周面とする場合と比較して、第1貫通孔1Aの内周面へのタンパク質等の付着が抑制される。第1部材1自体が酸化ジルコニウム質セラミックスからなるノズル10は、表面に例えば貴金属めっき層等を設けなくても分析試料が付着しがたく、剥がれためっき層の分析試料への混入も発生しない。第1部材1は、第1部材1の第1端1aおよび外周面も酸化ジルコニウム質セラミックスからなるため、第1部材1の表面全体に分析試料が付着し難くなっている。このようなノズル10を用いることで、採取する分析試料のノズル表面への付着による残留が抑制されるため、分析試料を必要な量だけ高精度に採取することができる。また、複数種類の分析試料を採取する際の混入を抑制することができる。また、酸化ジルコニウム質セラミックスは、比較的高い靭性を有しているため、第1部材1に外力が加わった場合に折損しにくい。   In the nozzle 10 of the present embodiment, the first member 1 is made of zirconium oxide ceramics, so that the inner peripheral surface of the first through hole 1A is also made of zirconium oxide. Thus, when the inner peripheral surface of the first through hole 1A is made of zirconium oxide, the nozzle 10 moves to the inner peripheral surface of the first through hole 1A as compared with the case where stainless steel or the like is used as the inner peripheral surface. The adhesion of proteins and the like is suppressed. The nozzle 10 made of zirconium oxide ceramics as the first member 1 itself does not easily adhere to the analysis sample even if a noble metal plating layer or the like is not provided on the surface, and mixing of the peeled plating layer into the analysis sample does not occur. In the first member 1, since the first end 1 a and the outer peripheral surface of the first member 1 are also made of zirconium oxide ceramics, it is difficult for the analysis sample to adhere to the entire surface of the first member 1. By using such a nozzle 10, residue due to adhesion of the collected analytical sample to the nozzle surface is suppressed, so that the necessary amount of analytical sample can be collected with high accuracy. Moreover, the mixing at the time of collecting a plurality of types of analysis samples can be suppressed. In addition, since the zirconium oxide ceramic has relatively high toughness, it is difficult to break when an external force is applied to the first member 1.

また、ノズル10は、第1貫通孔1Aの第2端1b側に、第1貫通孔1Aと連通する第2貫通孔2Aを備える第2部材2を有していてもよい。そして、第1貫通孔1Aの内径が第2貫通孔2Aの内径よりも小さくてもよい。このような第2部材2を有し、第1貫通孔1Aの内径が、第2貫通孔2Aの内径よりも小さいときには、第1部材1の第1貫通孔1Aの大きさ以上の量の分析試料をノズル10で保持することができる。   Moreover, the nozzle 10 may have the 2nd member 2 provided with 2 A of 2nd through-holes connected to 1 A of 1st through-holes in the 2nd end 1b side of 1 A of 1st through-holes. The inner diameter of the first through hole 1A may be smaller than the inner diameter of the second through hole 2A. When the second member 2 is provided and the inner diameter of the first through-hole 1A is smaller than the inner diameter of the second through-hole 2A, an analysis of an amount larger than the size of the first through-hole 1A of the first member 1 is performed. The sample can be held by the nozzle 10.

また、ノズル10において、第1部材10の第1端1aの側は、採取する分析試料の導
入口であるとともに、採取した分析試料の吐出口にもなっている。ノズル10から分析試料を吐出する際、分析試料は液滴となって吐出されるが、この液滴の1つ1つの大きさは第1貫通孔1Aの内径の大きさに応じて変わり、第1貫通孔1Aの内径が小さいと1つ1つの液滴は小さくなる。ノズル10では、第1貫通孔1Aの内径が第2貫通孔2Aの内径よりも小さいため、比較的大きな内径を有する第2貫通孔2Aによって比較的大量の分析試料を保持しつつ、比較的小さな内径を有する第1貫通孔1Aによって小さい液滴で吐出できるため、大量に保持しつつ、高い吐出精度を有する。
Further, in the nozzle 10, the first end 1 a side of the first member 10 serves as an inlet for an analysis sample to be collected and a discharge port for the collected analysis sample. When the analysis sample is discharged from the nozzle 10, the analysis sample is discharged as a droplet. The size of each droplet varies depending on the size of the inner diameter of the first through hole 1A. When the inner diameter of one through hole 1A is small, each droplet is small. In the nozzle 10, since the inner diameter of the first through hole 1A is smaller than the inner diameter of the second through hole 2A, the second through hole 2A having a relatively large inner diameter holds a relatively large amount of analysis sample and is relatively small. Since the first through-hole 1A having the inner diameter can be ejected with a small droplet, it has a high ejection accuracy while maintaining a large amount.

なお、第2部材2の材質は限定されないが、第1部材1と同様の材料、すなわち酸化ジルコニウム質セラミックスからなることが好ましい。第2部材2が酸化ジルコニウム質セラミックスからなることで、第2貫通孔2Aにおいても、採取する分析試料のノズル表面への付着による残留を抑制することができる。これによってノズル10は、高い精度で分析試料を定量することができる。また、複数種類の分析試料を採取する際の混入をさらに抑制することができる。   In addition, although the material of the 2nd member 2 is not limited, It is preferable to consist of the material similar to the 1st member 1, ie, a zirconium oxide ceramic. Since the second member 2 is made of zirconium oxide ceramics, it is possible to suppress the residue due to adhesion of the collected analysis sample to the nozzle surface also in the second through-hole 2A. Thereby, the nozzle 10 can quantify the analysis sample with high accuracy. In addition, it is possible to further suppress contamination when collecting a plurality of types of analysis samples.

また第1部材1は、第2端1b側において、第2貫通孔2Aに挿入される挿入部11を有しており、第1貫通孔1は、第2端側1bに近づくに従って内径が大きくなる拡径部12を有していてもよい。第1部材1における挿入部11が第2貫通孔2Aに挿入される構成の場合、本実施形態のように接合層3を介して第1部材と第2部材とを接合すると、挿入部11の外周面と第2貫通孔2Aの内周面との対向領域全体の広い範囲と接合領域とすることができるので、第2部材2に第1部材1を強固に結合することができる。   Moreover, the 1st member 1 has the insertion part 11 inserted in 2A of 2nd through-holes in the 2nd end 1b side, and the inside diameter of the 1st through-hole 1 becomes large as it approaches the 2nd end side 1b. You may have the enlarged diameter part 12 which becomes. In the case where the insertion portion 11 in the first member 1 is inserted into the second through hole 2A, when the first member and the second member are joined via the joining layer 3 as in the present embodiment, the insertion portion 11 Since it can be set as the wide range and joining area | region of the whole opposing area | region of an outer peripheral surface and 2 A of internal holes of 2nd through-hole, the 1st member 1 can be firmly couple | bonded with the 2nd member 2. FIG.

加えて、第2端側1bに近づくに従って内径が大きくなる拡径部を有しているときには、第2貫通孔2Aの内部から第1貫通孔1Aの内部に向けて分析試料がスムーズに流れ込み易くなるため、第2貫通孔2Aと第1貫通孔1Aとの境界部分におけるマイクロバブルの発生等を抑制できる。なお、マイクロバブルの発生等の心配がない場合などは、図2に示す他の実施形態のように、拡径部12を有さない構成であってもよい。拡径部12の形状は、例えば円錐台状であり、中心軸に沿った断面視におけるその頂角θは、例えば70°以上110°以下であってもよい。   In addition, when it has an enlarged diameter portion whose inner diameter increases as it approaches the second end side 1b, the analysis sample can easily flow smoothly from the inside of the second through hole 2A toward the inside of the first through hole 1A. Therefore, it is possible to suppress the generation of microbubbles at the boundary portion between the second through hole 2A and the first through hole 1A. In addition, when there is no worry about generation | occurrence | production of a microbubble etc., the structure which does not have the enlarged diameter part 12 like other embodiment shown in FIG. 2 may be sufficient. The shape of the enlarged diameter portion 12 is, for example, a truncated cone shape, and the apex angle θ in a sectional view along the central axis may be, for example, 70 ° or more and 110 ° or less.

ノズル10の第1部材1は、第2端1b側において、第2貫通孔2Aに挿入される挿入部11を有しているとき、挿入部11の外周面と第2貫通孔2Aの内周面との間に接合層13が位置していてもよい。このような構成を満たすときには、第1部材1と第2部材2とが強固に接合されるため、第2部材2から第1部材1が外れるおそれが少なくなる。   When the first member 1 of the nozzle 10 has the insertion portion 11 to be inserted into the second through hole 2A on the second end 1b side, the outer peripheral surface of the insertion portion 11 and the inner periphery of the second through hole 2A. The bonding layer 13 may be positioned between the surfaces. When satisfying such a configuration, since the first member 1 and the second member 2 are firmly joined, the possibility that the first member 1 is detached from the second member 2 is reduced.

また挿入部11は、第1端1a側に段差面14を有しているとき、段差面14と第2部
材2との間にも接合層13が位置していてもよい。挿入部11の外周面と第2貫通孔2Aの内周面との間に加えて、段差面14と第2部材2との間にも接合層13が位置しているときには、第1部材1と第2部材2とがより強固に接合されるため、第2部材2から第1部材1が外れるおそれがより少なくなる。
Moreover, when the insertion part 11 has the level | step difference surface 14 in the 1st end 1a side, the joining layer 13 may be located between the level | step difference surface 14 and the 2nd member 2. FIG. When the bonding layer 13 is located between the stepped surface 14 and the second member 2 in addition to the outer peripheral surface of the insertion portion 11 and the inner peripheral surface of the second through hole 2A, the first member 1 Since the second member 2 and the second member 2 are more firmly joined, there is less possibility that the first member 1 is detached from the second member 2.

接合層13は、酸化珪素を主成分とし、酸化バリウム、酸化カルシウムおよび酸化アルミニウムを含むものであってもよい。酸化珪素を主成分とする接合層13は、いわゆるガラス接合層である。酸化バリウムを含む接合層13は、耐水性が比較的高く、また、酸化カルシウムを含むので化学的耐久性を比較的高い。また酸化アルミニウムを含む接合層13は、ガラスの軟化温度も比較的高く、耐熱性が比較的高い。   The bonding layer 13 may contain silicon oxide as a main component and include barium oxide, calcium oxide, and aluminum oxide. The bonding layer 13 containing silicon oxide as a main component is a so-called glass bonding layer. The bonding layer 13 containing barium oxide has relatively high water resistance, and also contains calcium oxide, so that the chemical durability is relatively high. Further, the bonding layer 13 containing aluminum oxide has a relatively high glass softening temperature and a relatively high heat resistance.

なお、接合層13における主成分とは、接合層13を構成する成分の合計100質量%のうち、最も多い成分のことを言う。接合層13を構成する成分の合計100質量%のうち、酸化珪素は、50質量%以上であることが好適である。接合層13は、例えば、酸化
バリウムの含有量が15質量%以上30質量%以下、酸化カルシウムの含有量が5質量%以上20質量%以下、酸化アルミニウムの含有量が1質量%以上10質量%以下であり、残部が酸化珪素である。接合層13を構成する各成分の含有量については、ICP発光分光分析装置により求めることができる。
Note that the main component in the bonding layer 13 refers to the largest component among the total of 100% by mass of the components constituting the bonding layer 13. Of the total 100% by mass of the components constituting the bonding layer 13, silicon oxide is preferably 50% by mass or more. For example, the bonding layer 13 has a barium oxide content of 15% by mass to 30% by mass, a calcium oxide content of 5% by mass to 20% by mass, and an aluminum oxide content of 1% by mass to 10% by mass. The remainder is silicon oxide. The content of each component constituting the bonding layer 13 can be obtained by an ICP emission spectroscopic analyzer.

第1貫通孔1Aは、第1端1aから第2端1bに向かって内径(D1)が一定の領域を有し、内径(D1)に対する第1貫通孔1Aの長さ(L1)の比(L1/D1)が、50以上であってもよい。図1に示す実施形態のノズル10では、第1貫通孔1Aの内径(D1)は例えば0.25mm以上0.3mm以下である、第1貫通孔1Aの長さ(L1)は例えば12mm以上16mm以下であり、比(L1/D1)は40以上64以下となっている。   The first through hole 1A has a region having a constant inner diameter (D1) from the first end 1a to the second end 1b, and the ratio of the length (L1) of the first through hole 1A to the inner diameter (D1) ( L1 / D1) may be 50 or more. In the nozzle 10 of the embodiment shown in FIG. 1, the inner diameter (D1) of the first through hole 1A is, for example, 0.25 mm to 0.3 mm, and the length (L1) of the first through hole 1A is, for example, 12 mm to 16 mm. The ratio (L1 / D1) is 40 or more and 64 or less.

この比(L1/D1)が50以上の場合、第1貫通孔1Aの内径(D1)が十分に小さいため、毛細管現象によって分析試料を安定して吸い上げることができる。また、第1貫通孔1Aが充分に長いため、比較的多くの量の分析試料を保持して搬送させることができる。また、長さL1に対して内径D1が充分に小さい第1貫通孔1A内では、吸い上げられた分析試料に乱流が生じ難い。このため、分析試料の吸引の際に、乱流に起因したマイクロバブルが分析試料に生じることが抑制される。また、液滴の吐出の際に、このような乱流に起因する液滴の大きさのばらつきが抑制される。   When this ratio (L1 / D1) is 50 or more, since the inner diameter (D1) of the first through hole 1A is sufficiently small, the analysis sample can be sucked up stably by capillary action. In addition, since the first through hole 1A is sufficiently long, a relatively large amount of analysis sample can be held and transported. Further, in the first through hole 1A having a sufficiently small inner diameter D1 with respect to the length L1, turbulent flow hardly occurs in the sucked analysis sample. For this reason, at the time of aspiration of an analysis sample, it is controlled that the micro bubble resulting from turbulent flow arises in an analysis sample. Further, when the droplets are ejected, variations in the size of the droplets due to such turbulent flow are suppressed.

また、ノズル10の第1部材1および第2部材2を構成するセラミックスは、イットリウムを酸化物に換算して2mol%以上4mol%以下含むものであってもよい。セラミックスがイットリウムを酸化物に換算して上記範囲で含んでいる場合、このセラミックスからなる第1部材1および第2部材2は、比較的高い機械的強度を有する。   The ceramics constituting the first member 1 and the second member 2 of the nozzle 10 may contain 2 mol% or more and 4 mol% or less of yttrium in terms of oxide. When the ceramic contains yttrium as an oxide in the above range, the first member 1 and the second member 2 made of this ceramic have a relatively high mechanical strength.

また、ノズル10の第1部材1および第2部材2を構成するセラミックスは、マグネシウムおよびカルシウムの少なくともいずれかを酸化物に換算して8mol%以上12mol%以下含むものであってもよい。このようなセラミックスは、耐熱衝撃性が比較的高い。   Further, the ceramics constituting the first member 1 and the second member 2 of the nozzle 10 may include 8 mol% or more and 12 mol% or less in terms of oxides of at least one of magnesium and calcium. Such ceramics have a relatively high thermal shock resistance.

次に、液体試料採取用ノズルの製造方法の一例について説明する。まず、酸化ジルコニウムを主成分とするセラミック原料の粉末およびバインダーを含む坏土を押出成形機に投入して、加圧して押し出し、第1貫通孔を有する筒状の第1成形体を得る。   Next, an example of a method for manufacturing a liquid sample collecting nozzle will be described. First, a ceramic raw material powder containing zirconium oxide as a main component and a clay containing a binder are put into an extrusion molding machine and pressed to extrude to obtain a cylindrical first molded body having first through holes.

上述した方法と同様の方法を用いて、第2貫通孔を有する筒状の第2成形体を得る。なお、イットリウムを酸化物に換算して2mol%以上4mol%以下含むセラミックスからなるノズルを得るには、上記セラミック原料の粉末および酸化イットリウムの粉末の合計100mol%中、酸化イットリウムの粉末が2mol%以上4mol%以下となるように調合すればよい。   Using a method similar to the method described above, a cylindrical second molded body having a second through hole is obtained. In order to obtain a nozzle made of ceramic containing 2 mol% or more and 4 mol% or less of yttrium in terms of oxide, 2 mol% or more of the powder of yttrium oxide in the total 100 mol% of the ceramic raw material powder and the yttrium oxide powder. What is necessary is just to mix | blend so that it may become 4 mol% or less.

また、マグネシウムおよびカルシウムの少なくともいずれかを酸化物に換算して8mol%以上12mol%以下含むセラミックスからなる液体試料採取用ノズルを得るには、上記セラミック原料の粉末および上記第2族元素の酸化物の粉末の合計100mol%中、第2族元素の酸化物の粉末が8mol%以上12mol%以下となるように調合すればよい。   In addition, in order to obtain a nozzle for collecting a liquid sample made of a ceramic containing 8 mol% or more and 12 mol% or less of at least one of magnesium and calcium as an oxide, the ceramic raw material powder and the oxide of the Group 2 element are used. What is necessary is just to mix | blend so that the powder of the oxide of a 2nd group element may be 8 mol% or more and 12 mol% or less in total 100 mol% of this powder.

次に、第1成形体および第2成形体を焼成炉内に配置し、大気雰囲気中、例えば、1300℃以上1700℃以下で焼成することで、それぞれ第1焼成体、第2焼成体とすることができる。   Next, the first molded body and the second molded body are placed in a firing furnace and fired in an air atmosphere at, for example, 1300 ° C. or higher and 1700 ° C. or lower to form a first fired body and a second fired body, respectively. be able to.

次に、第1焼成体および第2焼成体それぞれの表面を機械的に加工して、第1部材1および第2部材2を得る。この際、第1焼成体の第1端1a側の外周面を先端に向かって狭くなるように研磨を施し、第2端1bの側を研削して挿入部11を形成すればよい。また、第1貫通孔1Aの第2端1b側の開口端の一部を加工して、拡径部12を形成すればよい。   Next, the surface of each of the first fired body and the second fired body is mechanically processed to obtain the first member 1 and the second member 2. At this time, polishing may be performed so that the outer peripheral surface of the first fired body on the first end 1a side becomes narrower toward the tip, and the second end 1b side may be ground to form the insertion portion 11. Moreover, what is necessary is just to process a part of opening end by the side of the 2nd end 1b of 1 A of 1st through-holes, and to form the enlarged diameter part 12. FIG.

次に、第1部材1の貫通孔1Aの中心軸と、第2部材2の貫通孔2Aの中心軸とを合わせ、第1部材1の挿入部11を、第2部材2の第2貫通孔2Aに挿入し、第1部材1と第2部材2とを接合層13となるペーストを介して接合する。この際、まず、第1部材1の
挿入部11の外周面および貫通孔2Aの内周面の少なくともいずれかに、酸化珪素、酸化バリウム、酸化カルシウムおよび酸化アルミニウムの各粉末と、セルロース系樹脂ならびにターピネオール等の有機溶剤とを含むペーストを塗布する。なお、ペースト100質量%における酸化物の各粉末の含有量の合計は72質量%以上78質量%以下とする。また、酸化物の各粉末の含有量の合計100質量%における、酸化バリウムの粉末の含有量は15質量%以上30質量%以下、酸化カルシウムの粉末の含有量は5質量%以上20質量%以下、酸化アルミニウムの粉末の含有量は1質量%以上10質量%以下とし、残部を酸化珪素とすればよい。
Next, the central axis of the through hole 1A of the first member 1 and the central axis of the through hole 2A of the second member 2 are aligned, and the insertion portion 11 of the first member 1 is replaced with the second through hole of the second member 2. Inserted into 2A, the first member 1 and the second member 2 are joined together via a paste that becomes the joining layer 13. At this time, first, powders of silicon oxide, barium oxide, calcium oxide, and aluminum oxide, cellulose-based resin, and at least one of the outer peripheral surface of the insertion portion 11 of the first member 1 and the inner peripheral surface of the through-hole 2A, A paste containing an organic solvent such as terpineol is applied. In addition, the sum total of content of each powder of the oxide in 100 mass% of paste shall be 72 to 78 mass%. In addition, the content of the barium oxide powder is 15% by mass to 30% by mass and the content of the calcium oxide powder is 5% by mass to 20% by mass in the total 100% by mass of the oxide powders. The content of the aluminum oxide powder may be 1% by mass or more and 10% by mass or less, and the remainder may be silicon oxide.

この状態で、第1部材1の挿入部11を、第2部材2の第2貫通孔2Aに挿入すると、挿入部11の外周面と第2貫通孔2Aの内周面との間と、段差面14と第2部材2との間にペーストが拡がる。この状態で、例えば、850℃以上950℃以下まで昇温させて熱処理し、その後に常温まで降温させる。これにより、接合層13を介して第1部材1と第2部材2とが接合された、ノズル10が得られる。   In this state, when the insertion portion 11 of the first member 1 is inserted into the second through hole 2A of the second member 2, a step is formed between the outer peripheral surface of the insertion portion 11 and the inner peripheral surface of the second through hole 2A. The paste spreads between the surface 14 and the second member 2. In this state, for example, the temperature is raised to 850 ° C. or higher and 950 ° C. or lower and heat-treated, and then the temperature is lowered to room temperature. Thereby, the nozzle 10 with which the 1st member 1 and the 2nd member 2 were joined via the joining layer 13 is obtained.

本実施形態では上述のように、押出成形機を用いた押出成形法によって第1部材1と第2部材2とを製造している。このため、例えばドリル等の工具で貫通孔を機械的に形成する加工方法の場合と異なり、第1貫通孔1Aや第2貫通孔2Aの内周面に配置された結晶粒子に生じている微小クラック等が少ないので、第1貫通孔1Aや第2貫通孔2Aの内周面から、結晶粒子の欠片等が脱離することが少ない。また、第1貫通孔1Aや第2貫通孔2Aの内周面に露出した結晶粒子径のばらつきも小さく、局所的な大きな凹凸の発生も抑制されている。このため本実施形態の製造方法で製造されたノズル10では、大きな凹凸がある場合に生じやすい、内面における分析試料の残留がより抑制される。第1部材1と第2部材2の製造方法には、特に限定はないが、第1貫通孔1Aおよび第2貫通孔2Aの内面からの結晶粒子の脱離を抑制する観点、および分析試料の残留をより抑制する観点で、押出成形法を用いることが好ましい。   In the present embodiment, as described above, the first member 1 and the second member 2 are manufactured by an extrusion method using an extruder. For this reason, unlike the processing method of mechanically forming the through-hole with a tool such as a drill, for example, the minute amount generated in the crystal particles arranged on the inner peripheral surface of the first through-hole 1A or the second through-hole 2A Since there are few cracks etc., crystal particle fragments and the like are rarely detached from the inner peripheral surfaces of the first through hole 1A and the second through hole 2A. Moreover, the variation in the diameter of the crystal grains exposed on the inner peripheral surface of the first through hole 1A and the second through hole 2A is small, and the occurrence of large local irregularities is also suppressed. For this reason, in the nozzle 10 manufactured by the manufacturing method of this embodiment, the residue of the analysis sample on the inner surface, which is likely to occur when there are large irregularities, is further suppressed. The manufacturing method of the first member 1 and the second member 2 is not particularly limited, but the viewpoint of suppressing the detachment of crystal particles from the inner surfaces of the first through hole 1A and the second through hole 2A, and the analysis sample From the viewpoint of further suppressing the residue, it is preferable to use an extrusion method.

本実施形態で製造したノズル10では、第1部材1の第1貫通孔1Aの表面に露出した、酸化ジルコニウムを主成分とする結晶粒子の平均粒径は、例えば、0.2μm以上0.4μm以下となっている。また結晶粒子の平均粒径は、セラミックスの破断面を走査型電子顕微鏡によって10000倍に拡大した7.8μm×5.8μmの範囲で、同じ長さの直線を4本引き、この4本の直線上に存在する結晶粒子の個数をこれら直線の合計長さで除すことで求めることができる。   In the nozzle 10 manufactured in the present embodiment, the average particle diameter of the crystal particles mainly composed of zirconium oxide exposed on the surface of the first through hole 1A of the first member 1 is, for example, 0.2 μm or more and 0.4 μm. It is as follows. The average grain size of the crystal grains is 7.8 μm × 5.8 μm in which the fracture surface of the ceramic is magnified 10,000 times with a scanning electron microscope, and four straight lines having the same length are drawn. It can be obtained by dividing the number of crystal grains present on the substrate by the total length of these straight lines.

以上、本実施形態について説明したが、本開示は上述の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。   Although the present embodiment has been described above, the present disclosure is not limited to the above-described embodiment, and various modifications and improvements can be made without departing from the gist of the present invention.

1 第1部材
1a 第1端
1b 第2端
1A 第1貫通孔
2 第2部材
2A 第2貫通孔
10 生化学試料採取用ノズル(ノズル)
11 挿入部
13 接合層
14 段差面

DESCRIPTION OF SYMBOLS 1 1st member 1a 1st end 1b 2nd end 1A 1st through-hole 2 2nd member 2A 2nd through-hole 10 Nozzle (nozzle) for biochemical sample collection
11 Insertion part 13 Bonding layer 14 Step surface

Claims (9)

生化学試料採取用ノズルであって、
第1端から第2端にわたる第1貫通孔を備えるとともに、前記第1端に向かって外径が細くなる形状の第1部材を有し、
該第1部材は、酸化ジルコニウムを主成分とするセラミックスからなることを特徴とする生化学試料採取用ノズル。
A nozzle for collecting biochemical samples,
A first member having a first through hole extending from the first end to the second end, and having a shape with an outer diameter becoming narrower toward the first end,
The biochemical sample collection nozzle, wherein the first member is made of a ceramic mainly composed of zirconium oxide.
前記第1貫通孔の前記第2端側に配置された、前記第1貫通孔と連通する第2貫通孔を備える第2部材を有し、
前記第1貫通孔の内径は前記第2貫通孔の内径よりも小さいことを特徴とする請求項1記載の生化学試料採取用ノズル。
A second member provided on the second end side of the first through hole, the second member including a second through hole communicating with the first through hole;
The biochemical sample collection nozzle according to claim 1, wherein the inner diameter of the first through hole is smaller than the inner diameter of the second through hole.
前記第1部材は、前記第2端側において、前記第2貫通孔に挿入される挿入部を有しており、
前記第1貫通孔は、記第2端側に近づくに従って内径が大きくなる拡径部を有することを特徴とする請求項2に記載の生化学試料採取用ノズル。
The first member has an insertion portion to be inserted into the second through hole on the second end side,
3. The biochemical sample collection nozzle according to claim 2, wherein the first through hole has a diameter-expanded portion whose inner diameter increases as it approaches the second end side.
前記第1部材は、前記第2端側において、前記第2貫通孔に挿入される挿入部を有しており、
該挿入部の外周面と前記第2貫通孔の内周面との間に接合層が位置していることを特徴とする請求項2または3記載の生化学試料採取用ノズル。
The first member has an insertion portion to be inserted into the second through hole on the second end side,
The biochemical sample collection nozzle according to claim 2 or 3, wherein a bonding layer is located between the outer peripheral surface of the insertion portion and the inner peripheral surface of the second through hole.
前記挿入部は、前記第1端側に段差面を有し、該段差面と前記第2部材との間にも前記接合層が位置していることを特徴とする請求項4記載の生化学試料採取用ノズル。   The biochemistry according to claim 4, wherein the insertion portion has a step surface on the first end side, and the bonding layer is located between the step surface and the second member. Sample collection nozzle. 前記接合層は、酸化珪素を主成分とし、酸化バリウム、酸化カルシウムおよび酸化アルミニウムを含むことを特徴とする請求項4また5に記載の生化学試料採取用ノズル。   6. The nozzle for collecting a biochemical sample according to claim 4, wherein the bonding layer contains silicon oxide as a main component and contains barium oxide, calcium oxide, and aluminum oxide. 前記第1貫通孔は、前記第1端から前記第2端に向かって内径(D1)が一定の領域を有し、前記内径(D1)に対する前記第1貫通孔の長さ(L1)の比(L1/D1)は、50以上であることを特徴とする請求項1乃至請求項6のいずれかに記載の生化学試料採取用ノズル。   The first through hole has a region having a constant inner diameter (D1) from the first end toward the second end, and a ratio of the length (L1) of the first through hole to the inner diameter (D1). The nozzle for collecting a biochemical sample according to any one of claims 1 to 6, wherein (L1 / D1) is 50 or more. 前記セラミックスは、イットリウムを酸化物に換算して2mol%以上4mol%以下含むことを特徴とする請求項1乃至請求項7のいずれかに記載の生化学試料採取用ノズル。   8. The biochemical sample collection nozzle according to claim 1, wherein the ceramic contains 2 mol% or more and 4 mol% or less of yttrium in terms of an oxide. 前記セラミックスは、マグネシウムおよびカルシウムの少なくともいずれかを酸化物に換算して8mol%以上12mol%以下含むことを特徴とする請求項1乃至請求項7のいずれかに記載の生化学試料採取用ノズル。
The bioceramic sampling nozzle according to any one of claims 1 to 7, wherein the ceramic contains at least one of magnesium and calcium in an amount of 8 mol% to 12 mol% in terms of an oxide.
JP2016231165A 2016-11-29 2016-11-29 Nozzle for biochemical sampling Active JP6825889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231165A JP6825889B2 (en) 2016-11-29 2016-11-29 Nozzle for biochemical sampling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231165A JP6825889B2 (en) 2016-11-29 2016-11-29 Nozzle for biochemical sampling

Publications (2)

Publication Number Publication Date
JP2018087747A true JP2018087747A (en) 2018-06-07
JP6825889B2 JP6825889B2 (en) 2021-02-03

Family

ID=62492951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231165A Active JP6825889B2 (en) 2016-11-29 2016-11-29 Nozzle for biochemical sampling

Country Status (1)

Country Link
JP (1) JP6825889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169105A (en) * 2019-04-02 2020-10-15 京セラ株式会社 Zirconium oxide ceramics and member for harvesting biochemical sample

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272559A (en) * 1985-09-12 1987-04-03 アクシア、インコ−パレイテイド Zirconium oxide ceramic containing ferric oxide
JPS63185856A (en) * 1987-01-27 1988-08-01 カネボウ株式会社 Zirconia sintered formed body
JPH0628737U (en) * 1992-09-14 1994-04-15 株式会社京都第一科学 Biological sample suction needle
JP2000304754A (en) * 1999-02-12 2000-11-02 Ortho Clinical Diagnostics Inc Method and device for mixing liquid
JP2003121452A (en) * 2001-10-12 2003-04-23 Olympus Optical Co Ltd Liquid dispenser
WO2006123538A1 (en) * 2005-05-17 2006-11-23 Kyocera Corporation Spot pin, spot device, method for spot deposition of liquid, and method of manufacturing unit for biochemical analysis
JP2014512256A (en) * 2011-02-22 2014-05-22 ライニン インストルメント、エルエルシー Pipettes and sealing tips
WO2015087371A1 (en) * 2013-12-12 2015-06-18 ヤマハ発動機株式会社 Subject moving device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272559A (en) * 1985-09-12 1987-04-03 アクシア、インコ−パレイテイド Zirconium oxide ceramic containing ferric oxide
JPS63185856A (en) * 1987-01-27 1988-08-01 カネボウ株式会社 Zirconia sintered formed body
JPH0628737U (en) * 1992-09-14 1994-04-15 株式会社京都第一科学 Biological sample suction needle
JP2000304754A (en) * 1999-02-12 2000-11-02 Ortho Clinical Diagnostics Inc Method and device for mixing liquid
JP2003121452A (en) * 2001-10-12 2003-04-23 Olympus Optical Co Ltd Liquid dispenser
WO2006123538A1 (en) * 2005-05-17 2006-11-23 Kyocera Corporation Spot pin, spot device, method for spot deposition of liquid, and method of manufacturing unit for biochemical analysis
JP2014512256A (en) * 2011-02-22 2014-05-22 ライニン インストルメント、エルエルシー Pipettes and sealing tips
WO2015087371A1 (en) * 2013-12-12 2015-06-18 ヤマハ発動機株式会社 Subject moving device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169105A (en) * 2019-04-02 2020-10-15 京セラ株式会社 Zirconium oxide ceramics and member for harvesting biochemical sample
JP7343996B2 (en) 2019-04-02 2023-09-13 京セラ株式会社 Zirconium oxide ceramics and biochemical sample collection parts

Also Published As

Publication number Publication date
JP6825889B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
JP5119253B2 (en) Nozzle member and manufacturing method thereof
CN1441245A (en) Prismatic ceramic heater, prismatic gas sensitive element and its producing method
CN110277342B (en) Electrostatic chuck
CN102206573A (en) Automatic sample introduction device for microarray chip and automatic sample introduction hybridization microarray chip
EP1710818A3 (en) Electronic device, dielectric ceramic composition and the production method
JP6825889B2 (en) Nozzle for biochemical sampling
JPWO2017073679A1 (en) Shower plate, semiconductor manufacturing apparatus, and shower plate manufacturing method
JP2007326072A (en) Microsample recovery mechanism and microsample recovery method
KR102387056B1 (en) Ceramic assembly and manufacturing method thereof
JP7343996B2 (en) Zirconium oxide ceramics and biochemical sample collection parts
WO2019058592A1 (en) Thin drill
JP4683872B2 (en) Microchemical chip and manufacturing method thereof
JP5300363B2 (en) Holding jig and transport device using the same
JP2002273129A (en) Ceramic film filter
JP2006090910A (en) Microchemical chip and its manufacturing method
JP2007304045A (en) Sample supplying mechanism, sample supplying technique therewith, microchemical system, evaluating system, and injector system
WO2019022244A1 (en) Member for plasma processing devices
JP5614603B1 (en) Bonding capillary
JP2006088077A (en) Microchemical chip and its manufacturing method
JP6560054B2 (en) Specimen introduction member, specimen introduction method to well
JP6154274B2 (en) Suction board
JP7181123B2 (en) Member for semiconductor manufacturing equipment and manufacturing method thereof
JP4963437B2 (en) Flow path body, wiring board, flow path forming wiring board, flow path forming method, flow path body manufacturing method, and flow path body kit
WO2021201108A1 (en) Flow path member and method for manufacturing same
WO2023002975A1 (en) Spacer and multi-layered glass

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210114

R150 Certificate of patent or registration of utility model

Ref document number: 6825889

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150